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Remarks on the Reasonable Set of Qutcomes
in a General Coalition Function Form Game

By L. A. Gerard-Varet! and 8. Zamir®

Intraduction

One basic assumption of game theory is that the players in a game can evaluate every
“prospect™ that might arise as an outcome of a play. Quoting Shapley {(1953) “‘cne
would normally expect to be permitted to include, in the class of ‘prospects’, the
prospect of having to play a game. The possibility of evaluating a gams is therefors of
critical importance”. For Shapley this motivates the notion of “value™. It is also a
basic motivation of the present discussion.

Let us consider a coalition function form game © on a finite set of players N =
{1,..0,...n}, where v {5 a realvalued function over the set P(V) of all possible
coalitions (subsets) in & such that o(@) = 0. Our aim is re look for the largest interval
of payofft that each player can expect gelting, before playing the game, when baing
only informed about the worth of every coalition. We shall exhibit a correspondence
associating to each game ? and cach player i €A an interval R 1V = [a;(), by(1))
to be called *the reasonable interval for player i EN in the game 2"

Our theory assigns to a game v a subset, actually an hypereube, in R which are
“redsonable outcomes for the players" in that game. Quoting Milnor (1952), “we
will take the peint of view that it is better to have the set too large rather than too
small”. Consider indecd the unanimity game & which is such that: u(N) = 1, 2nd for
every S€ P(V), S=N,u(S)=0. In such 2 game, player /EN can a prior expect
anything in the interval [0, 1], depending upon different parameters: his skill in the
negociation, his eagerness, how other players behave, etc. To be surg, he will “reason-
ably” expect to obtain more than O and cannot “reasonably™ expect to get more than
1. However, we do not want to assert that al] points in the hypercube [0, 11V are.
plausible as an autcome of the game 1 (most of them are not even feasible), but quot-
ing Milnor (1952) again, “that points outside ... are implausible", whichever play of
the game will take place,

The “reagonable interval For a player in a game” provides an a priori evaluation
of the outcomes by the player just from looking at » in particular before fenowing
which coalition structure (partition af N) will form. As a matter of fact, the notion of
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what is a “plausible cutcome™ for the game should be considered in conjunction with
the question of coalition formation.

In our opinion the two hasie problems of cooperative game theory, namely what
coalition structure emerge and what are the outcomes for the members of gach coali-
tion, are intimately rélated and should be treated jointly. In the present state of
research however almost all effort was devoted to the second problem assuming the
coalition structure to be given. The study provided in this paper of the set of reason-
able outcomes for each coalition strusture is a first step towards the joint treatment
of the two problems. We do hope that this notion will turn out to be useful in study-
ing the important and difficult problem of coalition formation. Our general idea is
that in any dynamic process of coalition formation the “attraction’ and the “stabil-
ity” of coalition structure are largely determined by its reasonable set of outcomes
that is all outcomes which are concelvably attainable if that coalition structure forms.

In the present paper we first define & “‘reasonable payoff correspondence” by
what we belicve are undisputable axioms, The result, although mathematically simple,
catches the intuition of “reasonability” we have in mind. We obtain that for a super-
additive game, the reasonable interval for a player is the set of individually rational
payoff levels that do not exceed the upperbound introduced by Milnor (1952), namely
the player’s largest marginal eontribution. Since we want to use the set, among other
things, to leam about coalition structure, ir is crucial to have the notion also for non
super-additive games and for g general coalition structures. We argue that a natural
modification of one of the axioms allows to extend the theory to any game.

In the second part of the paper we go a step further. Qur suggested set of “rea-
sonable outcomes™ being such that a point outside is nonplausible, it is natural to
test the plausibility of altemative solution concepts by verifying whether or not they
are included in the set. This will be done for well-known solution concepts such as
the Shapley value, Stable sets, the Core, the Bargaining set, the Kernel and the Nue-
leotus, however extended to non-trivial coalition structures and considered for games
which are not necessarily super-additive. Although some of the results were already
observed in the literature, at least for the case of the coalition structure {V} (Milnor
1952; Shapley 1952; Luce—Raiffa 1957; Wesley 1971; Kikuta 1976 ; Maschler—Peleg—
Shapley 1979) we think that a complete and systematic treatment of such tests is
worthwhile to be presented and discussed.

1 Reasonable Outcomes for 1 Game

Let Gy be the subspace in mPM of all possible coalition funetions side-payments
games on a finite set NV of players,ie. the set of all real-valued functions v: P(V) = R
with o(@) = 0. We call payoff correspondence a mapping B which associates ta each
game ¥ € Gy an hypercube in RV denoted:

Rizy= X R:(v)
=N

For every | EN, R;(v) def {@;(v), b;(¥)] is an interval in IR to be thought of as a set of
payoff levels which are a priori “reasonable’ for the player in the game or rather such
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that anything outside the sst is “unreasonable”. We use usual notations for every
VE Gy, every wE Gy and evary i EN, R(v) = Ry(w) to mean: 2;() = a(w) and
By(%) = By(w); and R;(2) € Ry(w) to mean: if ¥ € R, (1) then x € R (w).

Let Ty be the set of all permutations of ¥V. In an attempt to sglect axiomatically
a specific payoff correspondence, we consider three axioms.

Symmetry (8): YovEGy, Ve E Ly, VIEN, Ri(2) = Ron(o,V) where 0, 0E Gy is
defined® by: 0,0(5) = v(g 'S5}, for every § € F(N).

Covarignee (C): ¥ 0 € Gpr, V& = 0,V § € RY, if w € Gy is such that for every § € P(V)
w(S) = ap(5) + Es Bithen VIiEN, Ri(w)=aR, (@) ;.
=

Monoticity (M): VoEGy, YWEGy, VIEN, if VSEPWN), §3i, v(SU {H -
2(S) 2 w(S U {i}) —w(S) then Ry(v) = Ry(w).

A payoff correspondence R which satisfies axioms S, C and M is called 2 rewsonable
payoff correspondence and R (v) are reasonable outcomes for the game 2,

The two first axioms are standard. Axiom S states that reasonable outcomes are
“independent of the player’s names”, Axiom C states that when a game is rescaled by
changing the unit and the O-levels of the players’ payoffs, the reasonable sets should
also be rescaled accordingly .

The monotonicity axiom M Iz motivated by the natural feeling that the higher
are the marginal contributions of & player in a game, the higher is the payoff the player
would expect in that game. A similar attitude was already used by Young (1972) in
proving that axioms § and M together with an “efficiency requirement”, namely to
select in the set of x € RY such that 'EN x; = v(V), give the Shapley-value for super-

I

zdditive games. Therefore, in our terminology a{v) = (%) = Sh,(), the Shapley-value,
defines a reasonable payoff ¢omespondence for super-additive games. In fact, this is
the unigue single-valued reasonable function which is efficient. Without the efficiency
requirerment one may find many single-valued reasonable functions.

At this point it is interestirjtﬁ to relate the notion of single-valued reasonable func-
tion, i.e. a function f: Gy —~ satisfying S, C and M to the notion of semi-value as
introduced by Dubey—Neyman—Weber (1981). The relation between the two notions
is as follows,

i) A semi-value iz a reasonable function

The easiest way to see this is by using the lemma (Dubey —Neyman—Weber 1981,
p. 123) according to which any semi-value can be written in the form:

3 Roeall that v & Gy is symmetric iff ¥ o € Ty, oy0 = v, Clearly, by Axiom S, if v is symmetric
then, for every F &N and everyj = N, R,-{v) = Rj(v)-
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W) = SEE_“} BV -u$)], (€N vEGy,

" . n—1 ﬂ—'l n_
where £ =0 satisly Eo ¢ P =1,
5=

It is easy to check that any such function ¥ is a reasonable function.

ii) A reasonable funetion may not be a semi.value

Consider maximal and minimal marginal contributions of player { €NV in game v E Gy
which are the two numbers defined by*

def
M(¥) = Max [oSULH=-0(8)] and
s

def

m{y) = M?};ﬂ [#(5 © {i}) —w(5)]

s=Pv)
Y]

Clearly, given ?E Gy, if w € Gy it such that, for every S € P(NV), w() = az(5) +

.qézs B;, with &> 0 and g < IRV, then for svery § SN, My(w) = aM{9) + 5; and m(w) =

am;(¥) + ;. Also, for every 0 & Zy, and every i €N, My(v) = My y(0,v) and m;(w) =
Hig (o, V).

It is readily seen that the function f:Gy —+ RY defined by fi(v) = M:{(v), i EN,
2 E Gy, satisfies axloms §, C, M. However f is not a semi-value. Take any v such that
m(2)=0 and M()>>0; then M(-%) =0 and hence fi(—v) =0+ —f{v) = ~M;(v).
Therefore f does not satisfy the linearity axiom, one of the four axioms defining the
semi-value. As a matter of fact, any reasonable function satisfies all other three axioms,
and linearity is the only one that may be violated by such a function.

Cur interest in the present paper is not in any particular reasonable single.valued
function, but rather in the “larpest™ set-valued function that would *“catch’ all rea-
sonable single-valued functions, This leads us to the following definition.

A reasonable payoff correspondence R is maximal if for every reasonable cor-
respondence R and every game vE Gy, we have B(0) C R(w), ie. VIiEN, Ri{v)
R:(v). We now prove:

Theorem 1: The only maximal reasonable payoff correspondence is the payoff cor-
respondence R which is such that

YvEGy, VYIEN, R(v)=[mv),M{v)]

% The idea of considering the numbers M;(v) is due to Milnor (1952). The idea of introducing
such numbers as m;{z) appears in Kikuta (1976). However, the author considers the players’
marginal contributions to coalitions containing at least two persons. Such “lower bounds™ have
unsarisfactory properties.
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Proaf: Define the payoff correspondence R by R,((%) = [, (), Mi(2)] for every
»& Gy and every { €V, Since, by definition, m,(z) < M(?), R{2} # ¢ and R is well-
defined. It is easy to check that R satisfies axioms S, C and M. Assume that R is
another payoff correspondence which satisfies 5, C and M and such that, for every
vE Gy and every i SN, #,(0) = (a,(2), b;()]. We want to show that z;(2) = m; ()
and b;(v) =M;(v). Let ¢ EGy be the “nul” game which is defined by: ¥ 8§ & P(V),
0(5)=0. Since ¢ is symmetric, by 5, R;{(c}= R;(¢) for every /SN and every fEN,
f#1i. Since,forevery a2 0, ao = 0, by { we have: VIiEN, E;{0) = {0].

Given any game v& Gy, and for a given § €N, consider v € Gy such that, for
every 8§ € P(V),

def | v(S)—-m;() if i8S
2s) = [v(S) if [ ES

Forevery §€ PIV), 8 24, oS U 1) —o(8) = w8 U [1}) — my () —o(8) = 0.

Thus, using M with respect to the nul game o, we have ;(v) =0 and since by C,a,(2) =
a;{v) —m(v), we get: a;{v) 3 m;(v). Similarly for any /€ .V consider now ¥ E Gy
such that, for avery § € P(N),

o A5 | 2(8) — M, (D) if i=§
%8) = lv(S) : i iEs

Forcvery S P(WV), S 21, BS U 1) = (8 = v(§ W {1)) ~M;(0) —2(5) = 0.
Thus, using M with respect to the nul game, we have b;(7) = O and since by C, b;(?)}=
by (@) =~ M; (2), we get by(2) =M, (). Q.E.D.

Concentrating on super-additive games, we see that Theorem 1 correctly captures the
notion of reasonability that we have in mind. Recall that v € Gy is superwdditive (for
short s.a.) iff:

VESEPW), wTePW), SNT#0=uvH+u T =SV

For such games, we have, for every i €N, m;(¥} = ({i}). Therefore, the reasonable
interval of player { € Vin a super-additive game © given by the maximal reasonable pay-
off correspondence is the set of individually rational payoffs upper-bounded by his
maximal marginal contribution, i.e. R;(v) = [e({i}), M;(¥)]. This is exactly the notiop
introduced in Milnor (1952). Az a matter of fact, since the class of super-additive
games is closed under positive linear transformation, one could formulate Theorem |
only within this clazs to obtain:

Corollzry: Any payoff corraspondence # which is reasonable for s.a. games satisfies:
ﬁ,(-v) C [o(5), M;(v)] for any s.a. game vand forall i €N,
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However, as mentioned above, we consider as important to obtain a result for qif
games, not only super-additive. We thus first ask whether the reasonable set just
introduced is also intuitively acceptable for nem super-additive games. A negative
answer can be seen from the following example.

Example 1: Let N ={1,2,3} and w be the game defined by: w({i}) =0, for every
PEN, w({1,3))=w({2,3})=0, w({1,2D)=—1, and w(¥M) =05. For player i=3,
we have Ry(w)=[0,3/2]. However, this player cannot likely expect a payoff as high
as 3/2 {or even 1), since 3/2 is based on his marginal contnbutmn to coalitien {1, 2}
which conceivably will never'form.

This simple observation leads to the conclusion that the three axioms which are
quite acceptable for super-additive games are actually not as sceeptable in non super-
additive cases. Sin¢e the validity of axioms $ and C remains unaffected by the nature
of the game, the problem must rely in the validity of the monotonicity axiom M. This
is illustrated by the next example.

Example 2: Let w be the game on N = {1, 2,3} defined in Example 1 and # be the
simple unanimity game on N, ie. w(NV)=1, and, ¥ § SN, u(%) = 0. Looking at

marginal contributions of player 3 in the twa gamnes we find;

5 @ {11 {2} {1,2}
u(S U 31 — u(S) 0 0 0 1
w(S U 3D —w(s) 0 3/2

We zee that player 3 has in w higher marginal contributions than in u, and meno-
tonicity would imply that he should expect not less in w than in u. However, in-
tuitively, we feel that he should expect strictly more in u than in w. Indeed, the grand
coalition is more efficient in u than in w. In addition player 2 has to consider in game
w a coalition which will never form.

We want to modify axiom M to mske it more adequate for general games. The
key for such modifications is found in Example 2, When ¢ = 3 looks at hig contribu-
tion to coalition {1, 2}, he must not consider the valve w({l,2})=—1 but rather
w({l,21)=0, which is the minimal amount that players 1 and 2 will ever aceept. In
view of this, his effective maximal marginal contribution is 0.5 rather than 3/2.

This indicates that what is relevant for the ‘‘sxpsetations of 4 player in a game™
is not his marginal contributions in the game itself, but rather in its super-additive
covet. A coalition structure for a coalition § € P(¥) is any partition T of § and ITg is
the set of all possible coalition structures for §. We call super-additive cover forv € Gy,
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the game 7 € Gy defined by:

5(8) = TMEaﬁS TE T wT), SEPV).

Clearly, § is the smallest super-additive game such that v= 2, and 2=% if v is super-
additive.

The above discussion suggests to modify the monotonicity axiom M by assuming
that the player’s reasonable intervals are increasing with respect to their marginal eon-
tributions in the super-additive cover of the game:

Monoronicity with respect to super-addztwe cover (M VIENYVEGY, YwEly,
Iif VS € PWV),§ 21, 5(S U 1))~ $(5) = W(S U (i) = W(5) then R {z) = R;(w).

We comnmit a natural abuse of terminology and call from now on reasgnabie payoff
correspondence, a payoff correspondence satisfying axioms $, £ and M For matter
of clarification, 2 payoff correspondence which is reasonable in terms of the axioms
5, Cand M may be called a M-reasonable correspondence. We have the following:

Theorem 2: The only maximal reasonable payoff correspendence is the payoff cor-
raspondence R such that:

VoEGy, YIEN, R(v)=[v({i}). M(P)].

Proof: Define R by B.(u) = [2({1}), #4,(8)], for v& Gy and i €N. We have:.v({1}) =
m;(8) and since m;(v)ﬁM,(v), R;(v):éﬂ It is already checked that B satisfies
axioms S, ¢ and H. Assumc that R’ is another payoff correspondence satisfying S,

C and M By Y (zince §= v) we have R'(2) = R'(¥). Since when restricted to s.a.
games M coincides with M, B’ satlsﬁed 5, C and M for s.a. games. Thus, by the Corol-
lary following Theorem 1 applied to & we have:

Ri(v) = Bi(P) € [my(B), M(3)] = [0( (i), M (5)) = B, () QED,

We observe that the reasonable set (Thearem 2} and the M-reasonable set (Theorem 1)
eoinclde for super-additive games (as do M and M in that case).

The discussion following Example 2 also suggests that the maximal bound for
players’s { reasonable set could be:

.. Max [v(.S‘ U i)~ 5(5)] rather than

M(3) = S%Mgzsv) [ U {)) - v(8)].
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However, the two notions turn out to coincide az proved by the following:
Proposition 1.

YvEGy, VIEN, M(5)=Sgi§% [#S U {1}) -7 (9.
e

Proof: Since § & », we have

M(8)s Max [v(§ W {1 -5{8)].
Sei;(N)
EED

On the other hand, let 5% € P(V), 5* 37 such that

M:(B) = o(8® U {{}) — §(5*) (1
We have
Pis*u il = TE T (T), (2)

forsome T €Tlge {;}. Assume i € FE T.8ince ¥ is super-additive:
S =3(F- M+ Z_ 6D )]
T=
T+
From (1), (2), (3) we derive:
M) Z oT)-8(T-ih- E_HT)<o(F)-5(T—h
TeT TE '[
74T
as%aigv) [v(S Y {i}) - 5(5)] QED.

Corollary:

Yoc Gy, YIEN, M(5)<M().

2 The Reasonable Payoff Correspondence and Various Solution
Concepts

If one agrecs with the interpretation of the interval ﬁ,—('u) as the set of all a priori
plausible payoffs for player / viewing the pame v, a natural question is whether various
solution concepts of # lie in this reasonable set, or, in other words, whether they
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can be considered as selections in the set:
Bl = x ERY,  VieEN x; 2 o)), x <MH)].

Notice that we consider a set which depends on # only, and not on a coalition struc-
ture, This is in accordance with the point of view that the set has to catch any out-
come which seems plausible just from looking at v and before knowing which coali-
tions will form. ae

Given a game vE Gy, denote by e(8, x) v(.S‘) —x(8), with x(8) = E X

the excess of coalition S€ P(N) at x ERY in v. The pre-ampuranan Space af v far
the coalition structure BEHy on N iz defined by X*(z; B) = xcR¥,vBeB,

e(B,x) =0}, and the imputation space iz X(v, B) = {x = X*(p, B, e({U},x) = Q1.
In the literature, solution concepts of a game o for a coalition structure B are defined
in the space X(v, B) or in the space X*(v, B). Clearly, for any solution definad in
X(v, B} individual rationality is introduced as an a priori condition and the solution
satisfies ipso facto the lower bound of the reasonable set R(#). From our point of
view, a meaningful test for a solution concept must refer to its definition in terms of
the predmputation space X*(v, B). In other words, we want to check for a given
solution concept whether individual rationality comes out as one of its properties,
without being imposed exogenously as a requirement5 .

Since we also want to consider all games, it is convenient to group the various
discussions according to two criteria:

1. Nature of the game: the game vE Gy may be general, weakly super-additive
(wsa) or super-additive (sa). We say of v that it is weakly super-additive if

VYIiEN, YSEPNV), S, vl UED—20) =00,

The notion {5 also known in the literature as Q- monotomclay which means that

the corresponding O-ncrma.hzed game v defined by o'(8) = t:(S)— E 2({i}),
8§ € P(MV), is monotone®

We denote by GiP (resp. GAP®) the subspace in Gy of all (weakly) super—additive
games. It is immediate that: GF € G2,

2. MNature of the coalition struceure: whether 8 % [N}, or B = {¥V}. In the last case,
we use the conventional notations X*(7)= X*(v, {N3}) and X(v) = X(v, (VD
respectively for the pre-imputation and for the imputation spaces’.

5  Far motivations similar to ours, see Luce— Raiffa (1957}, p. 217,

S Recail that v € Gy is monotone iff V8 PV, v T= PV, § C F=v(8) = u(T). Fot sucha
game, we cleatly have: Vie N, VS € PN, 82, v(Su (D —2(5 = 0.

7 8ee Aumann-—-Dréze (1974) for a gemeral presantation of alisrnative solution concepts for
games with non trivial coalition structures.
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2.1 The Shapley-Value

Fhe coalition structure {N} being fixed, the Shapley-value (Shapley 1953) is the func-
tion Sh from Gy to RY such that:
YIiEN, VYVEGy, Sh(v)= = ag[v(S YV {i}) — (S
N %) Sefg‘f)\" s[v( )~ v(S)]

]
det 181! (N — 18] — 1)!
where ag = \w
Aumann-—Dreze (1974).
We call value of a garmne v < Gy for a coalition structure B € Ty the payoff vectar
¢(v, B) € RY which is such that:

YBEB, VicB, v(v,B)=58h,®lz),

where vl it the game v restricted® to B € B. Of course, we have o(v, (V1) = Sh(2).

It follows readily from the definition of y as a weighted averape of marginal con-
tributions that, for every v€ Gy and B €11y,

m() = (v, B) = M(v).

The left hand side inequality gives individual rationality of the value (v, B) if the
game ¥ is weakly super-additive, a fortior if it i& super-additive. We can easily con-
struct an example of a non weakly super-additive game in which the Shapley value is
not individually rational®. As for the upper-bound, the right hand side inequality
gives readily that the value (v, B) is bounded by M(?) if the game v is super-additive.
The following sxample shows that relaxing super-additivity would usually yield
violation of the upper-bound, aven when remaining within weakly super-additive
games for B = {NV].

. The extension of the notion to general ¥ is due to

Example 3: Let von N = {1,2,3,4, 5} be such that:
w({)=0, iEN, o({1,2D=v({3,4D=2, wv@N)=3

and the other values of ©(S) determined as the least values to render the game mono-
tone (hence weakly super-additive). In particular, »({1,2,3,4}) =2 which yields:
o(NY—o(N ~ {5})=1, and thus Sh;(7) > 0. On the other hand, in &, player i=5
iz 2 dummy and Mc(2) =0G.

We thus conclude by a statement which generalizes an observation initially made
by Milnor (1952) for the Shapley-value:

voeGH, VEBeMy, ol B e R@).

% Given v= Gy and Be [las for any B & B, vl g & Ggis defined by letting: v § = M), #(5(8) =
v(B N &),

¥ Let N={1, ..i...h ¢ & Gy, O-normalized, for which there is a player f =N such that,
vis PV, §&i, S+N=-{}, 25w {H-2(®=0 and (¥ - {{}) -2(M < 0. Such a game Is
not monotone and, as a consequence, not weakly superadditive. A straightforward computation

gives: S (0) < 0= o({ih.
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2,2 Stable Sets

ConsidgrrvEGN. A domination s defined on BRY by: vxeRY vyeRY,
a8
x>y < ISEPWN)e(S x)*0 and VIES,x;>y,. We alsc write x >y for

5
e(S,x) 20 and ViES,»; >y, and say that “x dominates y via coalition 8§, Let
Q C X*¥(v, B), Q is a stable set of v for the coalition structure B < ILy if two con-
ditions hold

1} Internal consistency: I (x,x)E 0% x=x'
2) External domination: ¥x'€ X*v,B), x' €0, xS Q/x ~x".

Stability is usually considered for (subsets of) the imputation space. In particular, for
the coalition structure {V}, stable sets of a game v in X(%) are called Vorn Neumann
Morgenstern solutions of the game (Von Neumann Morgenstern 1944).

The following result generalizes a property initially stated by Milnor (1952) —
and attributed to Gillies — for Von Neumann Mergenstern solutions of super-additive
games.

Froposition 2: For every v€ Gy and every B S Iy, if @ € X*(», B) is a stable set of
vfor B then: ¥ x € 0, x =M(5).

Proaf: Let ( be a stable set of v for B. Take x €0 and assume:

3iGN, (SBEB/VSEPW), x;>3(8-5E- ). (1)
S0, lct & > 0 be such that:

YSEPWN), x-8>0E-5(E-4). (2)

In particular, for 8 € B, 8 2i, we have, using the definition of 9 and the fact that
x € X*(», B):

x; =6 > 5(B)Y — B(B - {1}) = v(B) — B(B — (i}) = x(B) - $(B - {i}),
which pives:
BB — i) — 8 =x(B ~ {ih. 3

Letting T € Ilg_y;} be the partition of B — {i} such that ¥(8 — = Z oD,
(3) gives: reT

L oM-5> I xT
TeT () =T ™
Thus there is a coalition TE T, Tl {r}. 3nd a number n > 0,7 =< &, such that

w(T)=n =x(T). (4)
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Consider x” = X*(v, B) such that:

Xi=x;—n
x,‘=;:c,+iﬂ?1 if jeT (%)
x; = x; if fET, i

We have, using (4), (T >x' (Ty=x(T)+7n, ie. &(T,x")>0; and since, ¥Y;ET,
x} 2 %, (4) and (5) imply x” ?;x.

Since x € (2, we have by internal consistency: x' & (3. Applying external domina-
tion we find:

3y&@, 3ISEPN)e(S,»y)=0 and VjES, y,-:bx}. (6)

If § 214, since by (5) x = x; for every j €5, we deduce from (6): ¥ >-x contradicting
internal consistency. IFS 5: using (2), (4) and (5), we get:

Virxl=x;—nEx =8 =85~ 58— ),
ic. B(5-{})>¥&(5) —y. Letting V¥ EIlg_s;} be the partition of §— (i} such that
s - {iY = y EU 2(¥), combined with #(5) > 2(5) and (&) we obtain:

=
vézv W) =0 - D=8 -y, =v(8) -y, 2y(8) —y,
=2y§=-H= X ¥V
vel

Thus: IV CS—{iHo(V)=y(V), ie. e(V,») >0, and ViV, 3 >x; giving y >;x,
which again contradicts internal consistency. Q.ED.

Proposition 2 shows that a stable set is always nicely upper-bounded. [t remains to
be seen whether or not it iz alzo lower-bounded. We have a negative answer with the
next exarnple (inspired by Shapley 1952) of a super-additive game v, where a stable
set for {N'}is not included in the set of individually rational outcomes.

Example 4 Lot v be a 4-persons quota game. The quotas are wy =wy = wa =04 and
wy =—0.2. The resulting coalition function von V= {1,2,3,4} is

v({1,2D =w({1,3) =v({2,3}) = 0.8,
v({1,4}) =2({2,4}) =v({3,4h =02,
v(¥y=1 and o({i,j,k})=08, o({iH)=0 foreverviEN  ENAMKEN.
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We have v €GEP, and given B = {V], the pre-imputation and the imputation spaces
are:

4 a4
X*(v)-'"yElR“;Elyﬁl] and  X(z)= yElRi;’Eyﬁl

Define:

P={(04,x,08-x,~-0.2),0=x =038}
B={(x,085-x,04 -02):0=5x<04}

and @ =PUR. We have 9 C X™(2) but @ is not included in X{(7). We show in the
Appendix that @ iz a stable zet of » for {N].

Thus, for any game and any coalition structure, stable sets satisfy the upper-
bound defining the reasonable set: however may violate individual rationality, even
for super-additive garmes and the coalition structure {V}.

2.3 The Core
We call Core of @ game v € Gy, for a coalition structure B = Iy the set
def )

Co(, B) = {x & X*(v, B); %' € X*(v, B)/x' > x)
Clearly, we have

Co(0,. B)={x E X*(v, B); Y S € P(NV), e(5,x) < 0],
and any Core outcome is individually rational. On another hand since as easily checked
Co(w, B) i in the intersection of all stable sets of » for B, by Proposition 2, it is upper-
bounded by M (). Wa conclude.
Proposition 3:

VuEGy., VBEI, Col,BCR()
Thus, the reasonable set can be viewed a: a “Core catcher”, a term introduced by
Tijs (1981) who looks for superset of the Core. Unlike the set defined by Tijs, the
reasonable set is always non-empty and defined axiomatically.
2.4 Bargaining Set

Consider a game v& Gy and & coalition structure B Iy . Denots, for i SN and

def
JEN:T; = (SEPW), 52 8P/} Given BE B, an objection of | E 5 against f EB
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at x € RN iz a pair (¥, §) €IRF x T;; such that:
e(5,)20 and WVIES, »>rx

A counter-objection of € B agninst (»,5) is2 pair(z, T) € R x Tis such that:
oT,2)=0 and VIET-S5, z;2x, VYEKETNS, 2,2y

Player i & has 1 justified objection against fS 8 ut x € RY, denoted { =/, if there
x

iz an objection of i against j at x and no counter-objection of / with respeat to it.
The pre-Bargaining set of v E Gy for BE H, is the sett?:

Moy, BY =[x € X*2, B);¥ BE B,Vi€B,Vj €8, no (>}

It is different from the “Classical” Bargaining set which is defined with respect to
imputations and is such that: M‘h)(v, B) = M¢py M X(w, B). In case of the coalition
structure B = {N}, we use the notation: Mm(v) = Mo, {N3). As can been easily
seen, we have Co(®, B) C My, B).

Unfortunately, we have the following nepative assertion'?,

Proposition 4: The pre-Bargaining set Mey(», B) may contain points outside the rea.
sonable sat B{#) and violations of the bounds on both directions are possible even for
super-additive games and the coalition structure B = {NV}. In case of the upper-bound,
the violation occurs already for the “Classical” Bargaining set M‘(I)(v).

Although not founded in literature, this phenomenon was already noticed and in
fact the following example is a slight simplification of an example provided by B. Peleg
for the vpper-bound.

Example 5: LetN={1,2,3,4,5,6} and let

tl if 18- {63123,
(S) =

0 otherwise.

It is a matter of straightforward verification to check that

_1 1 1 1 1 5 d
x= e, & gre TS €. 5] an

10 The subscript (1) refers, ag usual, to the fact that only individual playsrs abject and counter-
object.

11" prapasition 4 has to be compared with Theorem 2 in Kikuta (1376), p 204 which proves the
validity of the upper-bound M{y} for weak super-additive gamas and for a variant of the Bargain-
ing set in which only some special coalitions are permitted.
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_(1+ 1+ 1+ 1+ 1+ 5
yElgtmgtngrmgtn, o¥n, =

2 2
are both in My(2) for € > 0, 5 > 0 sufficiently small, 8. ¢ < T andn= T How-

ever, player 6 is dummy and nevertheless receives in x :5e > My(8) =0, when he
receives in v : = S << o({6})=0.

We conclude that even for the “Classical” Bargaining set where individual ra-
tionality is externally imposed, one does not obtain reasonability.

2.5 The Kernel
Given a game v € Gy, let e;(x) = sﬁaﬁj (S, x), be the maximal excess with rezpect ta
x € RY of a coalition containing i &N but not j € V.
The pre-Kernel of v for B €Il is the subset of M¢y(», B) definad by:
K*(v,B)y={x€ X*(¢,B); VREB,VIEB,Vj € B, e5(x) = e (x)}.
The Kernel of v for B is the subset of Mfl)(‘v, B) defined by
K@ B)= (xEX(v.B); VEEB,VIEBD, V€8, gy(x) = e;;(x} or x; = w({i})}

By definition, we have: K*(x, B) N {x € RY; vi €N, x; > o({iD)} § K(x, B). For the
coalition structure B = {N}, the sets are denoted K™(2) and K(v).

Froposition 5: For any super-additive game 2EG§® and any coalition structure
BE Ly, the pre-Kernel K*(v, B), and hence the Kernel K(v, B), are upper-hounded
by M{v) = M().

Proof: Let x € K*(v, B). Assume that for some i EN, x; > M(%), i.e. V5 € P(V),
SP4,x: > v(8 U {i}) - v(S). We prove that this implies x & K *(v, B).

Let 2 € B such that7 € B, then:

%y 2 0(B)—v(@ = {})=x(B) —v(B - i}) =2, —&(B - {i},x)

implying e(8 — {i},x) > 0. Hence A = {5 CN;e(5,x) > 0} = 0.
Let 8° € ¥ such that e(S°, x) =e(5,x), VS S A.
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Assertion 1. 1 € 8°. Since if i £5°, then:
e(5° = i}, x) = v(8° — (i) —x(8°" - i}
= a(S°,x)+ [x, — (v(S™) —v(S° - (1]

Since, by assumption x; > o(5%) = v(§° ~ {{}), we have (8" — {i}, x) > &(5°, x), con-
tradicting the definition of §°,

Assertion 2: 8° N (B — 1)+ (. Since otherwise, recalling that the game is s.a. and
e(B = {i},x)=0,8° N{#~{i}) =0 would imply:

2(8° U(B ~ (i), x) = e(5°, x) + (B — {i}, x) > &($°, x),
contradicting the definition of §°,

To complete the proof, let now jE8° N (8 — {i}). Clearly e;;(x) = e(5°, x) > ¢;;(x).
R.E.D.

Weakening the super-additivity assumption may lead to violation of the upper-bound,
even for w.s.a. games and B = {V}, not only for K*(2) but also for the smaller set
K(%). This i3 shown by the following example:

Example 6: Consider the following 7 players game in which the set of players
N={1,1",2,2,3,3,4} is composed of three couples C; ={1,1}, €y ={2,2'},

i
3 = {2,3'} and an exceptional player 4, Let ¢ > O and € = 3 and define v by:

w{iP)=0 forevery i€N, o(C1)=2(C;)=v(C3)=2,
wC UG A =4 +de, w(N)=6

and for any other 8, 2(S) iz determined by taking the monotene cover of the above
values: i.e. #(5) = gllca:g v{H). Let

x=(l—-e,1~¢,1-¢,1—e, 1—¢g1—g,be);

we clajm that x is in the Kerne] although x4 = 66 > M4 (8) = 4¢. Clearly, any two
players in a couple are interchangeable players who receive in x the same amount and
therefore ¢;;(x) = e, (x). Consider a pair {i,f}, ]+ {'; then e;(x) = 2e which is achiev-
able by §={,i'} or §={i,/, k. k', 4}, k #;. Similarly e;(x) = 2¢. Consider finally a
pair {i, 4}, The only coalition with positive excess containing/ and not 4 is {1,#'} with
excess 2¢. Therefors e;53(x) = 2. Now 4 against 7 has an excess of 2¢ via the coalition
{.7. k. k', 4}, and therefore eq,(x) = 2¢.

Wesley (1971) has shown that for v € GN 2 and for x € K *(7), x; = M;(v) for all
iEN. For v€GAP, this is a special case of Proposition 4 for B = (M]. For
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v & GAFNGET, the bounds M;(v) may be strictly higher than the bounds M(#). In
Example 6, for instance, Ms(v) = 2 + 4¢ (player’s 4 contribution to coalition C; U )]
compared to Ma($)=4e. The example shows that Wesley’s result for such v cannot be
strengthened to replace M; () by M,(5).

As for the lower bound, one has the following ataternent,

Proposition 6: For v € GY™ and for B = {¥}, K*(#) = K(2) and hence they are both
individualty rational.

This Is a result of Maschler—Peleg (1967) (see Maschler—Peleg—Shapley 1972,
p. 77} It cannot be extended by relaxing one of the two conditions. Example 7 shows
that a payoff in the pre-Kernel may not be individually rational for non weakly!?
super-additive games, even for B = {¥}. Examnple 8 chows that for B % {¥}, a payoff
in the pre-Kernel may not be individually rational even for super-additive games.

Example 7: Let N = {1, 2, 3} and the goalition function 2:

v({1D=2(2H) =2({3})=0, w({1,2})=20, w({1,3})=750,

v({2,3) =10, »({1,2,3})=40.
The super-additive cover ¥ is such that #({1,2,3}) =50, and 3(5) = »($) otherwisec.
We have: M (5)=50, Ma(F) = 20 and M3(#) = 50. The pre-Kernel is K *() = {(27.5,
=5,17.5)}. Thus we have K¥*(2)=M(5) but K*(2) is not individually raticnal for
player 2. The Kemel is K(%) = {{25,0, 15)} and thus we have K(v) € R(v)

Example 8: Let N={1,2,3], and v be the 3-person simple game in which {1, 2} is
the only minimal winning coalition,i.e.:

o((},2D=v(N)=1, »S)=0 otherwise.

For B = {{1}, {2,3}}, we have x = (0, 1/2,-1/2) € K™=, B).

2.6 The Nucleolus

The last solution concept to be considered is the Nugleolus, initially introduced by
Schmeidler (1969) to select a point in the Kernel (thus in the Bargammg set).
Given a game on V, let & be the function from RY to R?" defined by letting:

Ve=1..2"  8dx)=e(S,x) with 65(x} > 0,(x)

whenever { > 5.

12 Hewever, Maschler~Peleg—Shapley (1979), p. 327, Corollary 4—13, extend: to certain non-
weakly supcr-additive games the class of games for which K*(z) = K(#), and thus Proposition 6
holds.
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We say that #(y) is lexicographically greater than 6(x), denoted 6(y)L}B(.x) iff:
3io/VWi,i <ig, 0:(¥) =6;(x) and 6;,,(y)> By ().

We write: 6(1.')% o) for 6(r)3 8.
The pre-Nucleolus of v € Gy for B < Il is defined by:

Ni(0, B) = (¢ € X*(2, B); V. € X°(3, B), 60 T 0030},
The Nucleolus of v for B is:
Nulw, B) = Ni(», B) N X(v, B).

We have (Schmeidler 1969; Kohlberg 1971) that Ny (v, B) (resp. Ni(w, B)) selects a
unique point in K(z, B) (resp. K *(v, B)).

By Proposition 5, for any super-additive game v € G and any coalition structure
B&Ily, the preNucleolus N¥(v, B) and hence the Nucleolus N, (v, B), is super-
bounded by M(%) = M(z). As in the case of the Kernel, thit positive result cannot be
strengthened by relaxing either the super-additivity of the game or the condition
B = {¥}. In fact, noticing that x of Example 6 is also the Nucleolus of that game shows
that the Nucleolus (a fortiori the pre-Nucleolus) in non super-additive games may not
been bounded by M(%) even for a weakly super-additive game and 8 = {V'}. The fol-
lowing example shows that for general coalition structure B, even weakly super.
additive games may have their nucleolus unbounded by M(5).

Example 9: Let N={1,2,3,4,5,8} and » be such that:

v({{)=0 forevery iSN, o({2,3D=10
‘!)({4’ 5}) = U({4’ 6}) = v({sl 6}) = 139 ﬂ({l,z, 3}) = v({d': 5! 6}) = 15
v({1,4,5) =v({1,4,6}) =»({1, 5, 6}) = »({1,4,5,6)) = 19;

otherwise 2(5) is the least value which makes » monotone, hence wsa. Let
B= {{1! 2) 3}! {4! 5! 6}}: we have:

x=Ny(v,B}=(7,4,4,5,5,5) and
xp=7>M @)= sog | [S)y=v(S=im)]=6.

Recalling that A;(v) = M;(£), we obtain the desired conclusion,

As for the lower bound, the situation is exaetly as for the pre-Kernel and Kemel
respectively. This follows for positive results from the facts that Ni(z, B) € K*(z, B)
and Ny(v B) € K(v, B). For negative results, notice that in all counter-examples
concerning the Kemnel, the special points are actually the Nucleolus.

The results of the present section conceming the reasonability of various solu-
tion concepts are surnmarized in Table 1.
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Appendix
FProposirion: In Example 3, (2 is a stable set of v for {NT.

Proof: 1) Internal consistency. Constder ¥ €Q and ¥ € Q. No domination can ocenr if
bath vectors belong 1o the same subset of @, namely P or R. Assume wl.og, that
Y &P and YER. We can have y > ¥ or ¥ >y only viz coalitions {1, 2}, {1,331, {2, 3}
But:

Y 7. ¥ is impossible since 7, < 04 implies % > 0.4, thus p, > 0 and », + 3, >
{1.2} 0.8 =2({1,2)).

F {:i} ¥ s impossible since one would have 7, > 0.4,

Y {l:':-;} ¥ isimpossible since 3 > 0.4 implies , +p3 > 0.8 = v({1, 3}).

¥ {1}3} ¥ isimpossible since one would havs ¥, > 0.4.

y > ¥ s impossible since one would have y, > 04 implying y» < 04 and thus
2.3} 5 <04

¥ > » isimpossible since one would have y, < 04 implying p; > 0.4 thus i, >
{3, 3} 04 andj‘;z +j-'"3 =08= 'U({Z, 3})

2) External domination. Consider y € X *(z) - (. Clearly, if y4 <-0.2, any ¥
dominates ¥ via {4}. If y4 > =02 lat 4 =—0.2 + 3¢, where € > 0, and consider ¥=
(r1 +e,ps +e,¥3 +e,—0.2). Note that $({1,2,3)=1.2. So ¥ is feasible for a ieast
one of the coalitions {1, 2}, {1, 3} and {2, 3}; thus ¥~y via that coalition. If 57 € Q.
7 is the required outcome. Assume that ¥ & Q. We show that in this case 3z € {2 such
that z >3 via {1,2} or {1,3} or {2, 3}. This concludes the proof sinee such z domi-
.nates v via the same coalition. In fact, F =2 implies in particular that ¥, = 0.4 md
F3 #04: if ¥ > 04, then 7 + 73 < 0.8 and 3z € P such that z {2‘;’;} JLifV, <04

and ¥3 <04, then 3zER such that z {‘#—} Jiif §) <04 and J, > 04, then 5, +
1,3
¥2 < 0.8 and again 3z € R such that z {1‘;;} ¥ Q.ED.

Acknowledgements: We are desply indebted to B. Peieg and to M. Maschler for very usefal dis-
cugsions and for helping us to trace the existing results in this subject. We are also grateful to an
anonymeus referee for helpful comments, in particular for asking about relation between reason-
able functions and sami-values. The usual caveat applies.

Refarences

Aumann RI, Dteze JH (1974) Cooperative games with coalition structures. Iaternational Jeurnal
of Game Theory 3/4:217-237

Davis M, Maschler M (1965) The kernel of 2 cooperative game. Naval Research Logistics Quaterly
12:223-259



Remarks on the Reasonable Set of Outcomes 143

Dubey P, Neyman A, Weber BT (1981) Values theory without efficiency. Mathematics of Qpera~
tions Research 6/1:122-128

Kikuta K (1976) On the contributions of a player to 2 game. Internationsl Journal of Game
Theory 5/4:199-208

Kohlbereg E (1971) On the nucleclus of a charaeteristic function game. SIAM Journal of Applied
Mathematics 20:62 66

Luce RD, Raiffa H (1957) Games and decisions. J. Wiley and Sons, New Yor

Maschier M (1968) The inequalities that detstmine the bargaining set M(I). Tsrael Journal of
Mathematics 4/2:127—134

Maschier M, Peleg B Multi-person cooperative games. Chapter [: Cooperative games with
side-payments. Chapter Il: The core. Hebrew University of Jerusalem, Department of Mathe-
matics, Mimeo

Maschler M, Peleg B (1967) The structure of the kernel of a cosperative game. SIAM Journal of
Applisd Mathematics 15:569—604

Maschler M, Paleg B, Shapley L8 (1972) The kernel and bargaining set for convex games. Interna-
tional Journal of Game Theory 1:73-%3

Maschler M Peleg B, Shapley LS (1979} Geometric praperties of the kernel, nueleaius and related
solution copeepts. Mathematics of Qperation Research, pp 303338

Milnor W (1952) Reasonable outcomes for a-petson games. RM 916. The Rand Corporatiof,
Santa Monica, Ca, USA

vVon Meumann 3, Morgenstern O (1944) Theory of games and economic behavior, 1st ed. Princeton
University Press, Princeton (2nd cd 1947)

Schmeidier D (1969) The nucleolus of a characieristic function game. S1AM Tournal of Applied
Mathematics XVII/5:1163~1170

Shapley LS (1952) Notes on the n-porson game II: some variants of the Von Meumann Morgen-
stern definition of solution. Rand corporation RM 517, April 1952

Shapley LS (1953) A value for p-parson games. In: Kuhn HW, Tucker AW {(ods) Contributions te
the theory of games LI, Annals of Mathamatics Studies, no 32, pp 307317, Frinceton

Tijs $H (1981) Bounds for the core and the 7wvalue, In: Moeschiin O, Pallaschke D {eds) Game
theary and mathematical cconomics. North Holland Publishing Company, Amsterdam

Wesley E (1971) An application of non-standard analysis to game theory. Journal of Symbolic
Logic 36:365-394

Young HP (1982) Axjomatizing the Shapley value without linearity. NASA, Working Paper 82,
July

Received June 1084
Revised versivn Detober 1985



