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Abstract

In order to identify expertise, forecasters should not be tested by their calibra-

tion score, which can always be made arbitrarily small, but rather by their Brier

score. The Brier score is the sum of the calibration score and the refinement score;

the latter measures how good the sorting into bins with the same forecast is, and

thus attests to “expertise.” This raises the question of whether one can gain cal-

ibration without losing expertise, which we refer to as “calibeating.” We provide

an easy way to calibeat any forecast, by a deterministic online procedure. We

moreover show that calibeating can be achieved by a stochastic procedure that is

itself calibrated, and then extend the results to simultaneously calibeating multiple

procedures, and to deterministic procedures that are continuously calibrated.
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1 Introduction

Forecasters—whether of weather or of events like elections and sports—make probabilistic

predictions, such as “the probability of rain is p.” What does it mean, and how does one

test whether it is any good? Taking the classic view of probability as long-run frequency,

the above prediction translates to “in the days when the forecast is p the frequency of

rain is close to p in the long run.” If this holds for all values of p used as forecasts, one

says that the forecaster is calibrated. There is a large literature on calibration; see the

survey of Olszewski (2015), and the recent paper of Foster and Hart (2021), which also

discusses the economic utility of calibration (see Section I.A there).

The calibration score K is defined as the average squared distance between forecasts

and realized (relative) frequencies (i.e., the proportion of, say, rainy days), where each
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forecast is weighted by how often it has been used; evaluated after t days, this yields

K =
1

t

t∑

s=1

(cs − ā(cs))
2 ,

where cs is the forecast at time s and for each p we denote by ā(p) ≡ āt(p) the frequency

of rain in the days from 1 to t in which the forecast was p (giving weight 1/t to each day

is the same as weighting each forecast by the proportion of days it has been used). Being

calibrated means that K is (close to) 0.

A classic and surprising result of Foster and Vohra (1998) is that one can generate

forecasts that are guaranteed to be calibrated, no matter what the weather will be. This

immediately casts some doubt on whether calibration is the appropriate way to test

the expertise of forecasters. (There is an extensive literature on “experts” that uses

calibration tests to check whether they are indeed experts; see, e.g., the book of Cesa-

Bianchi and Lugosi 2006 and the survey of Olszewski 2015. The fact that the calibration

score is not the right way to identify experts does not imply that calibration should

be ignored—on the contrary, calibration is a useful property for forecasts to satisfy; see

Section I.A in Foster and Hart 2021.)

Day 1 2 3 4 5 6 ... K R B

Rain 1 0 1 0 1 0

F1 100% 0% 100% 0% 100% 0% 0 0 0

F2 50% 50% 50% 50% 50% 50% 0 0.25 0.25

Figure 1: Two calibrated forecasts

Take the following simple and well-known example (see Figure 1). Suppose that the

weather alternates between rain on odd days and no rain on even days. Consider two

rain forecasters: F1 forecasts 100% on odd days and 0% on even days, and F2 forecasts

50% every day. While both forecasts are well calibrated (the calibration score K of F1 is

0 every day, and that of F2 is 0 on even days and ≈ 0, specifically, 1/(4t2), on odd days),

F1 is clearly a much better and more useful forecaster than F2.

The difference between the two forecasts is underscored by appealing to the classic

Brier (1950) score B, which measures how close the forecasts and the realizations are,

by the standard mean squared error formula:

B =
1

t

t∑

s=1

(cs − as)
2 ,

where as denotes the weather on day s, with as = 1 standing for rain and as = 0

for no rain, and cs is, as above, the forecast on day s. For F1 the Brier score B is
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0 every day (because cs = as for all s), whereas for F2 it is 1/4 every day (because

(0.5 − 1)2 = (0.5 − 0)2 = 1/4). The Brier score thus distinguishes well between the two

forecasters (B = 0 vs. B = 1/4), while the calibration score does not (K = 0 for both).

To interpret this difference in the Brier scores, view forecasting as consisting of two

separate ingredients. The first one is the “classification” or “sorting” of days into “bins,”

where all the days with the same forecast p are assigned to the same bin. The second

one is the specific value of the forecast p that is used to define each bin, which we refer

to as the “label” of the bin. In the above example, F1 sorts the days into two bins, a

100%-bin, which consists of the odd days, and a 0%-bin, which consists of the even days,

whereas for F2 there is a single bin, the 50%-bin, which contains all days. Both bins

of F1 are homogeneous: there is no variance among the days in the same bin (they are

either all “rain,” or all “no rain”); by contrast, in the single bin of F2 there is a high

variance among the days (half of them are “rain” and half “no rain”). This “within-bin

variance” is captured by the refinement score R, which is the average squared distance

between the weather as and the bin-average weather (which is the average frequency of

rain on the days from 1 to t that are in the cs-bin, i.e., on those days when the forecast

was the same as on day s), denoted by ā(cs):

R =
1

t

t∑

s=1

(as − ā(cs))
2 .

The Brier score neatly decomposes into the sum of the refinement and the calibration

scores,

B = R+K

(this easily follows from the equality E [X2] = Var [X ] + (E [X ])2; see Section 2.1). The

refinement score R yields the average of the within-bin variances, and the calibration

score K the average squared distance between the bin labels and the bin averages. Perfect

calibration, i.e., K = 0, says that all the labels are correct: the label of each bin, i.e., the

value of the forecast that defines the bin, is equal to the average weather of the bin. In

addition, the refinement score R and the calibration score K are “orthogonal”: changing

the labels does not affect R (indeed, R is the “relabeling-minimum” Brier score; see

Section 2.3.1), and changing the distribution of actions within each bin without changing

their average does not affect K. Returning to the example, we have R = K = B = 0

for all t for F1, and R ≈ 1/4, K ≈ 0, B = 1/4 for all t for F2 (for perfect classification

without calibration, use, for instance, the forecast 75% on odd days and the forecast 25%

on even days: R = 0 and K = 1/16 for all t).

Thus, our first conclusion is

Conclusion: Experts should better be tested by the Brier score and not by

calibration alone.
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Unlike the calibration score, the Brier score cannot in general be brought down to

zero in the long run. Indeed, for an i.i.d. 50% probability of rain, the refinement score R
is close to (1/2) · (1/2) = 1/4 for any forecasting sequence (because this is the variance

of each bin), and thus the Brier score B is at least 1/4. However, if there are certain

“regularities” or “patterns” in the weather, then an expert forecaster who recognizes

them can get a lower refinement score. For example, suppose that it is very likely that

when it rains, it does so for precisely two consecutive days; this means a high probability,

say 90%, that 1 comes after 01 and also that 0 comes after 011 (where 1 stands for rain

and 0 for no rain). For a forecaster that forecasts p1 if and only if the last two days were

01, and forecasts p2 (different from p1) if and only if the last three days were 011, the

p1-bin and the p2-bin each have a low variance of 0.9 · 0.1 = 0.09. Knowledge about the

weather, which we refer to as expertise, is thus reflected in sorting the days into bins that

consist of similar days, and in making the binning as refined as possible (which can only

decrease R; see Section 5 and Appendix A.5)—that is, in having a low refinement score

R.

Returning to calibration, a forecaster can always guarantee its forecasts to be cali-

brated, by the Foster and Vohra (1998) result. However, this would require it to run one

of the calibration procedures (some of which—like the “forecast-hedging” one of Section

5 of Foster and Hart 2021—are extremely simple) and ignore whatever expert knowledge

he has about the weather, and whichever patterns he has identified in the data.

Thus, the natural question that arises is

Question: Can one gain calibration without losing expertise?

In formal terms, can one decrease K to zero without increasing R?

This can of course always be done in retrospect : replacing each forecast p with the

corresponding bin average ā(p) yields calibration while preserving the binning, and thus

the refinement score R. For example, if the frequency of rain on the days when the

forecast was 70% turned out to be 40%, then each forecast of 70% is “corrected” to

40%. The new calibration score is then zero, i.e., K′ = 0, while the refinement score is

unchanged, i.e., R′ = R; therefore, the Brier score is decreased by the calibration score:

B′ = B −K (because B′ = K′ +R′ = 0 +R = R and R = B − K). We will call this

“Calibeating”: Beating the Brier score by an amount equal to the calibration

score.

The calibeating described above is however obtained only in retrospect—offline—since

the bin averages are known only at the time t when the testing is done. Moreover, the

forecast corrections depend on the testing horizon t, since the average frequency of rain

may well change over time: āt(p) and āt′(p) may be quite different for t 6= t′.
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The interesting question is then what can be done online, by a procedure where the

forecast of each day smay be modified on the basis of what is known at that time only and

nothing beyond it (i.e., neither the upcoming weather on day s, nor the future weather

and forecasts on days after s). Our main result is

Result: One can guarantee online calibeating of forecasts.

The first result (Theorem 3 in Section 4) shows that this can be achieved by a simple

online procedure: replace each forecast by the average frequency of rain on the previous

days in which this forecast was made. This attains—online—the same lowering of the

Brier score by the calibration score that is obtained by the above offline correction. We

emphasize that this calibeating is achieved for weather and forecasts that are arbitrary

(and not stationary in any way), for sorting into bins that may be far from perfect, and for

bin averages that need not converge; moreover, everything is guaranteed uniformly, even

against a so-called “adversary.” The proof uses a neat online estimation of the variance.

Thus, any forecast that is not calibrated can be beaten, online, by another forecast

with a strictly better (i.e., lower) Brier score. An alternative interpretation of the result

takes a forecasting procedure and announces every period, instead of the intended fore-

cast, its corresponding calibeating replacement (as described in the previous paragraph).

This generates a new forecasting procedure, whose Brier score is lower than that of the

original one—a clear improvement. This may apply, for instance, to “online regression” or

“online least-squares” procedures, introduced by Foster (1991)—see also Forster (1999),

Vovk (2001), Azoury and Warmuth (2001), and Cesa-Bianchi and Lugosi (2006)—which

minimize the Brier score directly, and need not be calibrated in general.

Now the calibeating procedure of our first result need not be calibrated itself, which

means that it may be calibeaten too. To avoid this, our second result (Theorem 4

in Section 6) provides a calibeating procedure that is guaranteed to be calibrated, by

appealing to a “stochastic fixed point” result, namely, the stochastic “outgoing minimax”

tool of Foster and Hart (2021). The calibeating in this case thus yields K′ = 0 and

B′ = R′ ≤ R.

The procedure of this second result is stochastic, as it must be in order to guarantee

calibration (cf. Dawid 1982, Oakes 1985, and Foster and Vohra 1998). However, if the

calibration requirement is weakened to continuous calibration—a concept introduced in

Foster and Hart (2021), which implies smooth and weak calibration as well, and suffices for

equilibrium dynamics—we obtain (Theorem 6 in Section 6 and Theorem 12 in Appendix

A.7) deterministic calibeating procedures that are continuously calibrated. This requires

the use of a fixed point tool, specifically, the “outgoing fixed point” result of Foster and

Hart (2021); see Section III.D there, and Appendix A.3 here, for the distinction between

minimax and fixed point methods.
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Next, we show that all the above results can be extended to simultaneously calibeating

multiple forecasters (Theorem 7 in Section 7).

Finally, we comment on the use of the quadratic scores (such as ‖a− c‖2). This is

standard in statistics (e.g., analysis of variance and linear regression), as it easily leads

to useful decompositions, such as the Brier score being the sum of the refinement and

calibration scores here. However, it raises the question of how much do our results

depend on using the quadratic scores.1 While a general analysis is beyond the scope of

the present paper, we believe that the ideas and approach here carry through for other

scoring functions; in Appendix A.9 we show this for another classic scoring rule, the

logarithmic one.

To summarize the contribution of this paper: we address the frequently asked question

of how to get better forecasts when there is some expertise. We argue that expertise

should better be tested by the Brier score and not just by calibration, and show how

to calibeat forecasts that are not calibrated: lower their Brier score by at least their

calibration score, without losing the expertise embodied in these forecasts.

2 The Setup

Let A be the set of possible outcomes, which we call actions, and let C be the set of

forecasts about these actions. We assume that C ⊂ Rm is a nonempty compact convex

subset of a Euclidean space, and that A ⊆ C. Some examples: (i) A = {0, 1}, with a = 1

standing for “rain” and a = 0 for “no rain,” and C = [0, 1], with c in C standing for “the

chance of rain is c”; (ii) more generally, C is the set of probability distributions ∆(A) on

a finite set A, i.e., a unit simplex (we identify the elements of A with the unit vectors

of C); (iii) C is the convex hull conv(A) of A. Let γ := diam(C) ≡ maxc,c′∈C ‖c− c′‖
denote the diameter of the set C. Let δ > 0; a subset D of C is a δ-grid of C if for every

c ∈ C there is d ∈ D at a distance of less than δ from c, i.e., ‖d− c‖ < δ; a compact set

C always has a finite δ-grid (obtained from a finite subcover by open δ-balls).

The time periods are indexed by t = 1, 2, ... . An action sequence is a = (at)t≥1 with

at ∈ A for all t, and we write at = (as)1≤s≤t for its first t elements; similarly, a forecasting

sequence is c = (ct)t≥1 with ct ∈ C for all t, and we put ct = (cs)1≤s≤t.

1We thank the referee who posed this question.
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2.1 The Calibration, Refinement, and Brier Scores

Fix a time horizon t. For each possible forecast x in C let2

nt(x) := |{1 ≤ s ≤ t : cs = x}|,

āt(x) :=
1

nt(x)

∑

1≤s≤t:cs=x

as, and

vt(x) :=
1

nt(x)

∑

1≤s≤t:cs=x

‖as − āt(x)‖2

be, respectively, the number of times that the forecast x has been used up to time t,

and the action average and variance in those periods; when x has not been used, i.e.,

nt(x) = 0, we put for convenience vt(x) := 0 and (see below) et(x) := 0.

The calibration error et(x) of a forecast x is the difference between the action average

and x, i.e.,

et(x) := āt(x)− x,

and the calibration score is the average square calibration error, i.e.,3

Kt :=
∑

x∈C

(
nt(x)

t

)
‖et(x)‖2 ;

thus, the error of each x is weighted in proportion to the number of times nt(x) that x

has been used (the weights add up to 1 because
∑

x nt(x) = t). Since from 1 to t there

are exactly nt(x) terms with x = cs, this is equivalent to

Kt =
1

t

t∑

s=1

‖et(cs)‖2 =
1

t

t∑

s=1

‖āt(cs)− cs‖2 .

We refer to Kt as the “ℓ2-calibration score,” to distinguish it from Kt (note the different

font) that is used in other papers (e.g., Foster and Hart 2021 and Hart 2021), and which

is the “ℓ1-calibration score,” i.e., the weighted average of ‖et(x)‖ rather than ‖et(x)‖2.
The two scores are equivalent, since (Kt)

2 ≤ Kt ≤ γKt (the first inequality by Jensen’s

inequality, the second by ‖et(x)‖ ≤ γ), and so Kt → 0 if and only if Kt → 0.

The refinement score is the average over all forecasts of the corresponding action

variances:

Rt :=
∑

x∈C

(
nt(x)

t

)
vt(x);

again, this is equivalently expressed as

Rt =
1

t

t∑

s=1

‖as − āt(cs)‖2 .

2The number of elements of a finite set Z is denoted by |Z|.
3The sum is finite as it goes over all x with nt(x) > 0, i.e., over x in the set {c1, ..., ct}.
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Finally, the Brier (1950) score,

Bt :=
1

t

t∑

s=1

‖as − cs‖2 ,

measures how close the forecasts cs are to the actions as by a standard mean of squared

error formula. This is a so-called “strictly proper scoring rule,” which means that if the

sequence at is generated by a probability distribution P, then the unique minimizer of

the expected Brier score is the sequence cs = P [as|as−1] of true conditional probabilities

(assume for simplicity that C is the set of probability distributions ∆(A) on a finite set

A).

One may assume for convenience4 that one assigns to the bins the differences

zs := as − cs between actions and forecasts, instead of the actions as; this amounts

to subtracting the constant x from all the entries in the x-bin, and then et(x) and vt(x)

become, respectively, the expectation and variance of the x-bin. The empirical distribu-

tion of the differences zs and of the bin labels cs yields two (Rm-valued) random vari-

ables, which we denote by Z and U , respectively; namely, the pair (Z, U) takes the value

(zs, cs) ≡ (as − cs, cs) for s = 1, ..., t with probability 1/t each. With this representation

we have

et(x) = E [Z|U = x] ,

vt(x) = Var [Z|U = x] ,

Kt = E
[
‖E [Z|U ]‖2

]
,

Rt = E [Var [Z|U ]] , and

Bt = E
[
‖Z‖2

]
= E

[
E[ ‖Z‖2 |U ]

]
.

Using the identity E [X2] = Var [X ] + (E [X ])2 for each one of the m coordinates of Z|U ,

summing over the coordinates, and then taking overall expectation yields

Bt = Rt +Kt, (1)

which is a useful decomposition of the Brier score (see Sanders 1963 and Murphy 1972).

Appendix A.6 generalizes this to “fractional” binnings.

For each x the variance vt(x) of the x-bin is the minimum over y ∈ C of

nt(x)
−1
∑

1≤s≤t:cs=x ‖as − y‖2 , which is attained when y equals the bin average āt(x).

Therefore, the refinement score is the Brier score where each bin label x is replaced by

āt(x), and this is the minimal Brier score over all relabelings of the bins:

Rt = min
φ

Bφ(c)
t , (2)

4See Foster and Hart (2021); this matters also when generalizing to fractional binnings (Section A.7).
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where the minimum is taken over all functions φ : C → C (from current labels x to

new labels y), and we write Bφ(c)
t for the Brier score where the sequence c is replaced

by5 φ(c) = (φ(cs))1≤s≤t. Thus, starting from the Brier scoring rule, we could define the

refinement score R as the “relabeling-minimum” Brier score, and the calibration score

K as the “residual” score B −R. The same holds for the logarithmic scoring rule (see

Appendix A.9), and may well be used for other scoring rules.

2.2 Calibration

A stochastic forecasting procedure σ is a mapping σ : ∪t≥1(A
t−1 ×Ct−1) → ∆(C); i.e., to

each history (at−1, ct−1) of actions and forecasts before time t the procedure σ assigns a

probability distribution σ(at−1, ct−1) on C, which yields the forecast ct ∈ C. When these

distributions are all pure (i.e., their support is always a single ct in C), the procedure is

deterministic.

Let ε ≥ 0; a (stochastic) procedure σ is ε-calibrated (Foster and Vohra 1998) if6’
7

lim
t→∞

(
sup
at

E [Kt]

)
≤ ε2

(the expectation E is taken over the random forecasts of σ).

2.3 The Concept of “Calibeating”

We come now to the central concept of this paper, “calibeating,” which stands for “beating

by an amount equal to the calibration score”: a forecasting sequence c “calibeats” another

forecasting sequence b if, fixing the action sequence, c beats the Brier score of b by at

least b’s calibration score (i.e., Bc ≤ Bb−Kb in the long run). Thus, if b is not calibrated,

and hence its calibration score Kb is positive, then the Brier score Bc of c is not just

better (i.e., lower) than the Brier score Bb of b, but it is strictly better, by at least Kb.

The formal definition will require calibeating to be carried out online—i.e., to have access

only to the current forecast of b (and the history) and nothing beyond that—and also to

be guaranteed—i.e., to hold no matter what the sequences of actions and forecasts will

be; moreover, this should hold uniformly over all these sequences.

By way of the uniformity requirement, we consider a given set B ⊆ C of possible

forecasts; for instance, B may be a finite set. A forecasting procedure σ all of whose

forecasts are in B is called a B-forecasting procedure (when B = C we will usually just

5Joining two bins that have the same average does not affect the refinement score.
6The calibration score Kt depends on the actions and forecasts up to time t, and is thus a function

Kt ≡ Kt(a, σ) of the action sequence a and the forecasting procedure σ (in fact, only a
t and σt matter

for Kt). The same applies to the other scores throughout the paper.
7The reason that we have ε2 on the right-hand side is that we are dealing here with the square-

calibration score; the same applies to calibeating. The definition here implies the standard one that uses
Kt instead of Kt (e.g., Foster and Hart 2021), since, as we have seen in Section 2.1, (Kt)

2 ≤ Kt.
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say a “forecasting procedure”). Let ΣB denote the set of all B-forecasting procedures σ,

i.e., all mappings σ : ∪t≥1(A
t−1 × Bt−1) → ∆(B). For σ ∈ ΣB, let bt ∈ B denote the

forecast at time t, and put bt = (bs)1≤s≤t and b = (bs)s≥1.

Assume that in each period t the forecast bt is announced before we provide our

forecast ct. Thus, (the distribution of) ct may depend on (at−1, ct−1,bt), i.e., on the

history ht−1 = (at−1, ct−1,bt−1) before time t together with the current bt. A b-based

forecasting procedure ζ is a mapping8 ζ : ∪t≥1(A
t−1 × Ct−1 × Bt) → ∆(C). We will use

superscripts b, c on the scores B,R,K to denote the sequence to which they apply, and

similarly for action averages; for example, ābt (x) is the average of the actions in all periods

s ≤ t where bs = x, and āct (x) is the average of the actions in all periods s ≤ t where

cs = x.

Let ε ≥ 0; a b-based procedure ζ is (ε, B)-calibeating if its Brier score beats the

Brier score of any B-forecasting procedure σ (on which it is based) by that procedure’s

calibration score; formally,

lim
t→∞

(
sup
σ∈ΣB

sup
at∈At

E
[
Bc

t−
(
Bb

t −Kb

t

)])
≤ ε2, (3)

where the expectation E is over the random forecasts of σ and ζ; when ε = 0 we call

this B-calibeating. Thus, calibeating is guaranteed for any sequence a of actions and any

sequence b of resulting forecasts of σ, uniformly over all B-forecasting procedures σ and

action sequences a.

Clearly, condition (3) is not affected if one allows the sequences at to be random.

Moreover, since all sequences at are considered, one may envision an “adversary” that

chooses the B-forecasting procedure σ as well as the action sequence at, and so the

sequences bt and at may well be “coordinated.” Thus, supσ supat
in (3) is the same as

supat,bt
, where bt ranges over B

t; indeed, the latter supremum can only be larger, as all

sequences bt are considered there and not just those generated by σ; however, it cannot

be strictly larger since all σ that forecast a fixed sequence bt (ignoring the history) are

included in the former supremum. Thus, a b-based procedure ζ is (ε, B)-calibeating if

lim
t→∞

(
sup

at∈At,bt∈Bt

E
[
Bc

t−
(
Bb

t −Kb

t

)]
)

≤ ε2, (4)

where the expectation is now over the randomizations of ζ.

8One should not confuse “B-forecasting” with “b-based”; the former refers to the outputs of the
procedure (all forecasts are in B) whereas the latter refers to the inputs of the procedure (the sequence
b).
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2.3.1 Calibeating for General B

Since B − K = R, we can replace Bb

t − Kb

t in (3) and (4) with the refinement score Rb

t

of b: calibeating means that c’s Brier score beats b’s refinement score. This allows the

notion of calibeating to be generalized to sequences b = (bt)t≥1 for which bt need not be

an element of C. The “forecast” may thus be “a nice day,” a “red day,” a “b-day,” or just

“b,” for some b in an arbitrary set B. What matters for the resulting refinement scores Rb

t

are the bins into which the days are classified and the ensuing bin variances; the specific

labels b of the bins do not matter (the labels do however matter for the calibration score,

which is “orthogonal” to the refinement score). Therefore, we extend our definition to

arbitrary sets B: a b-based forecasting procedure is (ε, B)-calibeating if

lim
t→∞

(
sup
σ∈ΣB

sup
at∈At

E
[
Bc

t−Rb

t

])
≤ ε2 (5)

or, equivalently,

lim
t→∞

(
sup

at∈At,bt∈Bt

E
[
Bc

t−Rb

t

]
)

≤ ε2. (6)

As we will see below, this natural extension will be useful, for instance, when consid-

ering the joint binning generated by several forecasting procedures.

Finally, calibeating can be formalized in terms of Brier scores only. Since the re-

finement score is the minimal Brier score over all relabelings of the bins (see (2)), it

follows that calibeating amounts to getting the Brier score of c down to the “relabeling-

minimum” Brier score of b, i.e. (ignoring ε, lim, and sup), Bc

t ≤ minφ Bφ(b)
t , where the

minimum is taken over all functions φ : B → B (the minimum is attained when φ(b)

equals the average ābt (b) of the b-bin; cf. the correction of forecasts “in retrospect” in the

Introduction).

3 The Online Refinement Score

The main tool that we will use is that Rt, the refinement score at time t, which is the

average variance of the bins and can thus be computed only at time t when the averages

of all bins are known (i.e., offline), can be approximated by a similar score R̃t, which is

computed period by period (i.e., online).

Specifically, we define the online refinement score R̃t at time t by

R̃t :=
1

t

t∑

s=1

‖as − ās−1(cs)‖2 ,

where for each c in C we take ā0(c) to be an arbitrary element of C. Comparing this

with the refinement score Rt = (1/t)
∑t

s=1 ‖as − āt(cs)‖2, we see that what R̃t does is to

12



replace for each s = 1, ..., t the term āt(cs), the average at time t of the cs-bin to which

as is assigned9 (an average that will be determined only at time t, i.e., offline), by the

term ās−1(cs), the past average (i.e., before time s) of that same cs-bin, which is known

at time s (i.e., online).

The following proposition bounds the difference between R̃t and Rt.

Proposition 1 For any t ≥ 1 and any sequences at and ct we have

Rt ≤ R̃t ≤ Rt + γ2Nt

t

(
ln

(
t

Nt

)
+ 1

)
, (7)

where Nt := |{cs : 1 ≤ s ≤ t}| is the number of distinct elements in the sequence ct =

(c1, ..., ct) (i.e., the number of distinct forecasts used).

Thus, R̃t−Rt → 0 as t → ∞ when Nt/t → 0, i.e., the number of forecasts used up to

time t increases at a slower rate than10 t. When forecasts belong to a finite set D ⊂ C,

and so Nt ≤ |D| and ln(t/Nt) ≤ ln t for all t, we get

0 ≤ R̃t −Rt ≤ |D| ln t + 1

t
. (8)

Proposition 1 follows from the following online formula for the variance. Let (xn)n≥1

be a sequence of vectors in a Euclidean space (or, more generally, in a normed vector

space).

Proposition 2 For every n ≥ 1 we have

n∑

i=1

‖xi − x̄n‖2 =
n∑

i=1

(
1− 1

i

)
‖xi − x̄i−1‖2 , (9)

where x̄m := (1/m)
∑m

i=1 xi denotes the average of11 x1, ..., xm.

Proof. Put sn :=
∑n

i=1 ‖xi − x̄n‖2; we claim that

sn = sn−1 +

(
1− 1

n

)
‖xn − x̄n−1‖2 . (10)

9As pointed out in Section 2.1, neither Rt nor R̃t is affected whether we assign to the cs-bin the
action as or the difference zs = as − cs.

10For a simple example where Nt/t does not converge to 0 and the online refinement score R̃t does
not approach the refinement score Rt, take

a : 0 1 0 1 0 1 0 1 ... 0 1 ...
c : 1 1 1

2
1
2

1
3

1
3

1
4

1
4 ... 1

n
1
n

...
.

Indeed, for all even periods t = 2n (where Nt = n, and so Nt/t → 1/2), we have Rt = 1/4 (since

each (1/i)-bin contains two elements, a2i−1 = 0 and a2i = 1) and R̃t ≥ 1/2 (since (a2i − ā2i−1(c2i))
2 =

(1− 0)2 = 1 and (a2i−1 − ā2i−2(c2i−1))
2 ≥ 0).

11The sum on the right-hand side of (9) effectively starts from i = 2, and so it does not matter how
x̄0 is defined.

13



We provide a short proof:12 let n ≥ 2 (when n = 1 both sides vanish), and assume that

x̄n−1 = 0 (this is without loss of generality, since subtracting a constant from all the xi

does not affect any of the terms); then x̄n = (1/n)xn, and so, using sn =
∑n

i=1 ||xi||2 −
n||x̄n||2, we get

sn − sn−1 =

(
n∑

i=1

‖xi‖2 − n

∥∥∥∥
1

n
xn

∥∥∥∥
2
)

−
n−1∑

i=1

‖xi‖2 = ‖xn‖2 −
1

n
‖xn‖2 ,

which is (1− 1/n) ‖xn‖2 = (1− 1/n) ‖xn − x̄n−1‖2.
Applying (10) recursively yields the result. �

Let vn := (1/n)
∑n

i=1 ‖xi − x̄n‖2 denote the variance of x1, ..., xn, and put ṽn :=

(1/n)
∑n

i=1 ‖xi − x̄i−1‖2 ; i.e., x̄n, the final (up to n) average, is replaced for each i =

1, ..., n with x̄i−1, the previous (up to i−1) average (take x̄0 to be an arbitrary element of

the convex hull of the xi). We refer to ṽn as the online variance of x1, ..., xn. Proposition

2 gives ṽn − vn = (1/n)
∑n

i=1(1/i) ‖xi − x̄i−1‖2, and so

0 ≤ ṽn − vn ≤ 1

n

n∑

i=1

1

i
ξ2 ≤ ξ2

lnn+ 1

n
, (11)

where ξ := max1≤i,j≤n ‖xi − xj‖; moreover, the13 O(logn/n) bound is tight (take each xi

to be at a distance of at least some δ > 0 from x̄i−1), and thus so is the O(log t/t) bound

in Proposition 1 and (8).

Proposition 1 now easily follows.

Proof of Proposition 1. Let D ≡ Dt := {cs : 1 ≤ s ≤ t} ⊂ C be the set of forecasts

used up to time t, i.e., the set of nonempty bins. For each d ∈ D we apply (11) to get

0 ≤ 1

nt(d)

∑

s≤t:cs=d

‖as − ās−1(d)‖2 −
1

nt(d)

∑

s≤t:cs=d

‖as − āt(d)‖2 ≤ γ2 lnnt(d) + 1

nt(d)
.

Averaging over d in Dt with the weights nt(d)/t then yields

0 ≤ R̃t −Rt ≤ γ2 1

t

∑

d∈Dt

(lnnt(d) + 1).

Since the function ln is concave and
∑

d∈Dt
nt(d) = t, the sum

∑
d∈Dt

lnnt(d) is maximal

when all the nt(d) are equal, i.e., when nt(d) = t/Nt for each d ∈ Dt; this yields the result

(7). �

12An alternative proof of (10) uses Var(X) = E [Var(X |Y )] + Var(E [X |Y ]), where X = xi with
probability 1/n and Y is the indicator that i = n. Formula (10) is known as a “variance update”
formula; see, e.g., Welford (1962).

13We use standard asymptotic notation as n → ∞: f(n) = O(g(n)), f(n) = o(g(n)), and f(n) ∼ g(n)
stand for, respectively, limn→∞f(n)/g(n) < ∞, limn→∞ f(n)/g(n) = 0, and limn→∞ f(n)/g(n) = 1.
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4 A Simple Way to Calibeat

We provide a simple calibeating procedure. The set B is taken for now to be finite (the

restriction on the number of possible forecasts, i.e., on the number of bins, is needed

in order for the resulting classification to be meaningful; in the extreme case where all

forecasts are distinct, and thus each bin contains a single element, we have Rt = 0 for all

t). This finiteness assumption may be relaxed; see Remark (d) below.

Theorem 3 Let B be a finite set, and let ζ be the deterministic b-based forecasting

procedure given by

ct = ābt−1(bt) (12)

for every time t ≥ 1 (if t is the first time that bt is used, take ct to be an arbitrary element

of C). Then ζ is B-calibeating; specifically,

0 ≤ Bc

t −Rb

t ≤ γ2|B| ln t+ 1

t
(13)

for all t ≥ 1 and all sequences at ∈ At and bt ∈ Bt.

Proof. Our choice of ct = ābt−1(bt) makes Bc

t = R̃b

t for any at and bt; use Proposition 1

(see (8)).14 �

The calibeating forecast ct is thus the average of the actions in those periods 1 ≤ s ≤
t − 1 in which the forecast bs was equal to the current forecast bt. When B is a subset

of C we get by (13) that Bc

t ≤ Bb

t − Kb

t + o(1); i.e., the Brier score of c is lower than

that of b by essentially the calibration score of b. Note that the specific values bt of the

B-forecasts are not used by the calibeating procedure ζ, and only the binning that they

generate matters (see Section 2.3.1).

Remarks. (a) The simple calibeating procedure ζ is “universal” also in the sense of

being independent of the specific set B: the forecast ct is just the past average of the

current bin.

(b) The history of one’s own forecasts, ct−1, is not used by the procedure ζ; thus, ct

is a function of at−1 and bt only.

(c) One cannot guarantee a Brier score that is lower than the refinement score of b.

Indeed, for every t ≥ 1 and every bt ∈ Bt, we have

sup
at

E
[
Bc

t −Rb

t

]
≥ 0

for any sequence ct, because when all as are equal to a fixed a0 ∈ A we get Rb

t = 0

(because all bins contain only a0, and so their variance is zero).

14One always has R̃b

t = Bā(b)
t ; that is, the online refinement score R̃b

t of the sequence b = (bs)s≥1 is
the same as the Brier score of the sequence of action averages ā(b) = (ās−1(bs))s≥1.
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(d) If the set B is not finite, the procedure ζ calibeats also all sequences b with

Nb

t /t → 0 as t → ∞, where Nb

t := |{bs : s ≤ t}| is the number of distinct forecasts used

by b up to time t (use Proposition 1).

(e) From any forecasting procedure, whose forecasts may not be calibrated, we can

generate by Theorem 3 another forecasting procedure that yields lower Brier scores in

the long run, as follows. Let the b-forecasts be generated by a forecasting procedure σ,

and let σ′ replace each bt by the corresponding ābt−1(bt) (see Remark (b) in Appendix

A.1.3 for some technical details); then σ′ yields lower Brier scores than σ in the long run:

Bc

t ≤ Bb

t −Kb

t + o(1).

(f) The existence of a calibeating procedure may be proved by a minimax argument,

which extends the 1995 proof of Hart of calibration (see Section 4 of Foster and Vohra

1998, and Hart 2021); we do so in Appendix A.2. The existence proof does not however

provide an explicit calibeating procedure, for sure not the very simple one of Theorem 3.

Additional comments are relegated to Appendix A.1. In particular, we show that

one cannot guarantee a calibeating error of an order of magnitude lower than log t/t (see

Appendix A.1.1), and that the best that one can do is to decrease the error in Theorem

3 by a factor between 2 and 4 (depending on the dimension m), by using a more complex

formula for the forecast ct instead of (12) (see Appendix A.1.2).

5 Self-calibeating = Calibrating

The construction of Section 4 may be leveraged to obtain calibration. Indeed, when

b = c we have Bc

t −Rb

t = Bc

t −Rc

t = Kc

t , and so “self-calibeating,” i.e., c calibeating c, is

equivalent to calibration, i.e., Kc

t → 0. To achieve this by the construct of Theorem 3 we

would need to choose ct so that ct = āct−1(ct). However, this requires a fixed point of the

function āct−1(·), which of course need not exist in general. We circumvent this by using

a “stochastic expected fixed point” result, i.e., by appealing to the corresponding “out-

going” theorems of Foster and Hart (2021)—see Appendix A.4 for details—and thereby

obtain the classic calibration results (see Theorem 11(S) and (AD) in Foster and Hart

2021).15

Theorem 4 Let δ > 0 and let D ⊂ C be a finite δ-grid of C. Then there exists a

stochastic D-forecasting procedure σ that is δ-calibrated; specifically,16

E [Kt] ≤ δ2 + γ2|D| ln t+ 1

t

15While the proof here may look different from the one in Foster and Hart (2021), the two proofs are
in fact identical. The approach here with the online refinement score makes the proof more transparent.

16Since we are dealing here with only one forecasting sequence c, we will drop the superscript c from
K and ā.
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for all t ≥ 1 and all sequences at ∈ At. Moreover, σ may be taken to be δ-almost

deterministic (i.e., all randomizations are δ-local).

Proof. For every t and history ht−1 = (at−1, ct−1), the outgoing Theorem 10 (S) of

Appendix A.4 applied to the function āt−1(·) yields a distribution ηt on D such that,

using it as the distribution σ(ht−1) of the forecast ct, we have

Et−1

[
‖at − ct‖2 − ‖at − āt−1(ct)‖2

]
≤ δ2 (14)

for every at ∈ A, where Et−1 denotes expectation with respect to σ(ht−1). Taking over-

all expectation and averaging over t = 1, 2, ... yields E

[
Bt − R̃t

]
≤ δ2; Proposition 1

completes the proof. For the “moreover” part, use part (AD) of Theorem 10. �

The proof is quite instructive: what we would like to get is λt := ‖at − ct‖2 −
‖at − āt−1(ct)‖2 ≤ 0 no matter what at will be, which can be guaranteed only by choos-

ing ct = āt−1(ct). This means that ct should be a fixed point of the function āt−1(·), a
function that is defined only on the finite set {cs : 1 ≤ s ≤ t} and is far from being

continuous, and so need not in general have a fixed point. We thus use a distribution

ηt instead—obtained by the minimax theorem—that guarantees that, in expectation, λt

cannot exceed 0 by much (as in the simple illustration in Section 1.2 in Foster and Hart

2021).

Remarks. (a) From inequality (14) for every history we get, by the Strong Law of

Large Numbers for Dependent Random Variables (Loéve 1978, Theorem 32.1.E), that

limt→∞

(
Bt − R̃t

)
≤ δ2 (a.s.), and thus limt→∞Kt ≤ δ2 (a.s.); see Appendix A5 in Foster

and Hart (2021).

(b) Let Dt be an increasing sequence (i.e., Dt ⊆ Dt+1) of δt-grids of C such that δt → 0

and |Dt|/t → 0 as t → ∞; using Dt at time t guarantees that E [Kt] = E [Bt −Rt] =

E

[
Bt − R̃t

]
+ E

[
R̃t −Rt

]
≤ δ2t + O ((|Dt|/t) ln (t/|Dt|)) → 0 (by Proposition 1), and

thus we obtain 0-calibration.

6 Calibeating by a Calibrated Forecast

While the procedure ζ of Section 4 calibeats any B-forecasting procedure, ζ itself need

not yield calibrated forecasts (for example, if all its forecasts ct = ābt−1(bt) are distinct,

then all its bins are singletons and its calibration score is high), and so ζ itself may be

calibeaten by yet another procedure. This suggests requiring our calibeating procedure

to be calibrated, which is what we provide in this section.

Given two sequences b1 = (b1t )t≥1 and b2 = (b2t )t≥1 with values in sets B1 and B2,

respectively, the resulting joint binning has U = B1 ×B2 as the set of bins; i.e., there is
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a (b1, b2)-bin for each pair (b1, b2) ∈ B1 ×B2 = U , and at is assigned to the ut-bin where

ut = (b1t , b
2
t ). The bin averages are

āut (u) ≡ āb
1,b2

t (b1, b2) :=

∑
1≤s≤t:us=x as

|{1 ≤ s ≤ t : us = u}|

for every u ∈ U , and the refinement score isRu

t ≡ Rb
1,b2

t = (1/t)
∑t

s=1

∥∥∥as − āb
1,b2

t (b1t , b
2
t )
∥∥∥
2

≡
(1/t)

∑t
s=1 ‖as − āut (vt)‖2. Since Rt is the average internal variance of the bins, refining

a binning—i.e., splitting bins into several new bins—can only decrease the refinement

score; see Appendix A.5 for a formal proof (informally, consider splitting a bin b with

average x̄ into two new bins b′ and b′′, with averages x̄′ and x̄′′, respectively; writing
∑′

and
∑′′ for the sums over b′ and b′′, respectively, we have

∑′(xj − x̄′)2 ≤ ∑′(xj − x̄)2

[this holds for any y in place of x̄], and similarly for
∑′′, which added together yields

∑′(xj − x̄′)2 +
∑′′(xj − x̄′′)2 ≤∑(xj − x̄)2). Therefore

Rb1,b2

t ≤ Rb1

t and Rb1,b2

t ≤ Rb2

t . (15)

By using the joint binning of the given sequence b together with our forecast c, and

appealing to the stochastic outgoing result, we obtain:

Theorem 5 Let B be a finite set, and let D ⊂ C be a finite δ-grid of C for some δ > 0.

Then there exists a stochastic b-based D-forecasting procedure ζ that is (δ, B)-calibeating

and δ-calibrated; specifically,

E

[
Bc

t −Rb,c
t

]
≤ δ2 + γ2|B| |D| ln t+ 1

t
,

and thus, by (15),

E
[
Bc

t −Rb

t

]
≤ δ2 + γ2|B| |D| ln t+ 1

t
and

E [Kc

t ] ≤ δ2 + γ2|B| |D| ln t+ 1

t

for all t ≥ 1 and all sequences at ∈ At and bt ∈ Bt. Moreover, ζ may be taken to be

δ-almost deterministic.

Thus, if we ignore the δ2 term, in the long run the refinement score of ζ is no worse

than that of any B-forecasting procedure, and its calibration score is zero. When |B| = 1

(and thus B-forecasting has no content), it reduces to the calibration result, Theorem 4,

of Section 5.

Proof. At time t, given the history (at−1, ct−1,bt−1) together with bt, apply Theorem 10

(S), respectively (AD), to the function c 7−→ āb,ct−1(bt, c) (for c ∈ D) to get ηt ∈ ∆(D) such

that, by using it as the distribution of ct given (at−1, ct−1,bt) (which makes it a b-based
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procedure), we have

Et−1

[
‖at − ct‖2 −

∥∥∥at − āb,ct−1(ct, bt)
∥∥∥
2
]
≤ δ2

for every at ∈ A, where Et−1 denotes the expectation conditional on (at−1, ct−1,bt).

Taking overall expectation and averaging over t yields

E

[
Bt − R̃b,c

t

]
≤ δ2.

Proposition 1 completes the proof. �

Remarks. (a) Again, we can allow Nb

t , the number of distinct forecasts used up to time

t, to increase with t, provided that Nb

t /t → 0; see Remark (c) in Section 4 and Remark

(b) in Section 5.

(b) The procedure in the above proof amounts to using a stochastic forecast-hedging

calibration procedure separately for each bin in B.

(c) If the calibeating procedure of Theorem 3 is not calibrated, then one can construct

another procedure that calibeats it, and then another one that calibeats that, and so on.

A calibeating procedure that is calibrated, as obtained here, stops this infinite regress,

which may well be quickly overwhelmed by the accumulating errors of calibeating, as well

as those due to rounding up to a finite grid (see Remark (a) in Appendix A.1.3).

(d) A proof that is directly based on the minimax theorem is provided in Appendix

A.2.

Calibration, and thus calibeating by a calibrated forecast, requires the procedure to

be stochastic. However, if we replace calibration with continuous calibration, a weakening

defined in Foster and Hart (2021)—useful, in particular, for game dynamics that yield

Nash equilibria—we get a deterministic procedure instead.

Theorem 6 Let B be a finite set. Then there exists a deterministic b-based forecasting

procedure ζ that is B-calibeating and is continuously calibrated.

We relegate the details to Appendix A.7.

7 Multi-calibeating

Suppose that there are N ≥ 1 forecasting sequences, bn = (bnt )t≥1 for n = 1, 2, ..., N . We

assume that each bn uses only finitely many forecasts: there is a finite set Bn such that

bnt ∈ Bn for all t ≥ 1 (and, as in Section 2.3.1, while Bn could be a subset of C, it may

well be an arbitrary set). Put b =(b1, ...,bN); we are looking for a b-based forecasting

procedure—i.e., ct is determined after all the b1t , ..., b
N
t are announced (and hence is a
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function of at−1, ct−1,b
1
t , ...,b

N
t —that simultaneously calibeats all the bn sequences. We

have:

Theorem 7 (i) There exists a simple deterministic (b1, ...,bN)-based forecasting proce-

dure ζ that is Bn-calibeating for all n = 1, ..., N ; specifically, the forecast of ζ in period t

is ct = āb
1,...,bN

t−1 (b1t , ..., b
N
t ), the average of the actions in all past periods s ≤ t− 1 where

the combination (b1t , ..., b
N
t ) was used (if t is the first period in which (b1t , ..., b

N
t ) is used,

take ct ∈ C to be arbitrary).

(ii) For every finite δ-grid D of C there exists a stochastic (b1, ...,bN )-based D-

forecasting procedure ζ that is (δ, Bn)-calibeating for all n = 1, ..., N and is δ-calibrated.

Moreover, ζ may be taken to be δ-almost deterministic.

(iii) There exists a deterministic (b1, ...,bN)-based C-forecasting procedure ζ that is

(δ, Bn)-calibeating for all n = 1, ..., N and is continuously calibrated.

Proof. This is immediate from the results of the previous sections by taking (b1, ...,bN )

as b and using inequalities such as Rb1,...,bN

t ≤ Rbn

t for each n by Appendix A.5. �

Remarks. (a) The error term is

γ2
N∏

n=1

|Bn| ln t + 1

t
;

thus, in (i) we have

Bc

t ≤ Rbn

t + γ2
N∏

n=1

|Bn| ln t+ 1

t
, (16)

and in (ii) we have

E [Kc

t ] ≤ δ2 + γ2 |D|
N∏

n=1

|Bn| ln t+ 1

t
and

E [Bc

t ] ≤ E

[
Rbj

t

]
+ δ2 + γ2 |D|

N∏

n=1

|Bn| ln t+ 1

t

for all n = 1, ..., N , all t ≥ 1, and all sequences a,b1, ...,bN .

(b) Since the constant
∏N

n=1 |Bn| in the above error terms increases exponentially with

N , we provide in Appendix A.8 multi-calibeating procedures that are more complex but

yield smaller error terms.

(c) One may again allow the Bn to be infinite, provided that Nbn

t /t → 0 as t → ∞.

(d) The result in (ii) holds with probability one, and not only in expectation; see

Remark (a) in Section 6 and Appendix A5 in Foster and Hart (2021).
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A Appendix

The appendix contains additional results, proofs, and remarks.

A.1 A Simple Way to Calibeat

We consider here the minimal calibeating error that can be guaranteed. First, we show

in Appendix A.1.1 that it must be at least of the order of log t/t, the same order obtained

by Theorem 3; second, we pin down the constant in Appendix A.1.2: it is within a factor

between 2 and 4 (depending on the dimension m and the geometric shape of the set C)

of the constant of Theorem 3. Additional comments on Section 4 are provided in A.1.3.

A.1.1 The Calibeating Error

We prove here that one cannot guarantee a calibeating error of an order of magnitude

lower than log t/t. We show that this is so already in the simplest one-dimensional case;

see Remark (a) below for the extension to the multidimensional case.

Proposition 8 Let A = {0, 1} and C = [0, 1], and let b be a constant sequence (e.g.,

bt = 1/2 for all t). Then for every b-based forecasting procedure ζ we have17

sup
at∈At

E
[
Bc

t−Rb

t

]
≥
(
1

4
− o(1)

)
ln t

t
(17)

as t → ∞.

Proof. Consider the game between the “action player” who chooses the actions at and

the “calibrating player” who chooses the sequence of forecasts ct, with payoff Bc

t−Rb

t

(cf. the “calibration game” in Foster and Hart 2018, where the payoff was Kc

t ). We will

provide a mixed strategy of the action player that guarantees that

inf
ζ
E
[
Bc

t−Rb

t

]
≥
(
1

4
− o(1)

)
ln t

t
, (18)

where the infimum is taken over all forecasting procedures ζ (and the expectation is over

the randomizations of both actions and forecasts). This implies that for every such ζ

there is for each t ≥ 1 at least one sequence at in At for which the same inequality holds;

this is (17).

The mixed strategy of the action player that we provide consists of conditionally i.i.d.

actions, specifically, at|θ ∼ Bernoulli(θ) where θ ∼ Beta(α, α) for a fixed α > 0 (this is the

17For a constant sequence b, a b-based forecasting procedure is simply a forecasting procedure. The
expectation in (17) is over the stochastic choices of ζ (and it applies only to Bc

t , since Rb
t is determined

by at alone when bt is a constant sequence).
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so-called “beta-binomial” distribution with parameters α = β). The following formulas

are well known, and easy to see (e.g., Johnson, Kemp, and Kotz 2005):

E [āt] =
1

2
and Var [āt] = Var [āt] =

t + 2α

4(2α + 1)t
; (19)

the Bayesian estimate of θ given the history ht is

θ̂t := E [θ|ht] =
tāt + α

t + 2α
;

thus, by (19),

E

[
θ̂t

]
=

1

2
and Var

[
θ̂t

]
=

t

4(2α + 1)(t+ 2α)
. (20)

The sequence b yields a single bin, and soRb

t is the variance of a1, ..., at, i.e., āt(1−āt),

which, by (19), gives

E
[
Rb

t

]
= E [āt(1− āt)] = E [āt]− E

2 [āt]− Var [āt]

=
1

2
− 1

4
− t+ 2α

4(2α + 1)t
= λ− λ

t
, (21)

where we used E [ā2t ] = E2 [āt] + Var [āt], and put

λ :=
α

2(2α+ 1)
.

Next, we have

E [Bc

t ] =
1

t

t∑

s=1

E
[
(as − cs)

2
]
=

1

t

t∑

s=1

E
[
E
[
(as − cs)

2|hs−1

]]

≥ 1

t

t∑

s=1

E [Var [as|hs−1]] =
1

t

t∑

s=1

E

[
θ̂s−1(1− θ̂s−1)

]
,

where the inequality is by E [(X − Y )2] ≥ Var[X ] for any Y that is independent of18 X ,

and the equality following it is by as|hs−1 ∼ Bernoulli(θ|hs−1) = Bernoulli(θ̂s−1). Using

(20) we get

E

[
θ̂s−1(1− θ̂s−1)

]
= E

[
θ̂s−1

]
− E

2
[
θ̂s−1

]
− Var

[
θ̂s−1

]

=
1

2
− 1

4
− s− 1

4(2α + 1)(s− 1 + 2α)
= λ+

λ

s+ 2α− 1
,

and thus

E [Bc

t ] ≥ λ+
λ

t

t∑

s=1

1

s+ 2α− 1
.

18Use E
[
(X − y)2

]
≥ Var [X ] for each value y of Y. The inequality holds more generally for nonposi-

tively correlated X and Y, since E
[
(X − Y )2

]
≥ Var [X − Y ] = Var [X ]− 2Cov [X,Y ] +Var [Y ], which

is ≥ Var [X ] when Cov [X,Y ] ≤ 0.
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Together with (21) this yields

E
[
Bc

t −Rb

t

]
≥ λ

t

t∑

s=1

1

s+ 2α− 1
+

λ

t
∼ λ

ln t

t

as t → ∞. Since λ can be made arbitrarily close to19 1/4 by taking large enough α we

get (18), which completes the proof. �

Remarks. (a) In the multidimensional case with A = {0, 1}m and C = [0, 1]m (for any

m ≥ 1), let b be a constant sequence; applying the above result to each one of the m

coordinates separately and then summing up yields

sup
at∈At

E
[
Bc

t−Rb

t

]
≥
(m
4
− o(1)

) ln t

t
(22)

as t → ∞.

(b) Given a finite set B, let the sequence b use all b in B with equal frequencies

(for example, let the bt alternate in a round-robin manner between the elements of B);

applying Proposition 8 to the subsequence where bt = b for each b ∈ B separately and

then summing up yields

sup
at∈At

E
[
Bc

t−Rb

t

]
≥
(
1

4
− o(1)

)
|B| ln(t/ |B|)

t
.

A.1.2 Improving the Constant

Here we will show that one can improve the calibeating error of Theorem 3 by a factor

between 2 and 4 (depending on the dimension and the shape of the set C), and this

essentially matches the lower bound of the previous Section A.1.1.

Assuming that C is a full-dimensional set in20 Rm, let r be the radius of the minimal

bounding sphere of C; thus, r is minimal such that C ⊆ B̄(c0, r) for some c0 ∈ C. The

relation of r to the diameter γ of C is, by Jung’s (1901) theorem,

r2 ≤ γ2 m

2(m+ 1)
(23)

(and, of course, γ ≤ 2r).

Proposition 9 Let B be a finite set, and let ζ ′ be the deterministic b-based forecasting

procedure given by

c′t :=

(
1− 1

nb
t (bt)

)
ābt−1(bt) +

1

nb
t (bt)

c0

19As α → ∞ the beta-binomial distribution converges to the binomial distribution with θ = 1/2, for
which Rt ≈ 1/4. We cannot however use this limit distribution, since θ being fixed yields a much smaller
error, of the order of 1/t instead of log t/t.

20If the affine space spanned by C ⊂ Rm has a lower dimension m′ < m, project everything to Rm′

.
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for every time t ≥ 1. Then ζ is B-calibeating, and

Bc′

t −Rb

t ≤ r2|B| ln t + 1

t
(24)

for all t ≥ 1 and all sequences at ∈ At and bt ∈ Bt.

Thus, the forecast c′t of ζ
′ is an appropriately weighted average of the forecast ct =

ābt−1(bt) of the procedure ζ of Theorem 3 and the fixed “center” point c0 of C. Compared

with (13), the upper bound of (24) on the calibeating error has r2 instead of γ2, which,

by (23), is an improvement by a factor of at least 2; when m = 1, by a factor of 4. Of

course, ζ ′ gives up somewhat on the extreme simplicity of ζ, i.e., (12).

Proof. For any vectors x, y ∈ Rm and any scalar ν ∈ [0, 1], we have ‖x− (1− ν)y‖2 −
(1 − ν) ‖x− y‖2 = ν ‖x‖2− ν(1 − ν) ‖y‖2 ≤ ν ‖x‖2. Applying this to x = as − c0,

y = ābs−1(bs)− c0, and ν = 1/nb

s (bs) yields

‖as − c′s‖
2 −

(
1− 1

nb
s (bs)

)∥∥as − ābs−1(bs)
∥∥2 ≤ 1

nb
s (bs)

∥∥as − c0
∥∥2 ≤ r2

nb
s (bs)

.

Averaging the left-hand side for s = 1, ..., t yields Bc
′

t −Rb

t , and so, putting Bt := {b ∈
B : nb

t (b) > 0}, we get

Bc
′

t −Rb

t ≤ 1

t

∑

b∈Bt

nb
t (b)∑

i=1

r2

i
≤ 1

t
|B| r2(ln t + 1)

(because |Bt| ≤ |B| and nb

t (b) ≤ t), which is (24). �

Remark. When C = [0, 1]m for somem ≥ 1, we have r2 = m/4 (take c0 = (1/2, ..., 1/2)),

and thus

Bc
′

t −Rb

t ≤ m|B|(ln t + 1)

4t
.

When B is a singleton and b is a constant sequence, this upper bound is (m/4+o(1)) ln t/t,

which is asymptotically the same as the lower bound of (22).

A.1.3 Additional Comments

We provide here a number of additional remarks on the result of Theorem 3 on simple

calibeating.

Remarks. (a) If we want our forecasts ct to lie in a given δ-grid D ⊂ C (which may or

may not be the same as the gridB used for b), then taking ct ∈ D to be within δ of ābt−1(bt)

introduces an additional error of 2γδ in (13) (because
∣∣‖a− c‖2 − ‖a− d‖2

∣∣ ≤ 2γ ‖d− c‖
for all a, c, d ∈ C), and thus it yields (

√
2γδ, B)-calibeating.
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(b) Let the b-forecasts be generated by a forecasting procedure σ; the procedure σ′

of Remark (e) in Section 4, whereby each bt is replaced by the corresponding ābt−1(bt),

and which guarantees a lower Brier score than σ in the long run, is implemented as

follows. In each period t one computes the forecast bt according to σ, and then announces

ct = ābt−1(bt) (the bt is not announced). To carry this out one needs to recall the history

bt−1, which in general need not be deducible from the history (at−1, ct−1) of σ
′ (because

different b-bins may have had the same average, and so different bs may have yielded the

same cs = ābs−1(bs)). In game-theoretic terms, the resulting σ′ is not a behavior strategy

(which is what we have defined a forecasting procedure to be, in Section 2.2), but rather a

mixed strategy (i.e., a probabilistic mixture of pure, deterministic, strategies). However,

since the game between the “forecasting player” and the “action player” is a game of

perfect recall, by Kuhn’s (1953) theorem the mixed strategy σ′ induces an equivalent

behavior strategy σ′′, which is thus a forecasting procedure (this “equivalence” means

that no matter what the action player does, the probability of any outcome is the same

under the mixed strategy and the induced behavior strategy). The construction of σ′′ is

straightforward (see, e.g., Hart 1992): for every t ≥ 1, history (at−1, ct−1) ∈ At−1 ×Ct−1,

and forecast ct ∈ C, let Γt−1 := {bt−1 : ābs−1(bs) = cs for every 1 ≤ s ≤ t − 1} and

Γt := {bt : ā
b

s−1(bs) = cs for every 1 ≤ s ≤ t} be the sets of bt−1 and bt that, together

with the given at−1, yield ct−1 and ct, respectively; then the probability that σ′′ forecasts

ct after (at−1, ct−1) is given by

σ′′(at−1, ct−1)(ct) :=

∑
bt∈Γt

∏t
s=1 σ(as−1,bs−1)(bs)∑

bt−1∈Γt−1

∏t−1
s=1 σ(as−1,bs−1)(bs)

. (25)

(c) Can one do better than by choosing ct = ābt−1(bt) at each time t? Since R̃b

t −
Rb

t = O(log t/t) → 0, consider the game where our c-forecaster wants to minimize

Bc

t −R̃b

t (instead of Bc

t −Rb

t ) against an opponent that controls the sequences at and bt;

alternatively, the opponent controls the sequence at, whereas the sequence bt is exogenous

or is determined by history (i.e., by a forecasting procedure). We claim that the strategy

ζ of Theorem 3 is the unique subgame-perfect optimal strategy of our forecaster. To see

this, consider

Bc

t − R̃b

t =
1

t

t∑

s=1

[
||as − cs||2 −

∥∥as − ābs−1(bs)
∥∥2
]
. (26)

Suppose that we are in a period r ≤ t, and so the terms s < r of the sum (26) are all

given. To guarantee—no matter what the future as and bs will be—that the sum of the

remaining terms, i.e., s ≥ r, is as small as possible, one must now choose cr = ābr−1(br).
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This follows since for every ā ∈ convA and c 6= ā we have21

sup
a∈A

[‖a− c‖2 − ‖a− ā‖2] ≥ ‖c− ā‖2 > 0,

whereas ‖a− c‖2 − ‖a− ā‖2 = 0 for every a when c = ā. Thus

min
c∈C

sup
a∈A

[‖a− c‖2 − ‖a− ā‖2] = 0,

with a unique minimizer at c = ā. Therefore, for any sequence bt we have

min
cr,...,ct∈C

sup
ar ,...,at∈A

t∑

s=r

[
||as − cs||2 −

∥∥as − ābs−1(bs)
∥∥2
]
= 0,

with the minimum uniquely attained by choosing cs = ābs−1(bs) for each s = r, ..., t.

A.2 A Minimax Proof of Calibeating by a Calibrated Forecast

The simplest proof of the existence of forecasts that are guaranteed to be calibrated

consists of an application of the von Neumann’s (1928) minimax theorem for finite two-

person zero-sum games. See Hart (2021), which is a writeup of a proof provided in

1995 (see Section 4, “An Argument of Sergiu Hart,” in Foster and Vohra 1998); for

generalizations, see Sandroni (2003), Olszewski and Sandroni (2008), and Shmaya (2008).

We provide here a minimax proof of calibeating as well. Note that these minimax proofs

do not yield actual constructions of the corresponding procedures; they just give simple

proofs of their existence.

The calibeating game consists of two players, which we call the “AB-player” and

the “C-player.” In each period s = 1, 2, ..., t the AB-player chooses a pair (as, bs) ∈
A×B, then the chosen bs is revealed, and finally the C-player chooses a forecast cs ∈ C

(equivalently: first bs is chosen by the AB-player and is publicly announced, and then as

and cs are chosen by the two players independently). In period t, when the game ends,

the payoff of the C-player is his calibration score Kc

t . The joint choice of the action as

and the forecast bs is equivalent to allowing an arbitrary dependence between them; i.e.,

the b-forecaster may have any degree of “knowledge” or “expertise” about the action

sequence a (from “no knowledge,” where as and bs are chosen independently, all the way

to “complete knowledge,” where they are fully correlated, e.g., bs = as).

The sets A and B are assumed to be finite (with A ⊂ C), and we will restrict

the C-player to use a finite set D ⊂ C, which makes the calibeating game a finite

game. Moreover, we will make the c-binning a refinement of the b-binning, and so

21One way to see this is as follows. Let ā =
∑

i λiai be a convex combination of elements ai in A;

then
∑

i λi ‖ai − c‖2 =
∑

i λi ‖ai − ā‖2 + ‖c− ā‖2 (because ā is the weighted average of the ai), and so

for some i we must have ‖ai − c‖2 ≥ ‖ai − ā‖2 + ‖c− ā‖2 .
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Rc

t ≤ Rb

t (by Proposition 11 in Appendix A.5 below). Therefore, a strategy σ of

the C-player that guarantees E [Kc

t ] ≤ ε against any strategy τ of the AB-player gives

E
[
Bc

t −Rb

t

]
= E

[
Kc

t +Rc

t −Rb

t

]
≤ E [Kc

t ] ≤ ε, and thus it yields B-calibeating by a

calibrated procedure (cf. Theorem 5).

We proceed as follows. For every b ∈ B we take Db to be a finite δ-grid of C, such

that these grids are disjoint, i.e., Db ∩Db′ = ∅ for all b 6= b′; put D := ∪b∈BDb. We then

restrict the C-player to use only forecasts in Db after b is announced, i.e., cs ∈ Dbs for

every s; this indeed makes the c-binning a refinement of the b-binning.

We claim that for every mixed strategy τ of the AB-player there is a strategy σ of the

C-player such that E [Kc

t ] ≤ ε := O(δ+1/
√
t) (we do not try optimize the bounds here).

Indeed, in each period s ≤ t choose cs ∈ Dbs to be such that ‖cs − E [as|hs−1, bs]‖ ≤ δ

(i.e., take the conditional probability—given the history hs−1 = (as−1,bs−1, cs−1) and the

announced bs—that is generated by the mixed strategy τ of the AB-player, and round it

up to the δ-gridDbs that is used for bs). A standard computation, as in Hart (2021), shows

that E [Kt] ≤ δ + γ
√

|D|/
√
t, where Kt := (1/t)

∑
d∈D nt(d) ‖et(d)‖ is the ℓ1-calibration

score, for which we trivially have Kt ≤ γKt (see Section 2.1); this proves the claim.

The minimax theorem therefore yields a strategy σ of the C-player that guarantees

E [Kc

t ] ≤ ε against all strategies τ of the AB-player; we have thus obtained calibration

and, as shown above, B-calibeating.

A.3 Complexity of Procedures: Minimax (MM) and Fixed Point

(FP) Procedures

The basic calibeating procedure of Theorem 3 is very simple, as it requires just the

computation of averages; the same holds for the multi-calibeating procedure of Theorem

7 (i). The other procedures that we provide are more complex, and require solving

at each step a certain multidimensional problem. These problems turn out to be of two

distinct kinds: for stochastic procedures, they are finite minimax (or linear programming)

problems, and for deterministic and almost-deterministic procedures, they are continuous

fixed point problems. (The existence of the corresponding solutions is proven by the von

Neumann 1928 minimax theorem and the Brouwer 1912 fixed point theorem, respectively;

see Appendix A.4 below.) Following Foster and Hart (2021, Section III.D), we refer to

these as being of type MM (minmax) and type FP (fixed point), respectively.

This distinction, which is significant in the multidimensional case (i.e., for m > 1) and

is of the polynomial vs. nonpolynomial variety, is not just a matter of proof technique; see

Foster and Hart (2021), Sections III.D, VI, and VII (with a summary in Table I there).

Theorem 10 in Appendix A.4, which provides the “outgoing” tools that we use, makes

the distinction clear: part (S) gives procedures of type MM, and parts (D) and (AD) give

procedures of type FP.
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Specifically, the results that yield procedures of type MM are: calibration (Theo-

rem 4), calibeating with calibration (Theorem 5), and multi-calibeating with calibration

(Theorem 7 (ii))—all of them without the “moreover” almost-deterministic statement.

The results that yield FP procedures are all the above “moreover” statements, calibeating

with continuous calibration, and multi-calibeating with continuous calibration (Theorems

6, 12, and 7 (iii)).

A.4 “Outgoing” Results

We provide the results of the “outgoing” theorems of Foster and Hart (2021), restating

them in a convenient manner for our use. The seemingly slightly weaker formulations

here are still equivalent to Brouwer’s fixed point theorem and von Neumann’s minimax

theorem, respectively; see Remarks (c) and (d) below. The FP vs. MM distinction is

discussed in Appendix A.3 above. A probability distribution η is called “δ-local” if its

support is included in a ball of radius δ; i.e., there is y such that η(B̄(y; δ)) = 1.

Theorem 10 Let C ⊂ Rm be a nonempty compact convex set.

(D) Let g : C → Rm be a continuous function. Then there exists a point y in C that

is of type FP, such that

‖x− y‖ ≤ ‖x− g(y)‖ for all x ∈ C. (27)

(S) Let D ⊂ C be a finite δ-grid of C for some δ > 0, and let g : D → R
m be a

function. Then there exists a probability distribution η on D that is of type MM and has

support of size at most m+ 3, such that

Ey∼η

[
‖x− y‖2

]
≤ Ey∼η

[
‖x− g(y)‖2

]
+ δ2 for all x ∈ C. (28)

(AD) Let D ⊂ C be a finite δ-grid of C for some δ > 0, and let g : D → Rm be a

function. Then there exists a probability distribution η on D that is δ-local, of type FP,

has support of size at most m+ 1, and satisfies (28).

Proof. We will use the following easy-to-verify identity

‖x− y‖2 − ‖x− z‖2 = 2(z − y) · (x− y)− ‖z − y‖2 , (29)

with z = g(y), to get from the statements in Foster and Hart (2021) to the present ones.

(D) The fixed point outgoing theorem 4 of Foster and Hart (2021) applied to the

function f(x) = g(x)− x yields a point y ∈ C such that for all x ∈ C we have

(g(y)− y) · (x− y) ≤ 0,

and thus ‖x− y‖2 − ‖x− g(y)‖2 ≤ 0, by (29) with z = g(y).
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(S) The minimax outgoing theorem 5 of Foster and Hart (2021) applied to the function

f(x) = g(x)− x yields a distribution η ∈ ∆(D) such that for all x ∈ C we have

Ey∼η [(g(y)− y) · (x− y)] ≤ δ Ey∼η [‖g(y)− y‖] , (30)

and thus, by (29) with z = g(y),

Ey∼η

[
‖x− y‖2 − ‖x− g(y)‖2

]
≤ Ey∼η [2δ ‖g(y)− y‖]− Ey∼η

[
‖g(y)− y‖2

]
,

which gives (28) since 2δ ‖g(y)− y‖ ≤ δ2 + ‖g(y)− y‖2 .
(AD) This is the same proof as for (S), except that it uses the almost deterministic

outgoing theorem 7 of Foster and Hart (2021). �

What (27) says is that y is closer than g(y) to each point x in C; similarly, (28) says

that the random y with distribution η is closer on average than g(y) (within a δ-tolerance)

to each point x in C. To get some intuition, let λ ≡ λ(x) := ‖x− y‖2 − ‖x− g(y)‖2 ; if
g : C → C (as in Brouwer’s fixed point theorem) then condition (27), which says that λ

≤ 0 for every x ∈ C, is equivalent to g(y) = y, i.e., to y being a fixed point of g (indeed,

for a fixed point y we have λ = 0 for all x; conversely, for x = g(y), which is a point in C,

we get λ = ‖g(y)− y‖2 ≤ 0, and thus g(y) = y). Condition (28) extends this by requiring

that λ ≤ 0 hold approximately on average, i.e., E [λ] ≤ δ2, for every x ∈ C. This suggests

(28) as a suitable concept of a “stochastic approximate fixed point” (note that a point y

such that y and g(y) are close—a natural attempt to define an approximate fixed point

concept—need not exist in general: take, for example, the function g : [0, 1] → [0, 1] given

by g(x) = 1 for x ≤ 1/2, and g(x) = 0 for x > 1/2, for which |g(x) − x| ≥ 1/2 for all

x; this example also shows that one cannot strengthen E [λ] ≤ δ2 to E [|λ|] ≤ δ2 —i.e.,

“λ = 0” instead of “λ ≤ 0”—because for x = 0 we have |λ| = |y2 − g(y)2| ≥ 1/4 for all

y ∈ C).

Remarks. (a) It suffices to consider functions g whose range is included in22 C. Indeed,

replacing g with the function ĝ given by ĝ(x) := projCg(x) for every x (which is continuous

when g is continuous) can only decrease the right-hand side of inequalities (27) and (28)

(because ‖x− projCz‖ ≤ ‖x− z‖ for every x ∈ C and z ∈ R
m), and so if they hold for

ĝ then they hold for g as well. For a direct proof of Theorem 10 (D) by Brouwer’s fixed

point theorem, let y be a fixed point of ĝ; then ‖x− y‖ = ‖x− ĝ(y)‖ ≤ ‖x− g(y)‖ for

all x ∈ C.

(b) A direct proof of Theorem 10 (S) by von Neumann’s minimax theorem for finite

games is as follows. Let δ0 := maxx∈C dist(x,D) < δ (see the proof of Theorem 5 in Foster

and Hart 2021), put δ1 := (δ2 − δ20)/4γ > 0, and take D1 ⊂ C to be a finite δ1-grid of C.

22In the application of these results to calibration (both in Foster and Hart 2021 and in the present
paper) the functions are always into C (for instance, g(c) = āt−1(c)).
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Consider the finite two-person zero-sum game where the maximizer chooses x ∈ D1, the

minimizer chooses y ∈ D, and the payoff is ‖x− y‖2 − ‖x− g(y)‖2, where g : D → C is

the given function (use Remark (a) above). For every mixed strategy ξ ∈ ∆(D1) of the

maximizer, let x̄ := Ex∼ξ [x] ∈ C be its expectation; the minimizer can make the payoff

≤ δ20 by choosing a point y on the grid D that is within δ0 of x̄, since

Ex∼ξ

[
‖x− y‖2

]
= Ex∼ξ

[
‖x− x̄‖2

]
+ ‖x̄− y‖2 ≤ Ex∼ξ

[
‖x− x̄‖2

]
+ δ20

Ex∼ξ

[
‖x− g(y)‖2

]
= Ex∼ξ

[
‖x− x̄‖2

]
+ ‖x̄− g(y)‖2 ≥ Ex∼ξ

[
‖x− x̄‖2

]
.

Therefore, by the minimax theorem, the minimizer can guarantee that the payoff is ≤ δ20;

i.e., there is a mixed strategy η ∈ ∆(D) such that

Ey∼η

[
‖x− y‖2 − ‖x− g(y)‖2

]
≤ δ20 (31)

for every x ∈ D1. Now for every x ∈ C there is x′ ∈ D1 with ‖x− x′‖ < δ1, and so∣∣‖x− z‖2 − ‖x′ − z‖2
∣∣ < 2γδ1 for any z in C; adding this inequality with z = y and with

z = g(y) to (31) yields, by the definition of δ1, the claimed result (28).

(c) Theorem 10 (D) is equivalent to Brouwer’s fixed point theorem. Indeed, the

former has been proved by using the latter (see Foster and Hart 2021 or Remark (a)

above); conversely, given a continuous function g : C → C, inequality (27) for the point

x = g(y) (which is in C) yields g(y) = y.

(d) Theorem 10 (S) is equivalent to von Neumann’s minimax theorem for finite games.

Indeed, the former has been proved by using the latter (see Foster and Hart 2021 or

Remark (b) above); conversely, we will show that the former yields Corollary 6 of Foster

and Hart (2021), from which the minimax theorem follows by Remark 4 of Corollary 6

in Appendix A3.3 of Foster and Hart (2021). For this Corollary 6, let f : C → Rm be a

bounded function, say, ‖f(x)‖ ≤ M for all x ∈ C, and let ε > 0. Applying (28) to the

function g(x) = x+ δf(x) and a finite δ-grid D of C yields a distribution η ∈ ∆(C) such

that E [2δf(y) · (x− y)] ≤ E
[
δ2 ‖f(y)‖2

]
+ δ2 ≤ δ2(M2 + 1) (use the identity (29)), and

thus, by choosing δ so that δ(M2 + 1)/2 ≤ ε, we get E [f(y) · (x− y)] ≤ ε, which is the

result of Corollary 6 of Foster and Hart (2021).

(e) As in Remark 1 of Theorem 5 in Appendix A3.2 of Foster and Hart (2021), one

may use a limit argument (which, however, no longer yields the distribution η by a

finite minimax construct) to replace δ in (30), and thus in (28), with δ0 ≡ δ0(D) :=

maxx∈C dist(x,D) < δ. Thus,

inf
η∈∆(D)

sup
x∈C

Ey∼η

[
‖x− y‖2 − ‖x− g(y)‖2

]

= sup
ξ∈∆(C)

inf
y∈D

Ex∼ξ

[
‖x− y‖2 − ‖x− g(y)‖2

]
≤ δ20.

Moreover, the δ20 bound is tight (i.e., it cannot be replaced by any smaller constant):
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let x0 ∈ C be such that dist(x0, D) = δ0; then, for the constant function g ≡ x0 (i.e.,

g(y) = x0 for all y ∈ D), we have ‖x0 − y‖ ≥ δ0 and ‖x0 − g(y)‖ = 0 for all y ∈ D.

Finally, we point out that Theorem 18 in Appendix A.9 provides a result for logarith-

mic scores that is parallel to Theorem 10 (S).

A.5 Refined Refinement

In this appendix we prove formally that the refinement score is monotonically decreasing

with respect to refining the binning; this yields in particular Rb1,...,bN

t ≤ Rbn

t for each

n = 1, ...., N (Section 7) and also Rb,Π
t ≤ Rb

t and Rb,Π
t ≤ RΠ

t (Appendix A.7).

We consider general fractional binnings. Let I be a finite or countably infinite col-

lection of bins, and consider a sequence (zs)s≥1 (namely, zs = as − cs) such that at time

s the fraction λs(i) ≥ 0 of zs is assigned to bin i for each i ∈ I, where
∑

i∈I λs(i) = 1

(the specific way in which these weights are determined will not matter). Fix the horizon

t ≥ 1 (we will thus drop the subscript t); the refinement score is

R =
1

t

∑

i∈I

t∑

s=1

λs(i)(zs − z̄(i))2,

where, for each i in I,

z̄(i) =

∑t
s=1 λs(i)zs∑t
s=1 λs(i)

is the average of bin i (when
∑

s≤t λs(i) > 0).

As in Section 2.1, let the two-dimensional random variable (Z, U) take the value (zs, i)

with probability λs(i)/t for each s = 1, ..., t and i ∈ I (note that
∑

s≤t

∑
i∈I λs(i)/t = 1);

thus, P [(Z, U) = (z, i)] = (1/t)
∑

s≤t:zs=z λs(i), which is the average, over all periods

s = 1, ..., t, of the probability that the value z goes into bin i. We then have

P [U = i] =
t∑

s=1

λs(i)

t
,

E [Z|U = i] =
1

P [U = i]

t∑

s=1

(
λs(i)

t

)
zs = z̄(i),

Var [Z|U = i] =
1

P [U = i]

t∑

s=1

(
λs(i)

t

)
(zs − z̄(i))2, and

E [Var [Z|U ]] =
∑

i∈I

P [U = i] Var [Z|U = i] = R. (32)

Now assume that we are given another collection of bins J together with binning

weights µs(j) ≥ 0, where
∑

j∈J µs(j) = 1 for each s. The J-binning is a coarsening of

the I-binning (equivalently, the I-binning is a refinement of the J-binning) if there is a

31



function φ : I → J such that µs(j) =
∑

i:φ(i)=j λs(i); that is, for each j in J the j-bin is

the union of the set φ−1(j) = {i ∈ I : φ(i) = j} of i-bins in I. Letting UI and UJ be

the random variables corresponding to the I-binning and the J-binning, respectively, we

have UJ = φ(UI), because being assigned to an i-bin for i ∈ I translates to being assigned

to the j-bin for j = φ(i) ∈ J . Let RI and RJ be the refinement scores corresponding to

the I-binning and the J-binning, respectively.

Proposition 11 If the J-binning is a coarsening of the I-binning then

RJ = E [Var [Z|UJ ]] ≥ E [Var [Z|UI ]] = RI .

Proof. Let F1,F2 be two σ-fields such that F1 ⊆ F2, i.e., F1 is a coarsening of F2, and

let Z be a random variable. We will show that

E [Var [Z|F1]] ≥ E [Var [Z|F2]] , (33)

which yields the result by (32).

Applying the classic inequality Var [X ] = E
[
‖X − E [X ]‖2

]
≤ E

[
‖X − x‖2

]
for any

random variableX and any constant x (i.e., the expected square deviation from a constant

is minimized when the constant equals the expectation) to Z|F2 we get (a.s.)

Var [Z|F2] ≤ E
[
‖Z − E [Z|F1]‖2 |F2

]
,

because E [Z|F1] is constant given F2 (since F1 is a coarsening of F2). Taking expectation

conditional on F1 yields on the right-hand side E
[
‖Z − E [Z|F1]‖2 |F1

]
(again, by F1 ⊆

F2), which is the conditional variance Var [Z|F1], and so we have (a.s.)

E [Var [Z|F2] |F1] ≤ Var [Z|F1] .

Taking overall expectation yields (33), and thus completes the proof. �

Applying Proposition 11 with φ being a projection, such as φ(b1, ..., bN) = bn, yields

the needed inequalities.

A.6 General Brier Score Decomposition

We show here that the decomposition of the Brier score (1) into the refinement and

calibration scores holds for any fractional binning Π = (wi)
I
i=1, i.e.,

Bt = RΠ
t +KΠ

t .

Indeed, in the notation of the previous Section A.5, this is

E
[
‖Z‖2

]
= E

[
E[‖Z‖2 |U ]

]
= E [Var [Z|U ]] + E

[
‖E [Z|U ]‖2

]
,
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which follows from applying the identity E [X2] = Var [X ] +E [X ]2 to each one of the m

coordinates of Z|U , summing up, and then taking overall expectation.

A.7 Calibeating by a Deterministic Continuously Calibrated

Forecast

In this appendix we prove Theorem 6 in Section 6: one can guarantee calibeating by a

deterministic procedure that is continuously calibrated, a useful weakening of calibration

(see Foster and Hart 2021).

We start by recalling the definition of continuous calibration. A (fractional) binning

is a collection Π = (wi)i∈I of weight functions wi : C → [0, 1] for i ∈ I such that
∑

i∈I wi(c) = 1 for all c ∈ C, where I is a finite or countably infinite set; the binning Π is

continuous if all the wi are continuous functions on C. The interpretation is that at each

period s the fraction wi(cs) of zs = as − cs is assigned to each bin i in I. A deterministic

forecasting procedure σ is continuously calibrated if

lim
t→∞

(
sup
at

KΠ
t

)
= 0 (34)

for every continuous binning Π, where the Π-calibration score KΠ
t is23

KΠ
t :=

∑

i∈I

(
ni
t

t

)∥∥eit
∥∥2

with ni
t :=

∑t
s=1wi(cs) and eit :=

∑t
s=1(wi(cs)/n

i
t)(as − cs). Proposition 3 in Foster and

Hart (2021) shows that it suffices to require (34) for one specific continuous binning Π0;

i.e., σ is continuously calibrated if and only if (34) holds for Π = Π0.

Let B be an arbitrary finite set24 and let Π = (wi)i∈I be a fractional binning. Consider

the joint fractional binning with bins U := B×I, where at each time t the fractions wi(ct)

of at − ct are assigned to bins (bt, i) for all i ∈ I; that is, each bin (b, i) ∈ B × I gets the

fraction

λt(b, i) := 1b(bt)wi(ct),

where 1x stands for the x-indicator function (i.e., 1x(y) = 1 for y = x and 1x(y) = 0

for y 6= x). Consider bin (b, i) at time t; its total weight, average, and variance are,

23A more precise, but cumbersome, notation would be KΠ(c), since at each time t the binning is given
by Π(ct) = (wi(ct))i∈I .

24One may easily generalize to fractional B binnings; also, B could be infinite when the binning is
continuous (or, more generally, when the binning is uniformly approximable by finite fractional binnings,
as in (9) in Foster and Hart 2021).
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respectively,

nt(b, i) :=
t∑

s=1

λs(b, i),

et(b, i) :=
t∑

s=1

(
λs(b, i)

nt(b, i)

)
(as − cs), and

vt(b, i) :=
t∑

s=1

(
λs(b, i)

nt(b, i)

)
‖as − cs − et(b, i)‖2

(note that nt(b, i) =
∑

s≤t:bs=b wi(cs)). The calibration and refinement scores are then

Kb,Π
t :=

∑

(b,i)∈B×I

(
nt(b, i)

t

)
‖et(b, i)‖2 and

Rb,Π
t :=

∑

(b,i)∈B×I

t∑

s=1

(
λs(b, i)

t

)
vt(b, i).

We now state a more detailed version of Theorem 6 (see Section 6) on calibeating by

a deterministic continuously calibrated procedure.

Theorem 12 Let B be a finite set. Then there exists a deterministic b-based forecasting

procedure ζ that is B-calibeating and is continuously calibrated; specifically,

Bc

t ≤ Rb,Π0

t + o(1), (35)

where Π0 is the continuous binning given by Proposition 3 in Foster and Hart (2021),

which implies that

Bc

t ≤ Rb

t + o(1)

and that ζ is continuously calibrated. All these hold as t → ∞ uniformly over all sequences

a and b.

To prove this we use the corresponding online refinement score R̃b,Π
t , in which the

offline average et is replaced with the online average es−1; namely,

R̃b,Π
t :=

∑

(b,i)∈B×I

t∑

s=1

(
λs(b, i)

t

)
‖as − cs − es−1(b, i)‖2 .

The parallel result to Proposition 1 is

Proposition 13 For every finite set B and every continuous binning Π = (wi)
I
i=1 on C,

as t → ∞ we have

0 ≤ R̃b,Π
t −Rb,Π

t ≤ o(1)

uniformly over all sequences a, b, and c.
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The proof is an adaptation of the proof of Proposition 1 to fractional binnings. We

start by generalizing Proposition 2 to weighted variances. Let (xn)n≥1 be a sequence of

vectors in a Euclidean space (or, more generally, in a normed vector space), let (λn)n≥1 be

a sequence of weights in [0, 1], and put Λn :=
∑n

i=1 λi. Let x̄n :=
∑n

i=1(λi/Λn)xi denote

the weighted average of x1, ..., xn (when Λn = 0, and thus λi = 0 for all i = 1, ..., n, put

λi/Λn = 0/0 = 0).

Proposition 14 For every n ≥ 1 we have25

n∑

i=1

λi ‖xi − x̄n‖2 =
n∑

i=1

λi

(
1− λi

Λi

)
‖xi − x̄i−1‖2 . (36)

Proof. Put sn :=
∑n

i=1 λi ‖xi − x̄n‖2; we claim that

sn = sn−1 + λn

(
1− λn

Λn

)
‖xn − x̄n−1‖2 . (37)

Indeed, assume that Λn > 0 (otherwise both sides vanish) and x̄n−1 = 0 (without loss of

generality, since subtracting a constant from all the xi does not affect any term); then

x̄n = (λn/Λn)xn, and so, using sn =
∑n

i=1 λi||xi||2 − Λn||x̄n||2, we get

sn − sn−1 =

(
n∑

i=1

λi ‖xi‖2 − Λn

∥∥∥∥
λn

Λn
xn

∥∥∥∥
2
)

−
n−1∑

i=1

λi ‖xi‖2 = λn ‖xn‖2 −
λ2
n

Λn
‖xn‖2 ,

which is precisely λn (1− λn/Λn) ‖xn − x̄n−1‖2.
Applying (37) recursively yields the result. �

Let vn := (1/Λn)
∑n

i=1 λi ‖xi − x̄n‖2 denote the weighted variance of x1, ..., xn, and

put ṽn := (1/Λn)
∑n

i=1 λi ‖xi − x̄i−1‖2 for the corresponding online weighted variance

of x1, ..., xn (again, take x̄0 to be an arbitrary element of the convex hull of the xi).

Proposition 14 gives ṽn − vn = (1/Λn)
∑n

i=1(λ
2
i /Λi) ‖xi − x̄i−1‖2, and so, by inequality

(22) in Foster and Hart (2021),

0 ≤ ṽn − vn ≤ ξ2
1

Λn

n∑

i=1

λ2
i

Λi

≤ ξ2
lnΛn + 2

Λn

, (38)

where ξ := max1≤i,j≤n ‖xi − xj‖ .

We now prove Proposition 13, which shows that the online refinement score R̃b,Π
t is

close to the (offline) refinement score.

25The sum on the right-hand side of (36) effectively starts from i = 2, and so, as in (9), it does not
matter how x̄0 is defined.
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Proof of Proposition 13. We have R̃b,Π
t −Rb,Π

t = (1/t)
∑

b∈B

∑
i∈I µt(b, i), where

µt(b, i) :=
t∑

s=1

λs(b, i) ‖as − cs − es−1(b, i)‖2 −
t∑

s=1

λs(b, i) ‖as − cs − et(b, i)‖2

for each (b, i) ∈ B × I. Proposition 14, specifically, (38), yields

0 ≤ µt(b, i) ≤ 4γ2(lnnt(b, i) + 2) ≤ 4γ2(ln t+ 2) (39)

(because ‖a− c− e‖ ≤ 2γ—since ‖a− c‖ ≤ γ and so ‖e‖ ≤ γ—and nt(b, i) ≤ t). For

each finite J ⊆ I, summing over all (b, i) in B × J yields

0 ≤ 1

t

∑

b∈B

∑

i∈J

µt(b, i) ≤ 4γ2|B| |J | ln t + 2

t
. (40)

When I is finite we are thus done. When I is infinite, for every ε > 0 there is a finite

J ⊂ I such that
∑

i∈I\J wi(c) ≤ ε for all c ∈ C; such a finite J exists by Dini’s theorem

(see (9) in Foster and Hart 2021). For i ∈ I\J we get

0 ≤ 1

t

∑

b∈B

∑

i∈I\J

µt(b, i) ≤
1

t

∑

b∈B

∑

i∈I\J

t∑

s=1

λs(b, i) ‖as − cs − es−1(b, i)‖2

≤ 4γ2 1

t

t∑

s=1

∑

i∈I\J

λs(bs, i) ≤ 4γ21

t

t∑

s=1

ε = 4γ2ε.

Adding this to (40) yields

0 ≤ R̃b,Π
t −Rb,Π

t ≤ 4γ2|B| |J | ln t+ 2

t
+ 4γ2ε,

which is less than, say, 5γ2ε for all large enough t. The result follows since ε was arbitrary;

moreover, all the above inequalities are uniform over all sequences a, b, and c. �

Finally, we prove Theorem 12 (and thus Theorem 6).

Proof of Theorem 12. Take Π to be Π0 = (wi)i∈I of Proposition 3 in Foster and Hart

(2021). At time t, given at−1, ct−1, and bt, the outgoing fixed point result, specifically,

Theorem 10 (D), applied to the continuous function c 7−→ c−∑i∈I wi(c)et−1(bt, i), yields

ct ∈ C such that

‖at − ct‖2 ≤
∥∥∥∥∥at − ct −

∑

i∈I

wi(ct)et−1(bt, i)

∥∥∥∥∥

2

≤
∑

i∈I

wi(ct) ‖at − ct − et−1(bt, i)‖2

for every at ∈ A (the second inequality is by the convexity of ‖·‖2). Averaging over t gives
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Bt ≤ R̃b,Π0

t , and thus (35) by Proposition 13. To complete the proof use Rb,Π0

t ≤ Rb

t

and Rb,Π0

t ≤ RΠ0

t by the refinement monotonicity of the refinement score (see Appendix

A.5), and then KΠ0

t = Bc

t − RΠ0

t by the generalization of the Brier score decomposition

to fractional binnings (see Appendix A.6). �

A.8 Multi-calibeating: Improved Error Terms

The multi-calibeating procedure of Section 7 yields an error that is proportional to the

product of the sizes of the sets Bn, i.e.,
∏N

n=1 |Bn|, which increases exponentially with N .

We provide in this appendix two approaches that yield better errors terms: O(
√
N/

√
t)

by a Blackwell approachability construct in Section A.8.1 (see (43)), and O((maxn |Bn|+
N) log t/t) by an online linear regression construct in Section A.8.2 (see (46)). For large

t, an O(1/
√
t) error is of course worse than an O(log t/t) error; however, for small t the

former may well be smaller than the latter.

We will use throughout the superscript n instead of the more cumbersome bn, e.g.,

Rn
t for Rbn

t , and ānt−1(b
n
t ) for ā

bn

t−1(b
n
t ).

A.8.1 A Blackwell Approachability Approach

We use here a construct along the lines of the vector approachability of Blackwell (1950),

with continuous actions taking the place of mixed actions (which dispenses with the use

of probabilities and laws of large numbers).

Put xn
t := ‖at − ct‖2 −

∥∥at − ānt−1(b
n
t )
∥∥2 ; then

x̄n
t :=

1

t

t∑

s=1

xn
s = Bc

t − R̃n
t . (41)

Let xt := (xn
t )n=1,...,N ∈ RN and x̄t := (x̄i

t)n=1,...,N ∈ RN be the corresponding N -

dimensional vectors; given the history (at−1, ct−1,bt), the vector xt is determined by

ct and at. We will show that the negative orthant26 RN
− of RN is approachable by the c-

player; i.e., there is a b-based forecasting procedure ζ such that supat,bt
dist(x̄t,R

N
− ) → 0

as t → ∞.

To this end we claim that for every λ ∈ RN
+ there is ct ∈ C such that

λ · xt ≤ 0 for every at ∈ A (42)

(this is the Blackwell condition here). This of course holds when λ = 0; otherwise,

26Notation: RN
+ = {x ∈ RN : x ≥ 0} and RN

− = {x ∈ RN : x ≤ 0}; for real x ∈ R, put [x]+ = max{x, 0}
and [x]− = min{x, 0}; for a vector x ∈ R

N , put [x]+ = ([x1]+, ..., [xN ]+), and [x]− =
(
[x1]− , ..., [xN ]−

)
.
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assuming without loss of generality that
∑N

n=1 λn = 1 (rescale λ as needed), we have

λ · xt =
N∑

n=1

λn

(
‖at − ct‖2 −

∥∥at − ānt−1(b
n
t )
∥∥2
)

= ‖at − ct‖2 −
N∑

n=1

λn

∥∥at − ānt−1(b
n
t )
∥∥2

≤ ‖at − ct‖2 −
∥∥∥∥∥at −

N∑

n=1

λnā
n
t−1(b

n
t )

∥∥∥∥∥

2

(the inequality is by the convexity of ‖·‖2), and so, by taking ct =
∑N

n=1 λnā
n
t−1(b

n
t ), one

guarantees that the final expression vanishes, and thus λ · xt ≤ 0, for any at.

Let ζ be the procedure whereby at time t one chooses ct ∈ C so as to guarantee

[x̄t−1]+ · xt ≤ 0 for all at ∈ A (i.e., condition (42) for λ = [x̄t−1]+); thus, ct is arbitrary

when x̄t−1 ≤ 0 (i.e., [x̄t−1]+ = 0), and is otherwise given by

ct =

∑N
n=1

[
x̄n
t−1

]
+
ānt−1(b

n
t )∑N

n=1

[
x̄n
t−1

]
+

.

Putting Xt := tx̄t, we have

dist2(Xt,R
N
−) ≤ ‖(xt +Xt−1)− [Xt−1]−‖2 = ‖xt + [Xt−1]+‖2

= ‖[Xt−1]+‖2 + 2[Xt−1]+ · xt + ‖xt‖2

≤ dist2(Xt−1,R
N
− ) + γ4N,

where the first inequality is by dist(Xt,R
N
− ) ≤ ‖Xt − [Xt−1]−‖ (since [Xt−1]− ∈ RN

− ),

and the second inequality is by the choice of ct (since [Xt−1]+ = (t − 1)[x̄t−1]+) for the

middle term, and |xn
t | ≤ γ2 (since at, ct, ā

n
t−1(bt) are all in C) for all n for the third term.

Applying this recursively yields

t2dist2(x̄t,R
N
− ) = dist2(Xt,R

N
− ) ≤ (γ4N)t,

and so dist2(x̄t,R
N
−) ≤ (γ4N)/t, which gives

max
1≤n≤N

x̄n
t ≤ max

1≤n≤N
[x̄n

t ]+ ≤
∥∥[x̄t]+

∥∥ = dist(x̄t,R
N
− ) ≤ γ2

√
N

1√
t
.

By (41) and Proposition 1 we get

max
1≤n≤N

(Bc

t −Rn
t ) ≤ γ2

√
N

1√
t
+ γ2|Bn| ln t+ 1

t
, (43)

which is ∼ γ2
√
N/

√
t as t → ∞.
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A.8.2 An Online Linear Regression Approach

Assume that C ⊆ [−γ0, γ0]
m (see the remark below on the relation between γ and γ0), and

put cs = (ci,s)i=1,...,m ∈ C and as = (ai,s)i=1,...,m. ∈ A. For each t ≥ 1 let xn
i,t := āni,t−1(b

n
t )

(this is the average of the ith coordinates of as over all periods s ≤ t in which bns = bnt ),

and put xi,t := (xn
i,t)n=1,...,N ∈ R

N .

For each coordinate i = 1, ..., m, consider the linear regression problem, regularized

by adding the strictly convex term α ‖θ‖2 for some α > 0, of minimizing

Fi,t(θ) :=
1

t

(
t∑

s=1

(ai,s − θ · xi,s)
2 + α ‖θ‖2

)

over θ ∈ R
N ; let F∗

i,t denote this minimum. For each n = 1, ..., N , when θ equals the nth

unit vector en ∈ RN , we have

Fi,t(e
n) =

1

t

∑

s≤t

(ai,s − āni,s−1(b
n
s ))

2 +
α

t
;

summing over i = 1, ..., m we get

m∑

i=1

F∗
i,t ≤

m∑

i=1

Fi,t(e
n) ≤ R̃n

t +
mα

t
. (44)

The “forward algorithm” of Azoury and Warmuth (2001) applied to each coordinate

i separately yields an online procedure that generates at each time t a vector θi,t ∈ R
N

(that depends on the history ai,1, ..., ai,t−1 and xi,1, ..., xi,t−1 as well as on xi,t) such that

t∑

s=1

(ai,s − θi,s · xi,s)
2 ≤ tF∗

i,t + γ0N ln
(γ0

α
t + 1

)
(45)

is guaranteed for any sequence27 (ai,s)s≥1.

Combining these m algorithms yields an online b-based procedure (because xt is

determined by bt and the history); the vectors θi,s for i = 1, ..., m together yield a point

ĉs := (θi,s ·xi,s)i=1,...,m ∈ Rm. Let cs := projC(ĉs) be the closest point to ĉs in C (it is well

defined since C is a nonempty convex compact set); then any point in C, in particular

as, is closer to cs than to ĉs, which yields

‖as − cs‖2 ≤ ‖as − ĉs‖2 =
m∑

i=1

(ai,s − θi,s · xi,s)
2.

27This is Theorem 5.6 of Azoury and Warmuth (2001); in the notation there, X = maxn,s
∣∣xn

i,s

∣∣ ≤ γ0

and Y = maxs |ai,s| ≤ γ0. Note that there is a misprinted sign in the first line of the formula (5.17)
there.
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Averaging over s ≤ t gives

Bc

t =
1

t

t∑

s=1

‖as − cs‖2 ≤
1

t

m∑

i=1

t∑

s=1

(ai,s − θi,s · xi,s)
2

≤
m∑

i=1

F∗
i,t +

mγ0N

t
ln
(γ0

α
t+ 1

)

by (45). Recalling (44) and Proposition 1 yields

Bc

t −Rn
t ≤ mγ0N

t
ln
(γ0

α
t+ 1

)
+

mα

t
+ γ2|Bn| ln t+ 1

t
= O

(
log t

t

)
. (46)

Remarks. (a) A connection between γ0 and γ is as follows. The set C ⊂ Rm, whose

diameter is γ, can be enclosed in a ball of radius r, where γ/2 ≤ r ≤ γ
√

m/(2m+ 2)

by Jung’s (1901) theorem. Since translating the set C does not matter (only differences

a− c do), we can assume without loss of generality that C ⊆ B̄(0; r) ⊆ [−r, r]m, and so

we can take γ0 = r.

(b) For a fixed horizon t one may optimize α.

(c) The forecast ct at time t of the above construction is given by the formula

ci,t =

N∑

n=1

θni,tā
n
t−1(b

n
t ),

where θi,t is the minimizer of Fi,t(θ) as if we have ai,t = 0 (the actual at is not known at

this point); see Azoury and Warmuth (2001) for details and more explicit formulas.

(d) Since we use the inequalities F∗
i,t ≤ Fi,t(θ) only for θ equal to the unit vectors

en in RN , it suffices to minimize Fi,t(θ) over the convex hull of these vectors, that is,

over the unit simplex ∆(N) of RN , as in Foster (1991) (whose result would need to be

generalized from the one-dimensional case of A = {0, 1} and C = [0, 1] to a general C);

note that multi-calibeating is equivalent to being, in terms of the Brier scores, “as strong

as” each one of the N sequences (ānt−1(b
n
t ))t≥1 (for n = 1, ..., N).

(e) An alternative approach is to first calibeat each forecaster separately (by Theorem

3) and then to combine these N calibeating forecasters (by a method such as Azoury and

Warmuth’s 2001).

A.9 Log-calibeating

In this appendix we show that our approach to calibeating works for another classic

scoring rule, namely, the logarithmic one; like the quadratic Brier score, it is also a

strictly proper scoring rule. While the analysis here is parallel to that of the quadratic

scores, some of the technical details require a little more work here (one reason being the

infinite slope of the logarithmic scores on the boundary).
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Let the action space A and the forecast space C both be the unit simplex in R
m;

i.e., A = C = ∆ := {x ∈ Rm
+ :

∑
i xi = 1}. For x and y in ∆, the relative entropy (or

Kullback–Leibler divergence) of y with respect to x is defined as

D(x ‖ y) :=
m∑

i=1

xi log

(
xi

yi

)
=

m∑

i=1

xi log xi −
m∑

i=1

xi log yi

(with 0 log 0 = 0 by continuity); D(x ‖ y) is always nonnegative, and it equals zero if and

only if y = x (like the quadratic ‖x− y‖2). Given sequences at and ct in ∆t, we define

the logarithmic score L, the log-refinement score RL, and the log-calibration score KL,

by

Lt :=
1

t

t∑

s=1

D(as ‖ cs),

RL
t :=

1

t

t∑

s=1

D(as ‖ āt(cs)), and (47)

KL
t :=

1

t

t∑

s=1

D(āt(cs) ‖ cs).

This amounts to replacing all quadratic terms, such as ‖as − cs‖2 in the Brier score B,
with the corresponding logarithmic terms, such as D(as ‖ cs) in L. Now

D(a ‖ c) = L(a, c)− L(a, a) = L(a, c)−H(a),

where

L(a, c) := −
m∑

i=1

ai log ci

is the cross entropy of c with respect to a, and

H(a) := L(a, a) = −
m∑

i=1

ai log ai

is the entropy of a; thus L(a, c) ≥ L(a, a) = H(a), with equality if and only if c = a.

Summing by bins and using the linearity of L in its first argument, the log scores (47)

can thus be rewritten as

Lt =
∑

x∈∆

(
nt(x)

t

)
L(āt(x), x)−Ht,

RL
t =

∑

x∈∆

(
nt(x)

t

)
H(āt(x))−Ht, and (48)

KL
t =

∑

x∈∆

(
nt(x)

t

)
D(āt(x) ‖ x),
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where

Ht :=
1

t

t∑

s=1

H(as),

the average entropy of the actions, depends only on the actions as and not on the forecasts

cs (and so one could work throughout with L′
t := Lt +Ht = (1/t)

∑
s≤tL(as, cs), another

standard version of the logarithmic scoring rule, instead of Lt).

The following properties of the log scores, completely parallel to those of the quadratic

scores, are now easy to see from (47) and (48):

• Lt ≥ 0, and Lt = 0 if and only if cs = as for all 1 ≤ s ≤ t (i.e., Bt = 0: every

forecast is equal to the action).

• RL
t ≥ 0, with equality if and only if as = āt(cs) for all 1 ≤ s ≤ t (i.e., Rt = 0: all

actions in the same forecasting bin are the same).

• KL
t ≥ 0, with equality if and only if cs = āt(cs) for all 1 ≤ s ≤ t (i.e., Kt = 0: every

forecast is equal to the bin average action).

• Lt = RL
t +KL

t (by (48) and L(y, x) = H(y) +D(y ‖ x) for every x and y = āt(x)).

• RL
t = minφ Lφ(c)

t , where the minimum is taken over all bin relabelings φ : C → C,

and is attained when φ(x) = āt(x) for every x, i.e., when the label of the x-bin is

changed to the average āt(x) of the bin (cf. (2)).

• Lt is a strictly proper scoring rule (like the Brier score; see Section 2.1).

Thus, the log-refinement score RL depends only on the binning and not on the bin labels,

whereas the log-calibration score KL depends only on the bin averages and labels.

We will now show that our results for the quadratic scores hold for the log scores as

well. Specifically, we will prove Theorem 17, the basic log-calibeating result (the parallel

of Theorem 3) and Theorem 19, the log-calibration as self-log-calibeating (the parallel of

Theorem 4), from which the other results follow, just as in the quadratic case.

For this we need the online version of the log-refinement score, where each offline

average āt(cs) at time t is replaced with the online average ās−1(cs) at time s − 1. In

order to avoid infinite values, we use a “regularized” version ā′s−1(cs) instead, where for

every t ≥ 1 and x ∈ ∆ we define

ā′t(x) :=
1

nt(x) + 1

(
∑

1≤s≤t:cs=x

as + g0

)

with g0 := (1/m, ..., 1/m); thus, ā′t(x) ≫ 0 and ā′t(x) − āt(x) → 0 as nt(x) → ∞. This

amounts to starting each bin with an initial strictly positive element g0. We then define
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the (regularized) online refinement score by

R̃L
t :=

1

t

t∑

s=1

D(as ‖ ā′s−1(cs)).

Assuming for simplicity that there are finitely many forecasts—and thus bins—the

parallel result to Proposition 1 is

Proposition 15 Let (at)t≥1 be a sequence of actions in ∆, and let (ct)t≥1 be a sequence

of forecasts in a finite set D ⊂ ∆. Then, as t → ∞, we have

sup
at∈∆t,ct∈Dt

[
R̃L

t −RL
t

]
≤ O

(
log t

t

)
.

As in Section 3, we first prove the result for a single bin—Proposition 16, the parallel

of Proposition 2—from which it easily extends to finitely many bins.

Let thus (xt)t≥1 be a sequence of points in ∆; for every t ≥ 0 put

Xt :=

t∑

s=1

xs,

x̄t :=
1

t
Xt,

x̄′
t :=

1

t + 1
(Xt + g0), and

ℓt :=
1

t

t∑

s=1

L(xs, x̄
′
s−1).

Proposition 16 As t → ∞ we have

sup
xt∈∆t

[ℓt − L(x̄t, x̄t)] ≤ O

(
log t

t

)
.

Proof. First, we have

L(x̄t, x̄
′
t)− L(x̄t, x̄t) ≤

1

t
. (49)

Indeed, (t + 1)x̄′
t ≥ Xt = tx̄t, and so log x̄′

i,t ≥ log x̄i,t + log(t/(1 + t)) ≥ log x̄i,t − 1/t for

every i; multiplying by x̄i,t and summing over i yields (49) (use
∑

i x̄i,t = 1).

Second, we will show that

ℓt − L(x̄t, x̄
′
t) ≤ O

(
log t

t

)
; (50)

together with (49) it yields the result.

To prove (50), we start with the identity

L(xs, x̄
′
s−1) = L(Xs, x̄

′
s−1)− L(Xs−1, x̄

′
s−1)

= [L(Xs, x̄
′
s)− L(Xs−1, x̄

′
s−1)] + [L(Xs, x̄

′
s−1)− L(Xs, x̄

′
s)].
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The sum over s = 1, ..., t of the first terms, L(Xs, x̄
′
s) − L(Xs−1, x̄

′
s−1), telescopes to

L(Xt, x̄
′
t) (because X0 = 0 and x̄′

0 = g0, and so L(X0, x̄
′
0) = 0), and hence, putting

Λt :=
t∑

s=1

[L(Xs, x̄
′
s−1)− L(Xs, x̄

′
s)]

for the sum of the second terms, L(Xs, x̄
′
s−1)− L(Xs, x̄

′
s), we get

tℓt = L(Xt, x̄
′
t) + Λt = tL(x̄t, x̄

′
t) + Λt.

We will now prove that the maximum of Λt over all possible sequences x1, ..., xt is O(log t).

Put

λi,s := Xi,s [log(Xi,s + α)− log(Xi,s−1 + α)] and λs :=

m∑

i=1

λi,s,

where α := 1/m and we write xi,s for the ith coordinate of xs (and similarly for the other

vectors); then Xi,s[log x̄
′
i,s − log x̄′

i,s−1] = λi,s − Xi,s[log(s + 1) − log s], and so, summing

over i = 1, ..., m, we get

L(Xs, x̄
′
s−1)− L(Xs, x̄

′
s) = λs − s[log(s+ 1)− log s]

(because xt ∈ ∆ for every t, and so
∑

i Xi,s = s). Summing over s = 1, ..., t yields

Λt =

t∑

s=1

λs −
t∑

s=1

s[log(s+ 1)− log s].

Take 1 ≤ r ≤ t; the function λi,s is a convex function of xi,r, and thus λs =
∑m

i=1 λi,s

is a convex function of the vector xr. Therefore
∑t

s=1 λs is a convex function of xr, from

which it follows that Λt is maximal when xr is a unit vector. When all the xr for 1 ≤ r ≤ t

are unit vectors we get

t∑

s=1

λi,s =

ni∑

k=1

k [log (k + α)− log (k − 1 + α)] ,

where ni (= Xi,t) is the number of times up to t that xs equals the ith unit vector (these

are the times when the sequence (Xi,s)s≥0 increases, by 1).

The function ξ 7→ ξ[log(ξ + α) − log(ξ − 1 + α)] is decreasing in ξ, and so, in order

for
∑t

s=1 λs, and thus Λt, to be maximal, the ni-s should be as close to equal as possible,

i.e., |ni − nj | ≤ 1 for all i, j (if, say, n1 ≥ n2 + 2 then replacing in the sequence (xs)1≤s≤t

one instance of v1 with v2 will increase Λt). Let t = mr for simplicity, then ni = r for
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every i, and so

Λmr = m

r∑

k=1

k[log (k + α)− log (k − 1 + α)]−
mr∑

s=1

s[log(s+ 1)− log s].

Consider the second sum; opening the square brackets yields

mr∑

s=1

s[log(s+ 1)− log s] = mr log(mr + 1)−
mr∑

s=1

log s. (51)

Similarly, the first sum is

m
r∑

k=1

k[log (k + α)− log (k − 1 + α)] = mr log(r + α)−m
r−1∑

k=0

log(k + α)

≤ mr log(mr + 1)−m
r−1∑

k=1

log k − (mr −m) logm, (52)

where we have used log(r + α) = log(mr + 1) − logm and
∑r−1

k=0 log(k + α) = logα +
∑r−1

k=1 log(k + α) ≥ − logm+
∑r−1

k=1 log k. Subtracting (51) from (52) gives

Λmr ≤
mr∑

s=1

log s−m

r−1∑

k=1

log k − (mr −m) logm. (53)

We will show that the expression on the right-hand side of (53) is O(log r) as r → ∞
(the dimension m is fixed). The Stirling approximation, n! ∼

√
2πnn+1/2e−n, gives

n∑

s=1

log s = log(n!) =

(
n+

1

2

)
logn− n + log

(√
2π
)
+ o(1);

using it in (53) yields

Λmr ≤
[(

mr +
1

2

)
log(mr)−mr

]
−m

[(
r − 1

2

)
log(r − 1)− (r − 1)

]

−(mr −m) logm+O(1).

Since log(mr) = logm+ log r ≤ logm+ log(r − 1) + 1/(r − 1), we finally get

Λmr ≤
m+ 1

2
log(r − 1) +O(1).

Thus, Λmr ≤ O(log r) = O(log(mr)), which completes the proof of (50), and hence of the

proposition. �
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Proof of Proposition 15. We have

R̃L
t −RL

t =
∑

x∈D

(
nt(x)

t

)[
1

nt(x)

∑

s≤t:cs=x

L(as, ā
′
s−1(x))− L(āt(x), āt(x))

]

≤
∑

x∈D

(
nt(x)

t

)
O

(
log nt(x)

nt(x)

)
≤ O

(
log t

t

)
,

where the first inequality is by Proposition 16 applied to each x-bin separately, and the

second inequality is by the concavity of the log function. �

We thus get a simple way to log-calibeat, which is the parallel of Theorem 3.

Theorem 17 Let B be a finite set, and let ζ be the deterministic b-based forecasting

procedure given by

ct = ā′bt−1(bt)

for every time t ≥ 1. Then ζ is B-log-calibeating; specifically,

sup
at∈∆t,bt∈Bt

[
Lc

t −RL,b
t

]
≤ O

(
log t

t

)

as t → ∞.

Proof. By Proposition 15, since our choice of ct = ā′bt−1(bt) makes Lc

t = R̃L,b
t . �

Next, we obtain log-calibration by self-log-calibeating. Theorem 18 below will provide

the needed tool: an appropriate minimax (“stochastic fixed point”) result, similar to

Theorem 10 (S). Let δ > 0; a set D ⊆ ∆ is a δ-log-grid of ∆ if for every x ∈ ∆ there

is d ∈ D such that D(x ‖ d) < δ. Finite δ-log-grids are, for instance, finite δ′-grids of

{x ∈ ∆ : xi ≥ δ′ for all i} (one needs to stay away from the boundary where the slope of

− log becomes infinite) for appropriate δ′ > 0.

Theorem 18 Let D ⊂ ∆ be a finite δ-log-grid of ∆, and let g : D → ∆ be an arbitrary

function. Then there exists a distribution η on D that is of type MM such that

Ec∼η [D(a ‖ c)−D(a ‖ g(c))] = Ec∼η [L(a, c)− L(a, g(c))] ≤ δ

for every a ∈ ∆.

Proof. Consider the finite two-person zero-sum game where the maximizer chooses

a ∈ D, the minimizer chooses c ∈ D, and the payoff is L(a, c) − L(a, g(c)). For every

mixed strategy ν ∈ ∆(D) of the maximizer, let ā := Ea∼ν [a] be its expectation; then

Ea∼ν [L(a, c)− L(a, g(c))] = L(ā, c)− L(ā, g(c)) ≤ D(ā ‖ c)
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(the inequality is by L(ā, ·) ≥ H(ā)), and so the minimizer can choose c in the δ-log-

grid D that makes the payoff < δ. By the minimax theorem, there is therefore a mixed

strategy η ∈ ∆(D) of the minimizer that guarantees that the payoff is ≤ δ. �

The parallel result of Theorem 4 is

Theorem 19 Let δ > 0 and let D ⊂ ∆ be a finite δ-log-grid of ∆. Then there exists a

stochastic D-forecasting procedure σ that is δ-log-calibrated.

Proof. For every history ht−1 = (at−1, ct−1), applying Theorem 18 to the function g(c) =

ā′t−1(c) yields a probability distribution on D such that, by using it as the distribution

σ(ht−1) of the forecast ct, we have

Et−1

[
L(at, ct)− L(at, ā

′
t−1(ct))

]
≤ δ

for every at ∈ ∆. Taking overall expectation and averaging over t yields E
[
Lt − R̃L

t

]
≤ δ;

together with Proposition 15 we get E
[
KL

t

]
= E

[
Lt −RL

t

]
≤ δ +O (log t/t) . �

The other results in the paper extend in a similar way to the log scores.
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