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INSPECTOR LEADERSHIF WITH INCOMPLETE INFORMATION

by

Fudolf Avenhaus, Akira Okada and Shmuel Zamir

Abstract

Inspection problems arise when an inspector has to decide whether an
inspectee has behaved legally, i.e., according to a formal agreement.
For such a decision the inspector ussd a well-defined procedure which
iz based on observations of random variablez and whieh may or may net
be anncunced to the inspectes.

Whereas in the latter case (noe announcement) in eguilibrium the
inspectee will behave illegally with positive probability, in the
foarmar case he will ast leagally with oertainty: the inepector detere
the dinspectee from illegal behavior by means of his "inspactor
leadership procedure”.

In the case o9f complete information on both sides the leadership
golution is instable. It is shown that in case the inapector has only
incomplete information about the inspectes's pavoff for undetected
illegal action thia inztability disappears.

For the purpose of illustration the resulta are applied to material
aceountaney and data verification problems, and it is shown that the
inspecter’s equilibrium strategimes are the statistical teate commonly
used in thase contexts.
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1. Introduction

Inspeation problems arise when a person or organization {(an ingspector)
haz to decide whether a person, a group of persens, an organization or
a Btate (inapectee in the following!) has behaved legally, i.e.,
according teo a law or a formal agreement. The inspector responsible
for the gurveillance of the behavier has twe posasibilitieg: He can
daclare the inzpectee's behavior to be legal, eor he can gquestion it
and induge a gecond getion level in order to gettle hizs suspicion.

Typically, thme decision on these two alternativez has to be made with
only uncertain information, Then stochastie methods hava to bs used.
In terms of our theery, thiz weansz that the inspector 1z observing
randem variables wheose distributions depend on the inapectee's
behavier, and he uses these observatlonz feor deciding between two
alternative hypothesea. ITn order to find the “"best" decision procedure
the inspector needa information about the utllitiez of the inspectee
and about hic peoesible actions. Thiz means that inspection problems
have to be modelled game theoretically in contrast to problems like
procesa or quality control, where the adversary iz inanimate nature or
a teghnical precess.

Appaéently, the first analyses of this kind are dus to DREBHER (19262}
and EUHN (1963) who developed their ideas 4in the ceoentext of arma
contrel and diszarmament. MASCHLER (1967/68) make:z deeisive progress!:
He abandons the zIero-sum aessumption and introduses the prica-
lsadership principle into the fimeld which he takes from STACRELBERG's
work {1934) opn market equilibria.

Without kneowledge of thia work, BIERLEIN (1969) analyzed =zero-zum game
theoretic models for nuclear material safeguards in the framework of
the Nopn-Proliferation Treaty. In later papers {e.g., 19%70,1983}) he
kept the zZers-aum assumption but avoided the explicit use of payoffs
te the inspector: BIERLEIN interpreted the zero-sum agzumption such
that ideally the inspector should consider she gain resp. leoss of the
inspectea as hiz lozz resp. gain, and he was primarily interested in

i For the inspectee he usea the term violator. We do net uze it, asince
it is not certain a prieri {(and, in £fact, the inspector seeks to
prevent thisg) that the inspectee violates the law or agreement. In
the nuglear material safeguards application to be discussed latar,
the term operator of a nuglear plant under safeguards is sometimes
used. We prefer the neutral term Inspectee in order to indicate the
wide range of appliecations of the theory.



27 AUG ‘@@ 1@: 37 CEMTER FATIOMALITY 972 2 6213631 P.3 7

321

reliable ingpection strategiea. HOPFINGER (1974) also dstermined
reliable inspection strategies for a special inspection problem, whers
the total in=pection effort is determined stochastically.

Except for a few attempt=z (MASCHLER (1967), BRAMS (1985)) the papers
montioned =o far, and many more, are purely game theoretical in their
gaope: they de net deal with the evaluation of measurements and their
errors which are typical featurea of many inspection problemsz. One of
the first approaches in this direction wasz made by AVENHAUS and FRICK
{1977) who emphasized that, in general, falsze alarma cannet be aveided
and that, therefore, the interests of both the inspactor and the
ingpectee are only partially opposing: Both parties want to aveid
falze alarms which cause losses to both. Inspection problems of this
kind have to bhe modelled by non-zero—-sum gamas.

The soluticon of conerete problems of this kin& may bkecoma very
complicated even in rather simple applications (see, e.g., FRICK
{1976), BATTENBERG (1982)). Therefore, it turned out to be vary
convenient that the solution of games of thir kind can be performed in
two esteps. In the firat, the squilibrium false alarm prebability ie
determined. In the second (and, for applicaticns more important) step,
a zoero-sum game is solved, The sclution iz found with the help of the
Lemma of Neyman and Pearsen, well-known in statistical theory. In this
way, a saries of applied problems was solved (see, e.g.. AVENHAUS
{1988)) .

A disadvantage of models where both players act simultaneously is that
in equilibrium the inspectes bahaves illegally with peogitive
probability, whereas the primary objective of any inspeatien is the
total deterrence of such behavior. FICHTNER {198%) was the first to
shew that the inspector leadership methed (&% mentioned, already
introduced by MASCHLER) solves this problem. It has to be emphazized,
however, that this methed means that the inspector commits himzelf in
a3 credible way to stay to the announced strategy. If one doubts that
this is always possible for private or even national “inapectors”, it
ean be safely agssumed for the case of internatieonal inzpection
problemsz because of the attention pajid to these procedures by the
states involved; thus, here this method has a satigfactory
justification.
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This paper shows how the leadership game differs from the
"aimultanacus" game considered earlier and how in egquilibrium the
inspectee behaves legally., (FICHTNER, who in line with MASCHLER and
STACKELBERG uzed the term leadership sclution, did net formulate this
explieitly.) Nevertheless, the reaulet ia not year fully satisfying,
gince, if the inapector plays the eguilibrium strategy, the
ingpectee's bheat reply 4is not exclusively legal bPbehavior and,
furthermore, because of what is called the "knife-sdge" property of
this equilibrium: a slight mistake by the inspector in determining hia
equilibrium strategy can leed to a major los=s., It turns out, however,
that the treatment of problems of this kind with incomplete
information models solves this problem efféctively. Thiz approach is
the more justified if one admits that the knowledge of the inspector
about the gain of the ingpectee in case of undetectad illegal action
iz indeed incomplete,

¢learly, ths above outlined problems are very closaly related to a
varjety of economiec modals known as principal agent problems

extenzively studied in the economic literature (see, a.g., KANODIA
{1885), DYE (1986)), The model and the applications in this papar are
not primarily economis but rather what one may <¢all "political®™. The

main issuez here are; wislation, deterrence, detection, false alarms,
ete. The traditional approach to such problems hag been basically that
of statiztical analysis, The atatistical tests were ooccasionally
incorporated as strategies in a game theoretical model.

Thia paper which i= based on two earlier versionz (AVENHAUS and OKADA,
and AVENHAUS and ZAMIR (1988)) i=s organized as follows:

In the next section, the nuclear material safeguarda example, with its
basi¢ toals material accountancy and data verificatien, is introduced
since it representzs an important application of the models to ke
discussed subseguently; in faet, it stimulated the development of
these models. In the third section, quite a general game theoretiecal
model is proposed whiech generalizea the 'statigtical precedure such
that by appreopriate calibration of the model - i.e., restrictions on
payoffs and strategies - the well-known Neyman-Fearzon test amerges as
the unique Nach equilibrium of the game, The model iz seguential with
the potential of ecapturing the importance of the time in situationz in
which time is valuable. Thig is not deone in existing statistical and
game thaoretical models which are kasically static.
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In the fourth szection, the differences between games without and with
a leaderehip of the inzpector are analyzed with the help of simplified
models which laad, as osutlined above, to the formulatien and treatment
of inspector leadershlp games with incomplete informatien; this is
achieved in the fifth chapter. In the concluding section, the rasults
are applied to the problams outlined in the aecond one. Among othars,
it is shown that practiticnerz' questions like those for beet declision
procedures can indeed be angwered without precisze knowledge of payeff
parameter values which especially in the application conszidered here
are nard to estimate.

Since in thias paper statistiecal and game thecoretical methods are
matched, zometimea there arises the problem of having to use gymbols
whieh are common in the one, but net in the ether field, or even worsze
which are used in both with differant meanings. Thus, compromises have
to bm found which ocacasionally are not teeo statizfying both for the
ctatiztician and the game theovrist.

2. The Nuclear Material Safeguards Example

There are many important applications of the general framework which
will be developed subsequently (see, e.g.,, AVENHAUS (198E)). The case
of nuelear material scafeguards, however, is of primary importance; in
fact, this special application stimulated the develeopment of the
formalism presented here as already mentioned before, therefore, it
will be discu=zszed in some detall in the follewing.

In partial fulfillment of the Treaty for the ~Non-Proliferation of
Nuclear Weapons (NPT), the Internaticnal Atomic Energy Agency (IAEA)
in Vienna controls the nuclear material of the peaceful sectors?! of
those States' nuelear fuel ayeles who have ratified this Treaty (by
new mere than 100 States) in order to achimve the abjective of
safeguards which ia according teo the model agreement {TAEA 1971}

i There are five States who officially have nen-peaceful nuclsar fuel
cycles; three of them signed and ratified the NPT. Acgording to the
NPT provisjions, thefe States are not obliged to have IAEA aafeguards
applied teo their peaceful nuclear £fuel cycles; they acdept it,
however, for good will reasons.
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"...the timely detection of diversion of aignificant
quantities of nuclear material from peaceful nueclear
activities to the manufactura of nuclear weapens or of other
nuclear explesive devices or for purposed unknown and
deterrence of =zuch diversion by the risgk ol aArly
detection."

The basic principle of IAEA safeguards is material accountancy, i.e.,
the comparison of bosk with physiecal inventory at the end of a given
inventory périod. The procedures for the performance of gafeguards
warg ales laild down in the meodel agreement: The operator of a nuclear
plant generatez all scurce data for the establishment of a material
balance and reports these data te a national or regional authority;
the international autherity verifies these reported data with the heolp
of indeperdant measurements made opn 8 random sampling ba=is, If tharae
are no zignificant differenses between ths operatsor'a reported data
and the international autherity's own findings, then all the
oparateor's data are accepted and the matarial balance is clozed on the
baziz of the aperator'=s data alone.

According to this procedure, the operator of a nuclear plant, who
intends to divert material, has two bagic pesgibilities: Either he can
simply divert material without data falsification, hoping that the
measurement uncertainty of the whole balance covera thia diversien, eor
ha can falsify data =uch that the bhalanc¢e appears to be correct,
heping that the measurement and sampling uncertainty of the data
verification procsdure coveras this falsification. Naturally. he can
use both 'strategies’'; we will come back to thls point.

There are medel agreement statements about the maximum routine
Ingpection effert which provides the basis for all randem sampling
pro¢edures. In order to make meaningful =tataments about this effort,
the importance of the nuclear material in the gense of the NPT
rroecezged in the different plants of the nuclesar fuel cyele had to be
defined (the "eoritiecal" mass of about 8 kg plutenium or highly
enriched uranium is necessary for the gonatruyetion of one nuclear
device). Thus, the concept of effective kilegram was introduced.
Accordingly 1 kg eof plutonium cerreaponds to one effective kilogram,
wherea= 1 kg of uranium with an eprichment of 0.01 and abave
corresponds to a guantity in effective kilograms that is obtained by
taking the &square of enrichment. The maximum routine inspection



27 AUG 'E@  1@:48 CEMTER FATIOMALITY 972 2 6213631

325

affort, given in ingpection man-hours spent in a nuclear plant, 3ie
determined on the baszis of the annual throughput eor inventory of
nucleaar material expressed in effective kilograms.

Now, let us lcook at material accauntanecy mere clesely: Consider a go-
galled material balance area {(a nuclear plant or a part of it). At
time ti-1 the beginning dinventory Ii-: iz measured; during the
jnventory pericd [ti-:,%t1] receipts Ri and shipmentz 51 are measzurad
whieh together with the beginning inventory add up to the book
invantory B: at ti. This ix compared to the ending inventory I of
thia period =uch that the difference between B. and I; is uged ({(which
for traditional reassonsz is called Material Unaccounted For, or shortly
MUF} ,

MUF: = X3 4= Bi - I = In-:2 + Rt = 8 =T, i = 1,...,n. (2-1)
ginae in observing these gquantities measurement errors cannoet be
avoided, the variahecez of which are knewn teo all parties involved, the
vector X' = (X1 ,....Xa) is a random wvector with covariange matrix I.
If there are no systematic errors, thenr the eonly sorrelation betwesn
the differences (2-1) for two subsequent inventory perieds is given by
the variance of the commen intermediate inventery, i.e., the alaments
of the covariance matrix I are given by

var{X:) for im=j .
(£)14 = coviXi . X)) =4 -var(li) for i4 ] (2—-2)
[} aotherwize.

In casae the operator of the plant, being the inspectee, doer not
divert any material, the expectation of the random vector X is zereo

due to the congservation of matter. If, according to general
experience, we assume tha meagurement errors to be normally
distributed, then the random veeter X iz multivariate normally
distributed with the expsctation zerp and covariance matrix I,

X~ N{O,I) for legal bahavior. ({2-3a)

In ocaze the operator diverts the amount Wi of material in the i-th
period, the expectation vector of X is p' = (Wi, ...obad, and we get
X~ Nipw, I} for illegal behavier. (2-3b)
Let us assume that the illegal behavior of the operator consiste in
choosing a vecter W zuch that
n

I Wi =e''p=H,e8"=({1,...,1). (2~4)
i=l
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Then the problem of the inspector is to decide with the help of an
observation of the random vectoy X if the operator behaved legally, or
on the contrary, he diverted the amount M of material. The walue of M
will ke digcussed later,

Let ys consider now a simplified data verification problem: A nuelear
plant is shut down for some time, and there is an inventory of nuclear
material which is collected in n items. The operater of the plant

presents via hiz national autherity his estimates ¥, i =1....,n
either ecorrectly, or he may falsify the ith-sstimate by the amount pi,
i=1,...,n if he doez this and is not detected, he can divert the

correaponding amount of material and the material balance gtill
appears to be correct. ‘The inapector estimates k data independently;
hiz eztimates arm 2, 1 = 1,...,k without loss of generality. sSince he
iz only intereszted in deviations, he uses the differences
¥y ot= ¥ =2, 1 =1,...,k {2-5)

of reported egtimatez and independently generated oneas in ordey to
solve his decision problem which is wery similar to the one deseribed
above: In case the inspector takes the maximal sample size (Xk=n), X is
multivariate normally distributed with expectation =zero and some Kknown
covariance matrix I. In case the operater falsifiez the data Yi by the

amounts py, i = 1,...,n, the saxpectation of ¥ is p" = (Hr,+avsHn). IE,
again, it is assumed that the tetal falsification is M, then we have
the =same problem as befere, only the covariance matrix being
different.

We azzume the total amount of material or. equivalently, the total
falszification M ta be in the order of magnitude of the ecritidal masg
described above, Naturally. one may assume that the teotal diversien
consists of severall small diversionz uzing different patha
{inventories at different points of time, diversion without data
falaification by using the measurement uncertainty of the material
balange and others). There are, heowever, both practical and
thecoretical reasens to assume that in case of diversion the operator
will use only cne path if he really wants to divert material.

3. Simple Inspection Games

There are two players, namely the inspector and the inspectee,
My .Mz,...,Ms are the (pure) actien setz of the inepsctes in s2tages
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1,2,...,n, respectively. The action aet of the ingpector is the szame
for mll otages and consists of two elements A (alarm) and A {(e&lear or
continue} .

Ei,....En are the aignals (or observaticnz) sgets in stages 1.,2,... .
B1 im typically a finite dimenzional Eucledian space or a subset of

it, f1,...,80 are transition probabilities:

£, M ®E ® . . EHM-1 @E-1 @M= E,
here, M: = Eo = ¢ by convantion. That isg, for any actions
Hox (P ,aca Hed, H1 & ¥y of the dinspectee in stages 1l,....t apd
obaarvations ®:1,....Xt-3, %1 E P at previous atages 1,...,%t-1,

£1 (UL +XL pannsHt=1,Xt=1, 4t} i5 the probability density of the random
variable X: ocbserved at stage L,

Far t = 1,,...0, I+ and ©O¢ are real functiona on M1 %...x% Mi. These
are the payoff functions te the Llnspector and to the inszpectee,
reapactively, 4if the game is stopped by alarm after stage t £ n.
Finally, I and 0 are two real functions on Mi X...X Mo, the payoff
functions when the game ends after n stages with no alarm called.

The game iz played as follews:

o At stage 1, the inspectee chooses an action i ¢ Mi (net observable
py the inspector). An ohservatien @1 is drawn from a randem variable
X, aceording te the density function £1(,|wm). This obsarvation
becomes common knowledge to both players.

o The inspector chassez either % in which caxe the game continues to
stage 2 or A in which c¢ase the game terminates with payoffa
(Lo (ue ) 00 (U2 )

3 Inductively; At stage t, t = i,....n, the inspectee chooses Wt £ Mt .
an observation xt is made from a random variable,
Xt E‘{.|u:,x.,....un.l,xt-n.un).
The inspector chooses either R in which case the game continues to
stage t + 1 if t ¢ n, or terminates with payoffs (64 STTRP I TP I
O{HL,.--.kz)} 4f t=n, or A in which cass the game ends with
payoEfs (Ty{ue,e.a i) i, .o dt ). Note that by this notation we
assuma that the payoffs are determined only by the actions of the
inspectee and not by the observations., This is obvious if neo alarm
-is called, In case of alarm this requires the impligit assumption
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that the actual diversilons are checked and found out after the
alarm.

The extenzive form of this game iz scetched in Figure 1.

The firat step in analyzlng eour madel is to consider a special case
cerregpohnding te situatiens in which rime iz pot Impertant - inspite
of the sequentiality of the problem: the only issues of intersst are

whether or not there was illegal behavier of the cperator, and whether
or not an alarm was called,

In addition to being a natural simple case to start with, this Ffirst
step may be considered as calibration of the model, namely relating it
to the existing, mainly =ztatistical analyses of the problem. To do
this, we chowse a =pecial, s=imple payeff structure eapturing the
undearlying assumptionzs of most existing analysea.

The farmal reduction to the non-aedquential case is obtained by tha
following set of agaumptions.

Assumption 1

o The inspector decidens on whether to call an alarm only once at the
end of the n-th atage, i.e., after having observed the whole random
vegtoer X' = (¥X3,...,¥Xn). Note that thir deez net excglude the
posgibility that the inspector decides on c¢alling an alarm alreaady
atter t ¢ n opaervations. However, sgince time 1= net important, he
may as well postpone his announcement to the end &f the game. 1In
other words, this assumption atill leaves room to some inherent
sequentizality and intrinzic order of the test procedurs.

o The inspectee'rs diversion strategy is completely determined at the
beginning o¢f the game, i.e., he decides eaither not to divert
(us=0,tml,...,n) or to divert according to the plan u' = {(y1,..-,Un)
where ¢ & 0, I yt = M, The oconstant M > 0 is the “critieal
diversion" asg motivated in the previocus section. -

Under these a=zsumptions the game in extensive form can now be
described as given by Figure 2. Wa denote this game by (o .
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stage 1
A
(I1(r1),01(pq))
stage 2
(I2(pq,m2),02(09, 12 1) o
\
[ ]
L]
- L]
L]
[ ]
0 -
K
chance
n shage n
I
A c

Initt in) . Ontide o tn b (Tnlitd,. ., 0 On (a1, 0

Flqure l: The mequentlial game in extensive form

.11
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The notation in Figure 2 iz self-explainding: 1 and 1 are legal and
illegal ac¢tions, reapectively. P' = {B1,evayHn} ' T g =M dim g
diversion plan. X' = {(xi,...,¥% ) is the vector of aob=ervatisns. The
payofiz st the endpeints of Flgure 1T are listed in Table 1 which is to
be read as follews: I(1,A) = 0(1,A) = 0, I(1,A) = -e, O{L,A) = —b egte.

Here, we normalized the utilities so that the atatus qua {A,l} hasg
zers Utility, and undetected diverajion i worth 4 > 0 for the
inspegtee and -¢ for the jingpector. The fact that all entries in line
A are negative 1a to refleect the idea that an alarm {i.e., an open
conflict betwsan the two playerg) is bad for both rlayera, compared to
the 2tatus que, a ¢ ¢ ia the obvioua rvequirement that, if diversion
gocurred, then the inspecter is better off detecting it than not
detecting it. h < b means that detected diversien is worse for the
inspectee than a false alarm {(reflecting some element of punishment) ,
and finally e ¢ a means that for the inspector a detection of a
diversion which means "a failure" of safeguards iz worse than the
inconvenience of a falase alarm.

A general pure gtrategy of the inspector is an alarm =set
g¢c Ei (& ... @& Eu, that is: Acceording to = the inepector malls an
alarm at the end of peried n if and only if (x1,...,.% ) € 5. A wmixed
strategy o is a propability distribution on pure strategies.

A pure strategy of the inzpectee iz s cholice between 1 and 3 and a
diversion plan L' = (pi,...,ps) satisfving I urv » M. Thus, a mixed
strategy ia a joint distribution on such pairs. This is egquivalent to
a behavieoral strategy 7 = (g,p) where g is the probability of ':I-., and p
iz the probability distribution aver diversien plans uw if he choozes
1.

Any pair of strategies (a,7) determines twe conditional probabilitles,
namely the fal=ze alarm probabilitcy

«{o,r] = prob(a|l,q) {3=-1})
and the non-detection probability

Blo,7) = prob(A|l,e.7). (3-2)

Clearly, w«(¢,7) dees net depend on 7 while B(a,r) dapenda on 7 only
threugh p, and it iz linear in p; hence, we shall write aio) and

plo.» = fE(o.u) dptul.

|

—_
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( )\ | inspector

Figurs 2: The "easantially"” non-sequential game

Inspeqtee Legal Illegal
behavier behavior
Inspector 1 1
Ne alarm a a
Iy 0 -
Alarm -h -b
A -a -a

sble 1: The simplified payoff structurs foy the esgentially non-
sequential inspection game as given by Figure 1.
0Oce<at<e, 04h <b, 4ab»0,

.13



27 Al

"Ea

164 43 CEMTER FATIOMALITY 972 2 6213631

a3z

Any o and T determine expected payoff functions which we denots by
I{e.,7) and 0(o,7) for the inspector and for the inspectee:
I{o, 7} = —q-{at(e-a):Bla,p)) - (l1-g})-e-ala} (3-3)
O{e,r) = -g-{b+(-d-b}-Bi{a,p)) - (1l-g)+hralo), (3-4)

First, we cbserve that the gama haa no aextreme HNash equllibrium ({(in
the following simply called eguilibrium), i.e., ne egquilibrium in
which the ingpectee deviates with probability 0 eor 1 froem legal
benavior and ne equilibrium in which the inspector's tetal probability
Lor calling an alarm at seme atage is 0 or 1. Thie ia easily seen by
logking at the payeff sgtructure as given by Tabkle 1. In particular,
this means that in any equilibrium one muzt have 0 ¢ g ¢ 1. In the
fiext gsection we will see that in a variant of thiz game not only that
9 =40 ean be the ecase in equilibrium, but it must be: The only
equilibrium ©f that meodel will be with q = 0.

It follows from (3=3) that because of 0 ¢« g ¢ 1 in any egquilibrium p
muzt be a maximizer of B(&,p) that mmans that the support of p has to
contain only 1 maximizing Blo,u). Denote for any strategy o of the
inspector

Blo} := sup Blo,.p) = aup Blo,u). (3=5)
2] ]
If {(o,d) is an eguilibrium, we can reawrite (3=-3) and (3-4) as
If(e,r) = -g-{a+t{c-a) -B(a)} - (1-q)-e-a=ia) (3-6)
Q(g, 1) = =q-{b+(=d=b)-B{c)) - (1-a) -h-alo). (3-7)

Note that we actually eliminated the diversion strategy plan W Erom
the equilibrium strategy of the inzpectee, =since it ix sutomatically
determined by (3-5). It will reappear in the auxiliary game teo be
diacusged later.

Let us proceed to determine g and e in equilibrium. The inspectee's
payoff is (d+b)-.R{og) - b if he chooses 1 and -h-ala) if he chooses 1.
Therefore, in the (a,f)-gpace the inspectee’=s best reply iz to chocee
1 or 1 or both according to whether

Blo) ¥ 38 - si-atal. (3-8)

see Figure 3. In this figure, also the cerreszponding zones in the
(a,f)-plane and the resulting payoff functions Efor the inspector are
given.

.14
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Neote that the inspector's payeff iz discontinucus along the line L
where it is also not definad since the inspectes, being indifferent
between 1 and 1, can use any mixture of them as a best reply to the
strategy <.

O,

1
l'-‘.._________ -a-{c-a}-p
b
g+b

1
o
R

o
1
=

™=

/él
+
=g

& (D

Q

Figure 3! The payoff for the inspector when using the gtrategy o, and
the inapsctee ias doing hia best reply

In order to maximize the inspector's payoff function, we first notice
that its domain in the {(zi{o),Bf(g))-space ia not the whole unit =zguare,
but is restricted by the line B = Bl{a} of the relation between « and p
for most powerful tests, that is

Bla) = infiBlo) |x{a)=al
o

or, with (3-5),
Blz) = inf sup B{a,p). {3-9)
g:a(o)=a g
Obviously, the function Blx) is determined by parameters of the
problem, in partieular, by =cthe distributienz of the random vector
(% ,...,%). We make the usual assumpticons on B{a), satisfiad, Ior
inatance, for the multinormal distribution:

Azaumption 2
The line E = @({a) ir well-defined for all « £ [0,1]. It is

differentiable, convex, atrictly decreasing and satisfies B(0) = 1,
B(l) = 0. -
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Conzider now the following auxiliary game played by the inspector and
tha inapectee which we denote by Gs and call the axiliary game with
parameter o:

o The strategy set of the inspector is I. = lo|a(o) £ al.

© The pure strategy set of the inspectee iz the aet of all diversion
plans M oi= (W 'm{phy parr )iy = O,i51,....0, I W 2 M].

o The pavoff from the inspectee to the ingpector, when (o,u) are used,
iz the detectlion probability 1 - Pilo,p).-

Azrumption 2 ¢an now be written as follows:

Aszumption 2'

For any «, 0 < & %« 1, the game Gs has a value via} =1 - pix), and

both players have optimal strategies (i.e., sup and inf may be
replaced by max ahd min, respectively). Furthermere, v(x) 4is
differentiable, concave, atrictly increasing and gatisfies v{(0) = 0,
vi{l) = 1. -

Note that Ge depands on «, but not on the parameters of the original
game. Of course, the wvalue of &, for which l« PRlays & role, will
depend on the data of the eoriginal game. Later on, we show that
Agsumption 2' iz satisfied upder the usual aszumptions of
multinormally distributed signals.

Now, we add the line B = Bla) to Figure 3 and waximize the inspector's
payoff, sea Figure 4. In region 1, the payoff decreases in o for any
fixed P, whereas in reglon 1 it decreasas in f§ for fixed o, It follows
that the supremum in o is reached on the line B = Pla).

on that part of the line, in region 1 the payoff decreasas in 4,
similarly on the part in region 1 it decreases in p. It folleows that
the mupremum is at the intersection of the line B = B(&) with the
straight line L. Thus, we c¢onelude, if (o ,v*) is an sguilibrium, that
the corresponding (o* ,B*) iz the wunique solution of

Blar) = g% - gha= (3-10)

16
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ginem (o* ,B*) lies on L, by its definition o* makes the inspectes
ipdifferent betwean lagal and illegal behavier, se&, an  illegal
behavior with any probability q will be a best reply against o,
However, the payoff to the inspecter at (a*,B*} is a function of gq.
I{a*,q) = gq-l-a—(c-a}-p(a*)} - {(1-4)-&-4a". {3-11)

O

'!:"‘B‘-- ~a-{c-a}.-p l l l

|

~a-d, ———

o5
2 papla) | T
_a ., O

Figure 4: The Nash eguilibrium wvalues (=*,8*)

The value q* of @ new has ta be determined so as to satisfy the second
condirtion for an eguilibrium which is that a* is a besat reply to 4.
that is, it maximizes

q*:{-a~{¢—a)-Bla)) - (l-g*} e'x
gz & funectisn of . By the assumption of differentiability of Bla),
this function har one local maximum at o gatiafying the first
derivate condition which is

£ - ¢ - (e-a)-- & pim)| . (3-12)
q! da as

Thus, g* is determined since ao* is fixed by (3-10).

Nate that o< g <1 as axpectad Erom aur assumptiona. By

ctraightforward verification it can be shown that this local maximum
a* iz also the global maximum, i.e., it iz the unique beat reply to

q*.

Af soon as (o' ,g") are uniguely determined in equilibrium, the rest of
the strategiea are determined as follows: the inspector c¢hooses c* as
a maxmin strategy in the game Ta», and the inspectes uses p* which is
any probability distribution over best replies w* te o' in that game.
We pummarize thiz diacussion in

17
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Thecrem 1

The game e as given by Figure 2 has a unigue egquilibrium {o*, {gq*,u*))
in which

(1) the false alarm probability a* = o(e*) ia the seolution of
{3-10), '

{ii) the probability q* for illegal behavier iz given by (3-12),

{(iii) the test strategy o* is a strategy guaranteeing the lower value
via*) = max mﬁn(l—ﬁ(c,u)) in the auxiliary game Gaa! H* i2 a
bheut raply to o in that game. ' -

Note that the unigquenass claimed in Theorem 1 heold2 only for

{(z*,B*,q" ). There may well be more than one o", or p*, although as we

will smee later, may alsoc be uniqua, e.g., in the multinormal case.

A 2gpecial case Worth noticing is whsan Blg) = 1 = @m. In this case,
equations {(3-10) and (3-12) yield
= =8 o -2 _
o = F¥b-h’ T = Z¥e-a’

which iz the (unique) mixed equilibrium of the matrix game in Table 1.
This dAeccribes a situation in which the inapector has no specific test
procedure for detecting illegal behavior and, therefore, (a*.,1-a*)
appears agf mixed eguilibrium in that game.

The eguilibrium of the inzpection game [lo has two undegirable and
related feature=: Firet, as waz alyeady mentioned, the unique
equilibrium has a positive probability for illegal behavior (g* » 0}.
Seszond, the inapector's paveff at the equilibrium point is drastically
disceontinuous. This is particularly disturbing in view af the fact
that the inspectee ir indifferent betwesn legal and illegal kehavier
at that point. Therefors, by "deing as well as in the eqgquilibrium
point" - he may inflict a severe loss to the ingpector by behaving
illegally with probability 1.

In the follewing sections, we address these two problema: First, we
propose a variant of the model which takes into aceount the natural
leadership role of the insopactor. We show that in the leadership game

there iz a wunigue equilibrium in which the inspecteor usas the same:

.12
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rategy a* aa in the equilibrium of the game [y, but the inspectee
g gq* = 0, 1.e., he behaves legally in sguilibrium.

then turn to the diseontinuity problem and introduce somm
certainty of the inspestsr about the utility d of the inapectee in
e of undetected illegal action. We show that the result of such

certainty removes the digcontinuity of the inspector's payeff at
uilibrium.

Deterrence and Commitment

important I[eature of safeguards games ia the fundamental asymmetry

the players' roles. The inspector, genarally repressntative of an
ficial authority, ean, and usually does, announce his inapection
rategy while it is inconceivable for the inapectas to make publie
s deviation stratagy.

rthermers, the inspector has the pewer of commitmeni: Dot eonly can

make public hiz inzpection strategy, but he can eredibly ocommit
nsalf to follow the announced strategy (e.g., to aign a contract
nlemented and enforced by court). In game theporetial terminelegy
is means that the inspector can become a Stackelberg leader in the
ne if he chooses =a.

menticned in the introductien, the idea of granting a leadsrship
le toe the inspemctor was already brought inte the literature on
taguards and arms control (see, e.g., MASCHLER (19€7/68), FICHTNER
385)). However, to our best knowledge, tha precdige diatinetion
rwaen the eguilibrium with and without inspector leadership was not
3licitly formulated.

12 thig power of commitment give an advantage to the inspector, and
wca, does it induee a szignificant change in the analysis? Let us
gt leok at a very simple example. Before, we racall the notion of
ickelberg leadership which we would like to emphaszize as being a
'‘gionn of the game rather than a version of the solution.

.19
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Definition 1

Given any gake I (in extensive or in strategic form)! with players eet
N = jl,...,nl and corresponding {mixed) strategy sets Ii1,...,In. The
versisn of the game with commitment power to player i is the game T
playved as follows: Player i chooses o1 ¢ Ii1 which ia made common
knowledge to all playars. Then, the game [ is played by the players
(¥\{i}) where the moves of player i are mady by a "machine" executing
the instructions of o . =
At a first glance, one may =uapect that such a medification =hould not
be very important, since aftar all in Nash-equilibrium reasoning each
player assumes the strategies of the others to be given. In order to
see this more carefully, consider the two-pergen game & in strategic
form a= given by Table 2.

The game & has a unigue eguilibrium which is (1/3,1/3) fer player 1
and (3/4.1/4) for player 2, yielding expected payoffs {(3/4,1/2).

2 Left Right
1 L R
Top 0 1
T 1 Q
Bottom 1 0
B 0 3

Table 2: Strategic or normal form game G

The game T with commitment power teo plaver 3 ir a game the extensive
farm of which is sketched in Figure 5.

In equilibrium, at any information met Ue, player 2 will choose L if
®x ¢ 1/2, R if u » 1/2 and be indifferent if x = 1/2. The only
parameter nesded to complete the zpecification of the seccond rlayer's
gtrategy in equilibrium iz 0 £ g £ 1, the probability of playing L at

.28
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. /2. Denote the resulting strategy by Te. Tha first player's payoeff

yainet T¢ i given by, see Figure &,

B 05 x 4%
fqix) ={qg-x + 3.(1-g)+(1-x} for x:%

3.{1-x)

@ @

Figure 5: The game & with commitment power

CYIC?

34
p T b
fqlx) equilibrium
1+ pay off for player 1
in the Game G
3/4' ________ -+
Yl 3-(1-x)
X
¥ . -
0 112 1

Figure 6: The function f£q (x)
ow, an egquilibrium point is a pair (%% ,Tsx) such that rqs 1is basnt
eply to x* which is satisfied automatically for all {x* ,.g*) by the
onstruction of Tgs+. and £as (x) has a global maximum ever [0,1] at x*.
UE faa (%) BEs no maximum unlees gq* = 0, §.e., player 2 plays R. It
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followe that the game ¢ has a unigue equilibrium point at x* = 1l/2,
q* = 0 with expeated cutcame (3/2,1/2).

So, each of the two games G and & has a unigque equilibrium (which is
alae a perfect adguilibrium), but Ethey are noet the szame,., Whilae thay
yiela the same payoff for player 2 the outzome is higher for. plaver 1

in the eguilibrium of G. The difference 3/2 - 3/4 may be viewed az the
value of his commitment power.

Let us conclude thiz example with two remarks.

1} In erder to see how the commitment power changes the equilibrium of
the original game, observe that, if in the game tree of & the moves
at the neodes £folleowing Ux weould be made by player 1 instead of
chance, then (x*=1/2,R) is not an equilibrium, since it is neot
aguilibrium in the subgame starting at C.,z: The begt reply to R is
not ¥+ = 1/2, but x = 0. 8o, player 1 commits himself not te changs
hirzx mind and play B even though thisz weuld be more profitable
against K.

2) Equilibrium of € can be viewed as a limit of points (x=1/2%:,R)
which are not equilibria, but from the peint of view of player 1,
all he can improve his payeff iz by no more than &. and in reward
to this "inefficiency" R becomes the only best reply, unlike the
gituation in the equilibrjum. Hence, these points are mores stable
than the equilibris against deviations of player 2.

Our opgervations on the commitment powar were probably noticed, though
net spelled out explicitly, in the works on refinements of equilibria,
sea, ®.g., VAN DAMME (1986). However, it irs especially relevant for
our context: Commitment power 4is a natural thing feor inspection
authorities and is usually practiced in exactly the gzame way we
modified our game from & to €., namely the inspection strategy is
officially declared and iz executed by "machines" or agents without
decision authority.

To zay this mors precizely, let us first give a second representation
of the game ¢ which iz equivalent to that in Figure 2, =sme Figure 7.
In thia figure., we used the szame notation ag before: p is the
inspectes's diversion plan., @ is the tast strategy of the inapector,

22
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Figure 7: An equivalent reprepentation of the game fa»

Figure 8; The inspector leadership game I,
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and afal and Bla,u) are the false alarm and not detection
probabilities.

If the inspector announces his test strategy o which is then executed
by a neutral mechanism, we obtain the fellewing "leadership game"
which is denoted by M1 and represented in extenaive form in Figure 8.

A "pure" strategy of the inspecter in the game . iz a test procedure
@. For the inspectee, a pure atrategy is a map T which assigns to each
a a strategy T{a}) = {q,u}.

The analysis of the game i is very similar ta that of fo (modified as
done in our example), For any fixed o, the corresponding w and o is
given by the auxiliary game Ga«. The values o, f* and p* are therefore
identical to those in lp.

The inspectee's best reply azs a function of a is (fixing B = R*, gee
Fidure 4)

1 0 5 x ¢« o
play if ;

1 g* {ax1,
and if o = o', play any mixed strategy (4,1-4}. The corresponding
payoff to the inapector is, see Figure 9,

—a — (g=a):B{a) 0o ¢t
fzla) =4 ge{-a-{c-a}p*) = (l=g)-o.a* for o = ot
—gsx a* < o £ 1.

-a-{1-a).p"*

Figure 9: Payeff to the ingpector in the leadership gams I
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Now, in equilibrium, f4(a) has te have its maximum at &%, but £« (=)
does not have a maximum unless g = 0. We thus get

Theorem =2

The leadership game i has a unigue Nash equilibrium peint (hence alea
perfect) in whieh the inspector ¢ommitz himself to the moat powerful
teat with f£false alarm probability o determined by (3-10), and the
ingpectee surely does not deviate from legal behavior, -
Note that, inzpite of having q = 0 in eguilibrium, the inspectee j8
mtill indifferent between 1 and 1. Nevertheless, this egquilibrium may
be called a deterrence egquilibrium since it iz the limit of points of
the form (a*+e¢,1l)., Theze are not equilibria, but rather deterreance
points in which the inepector gets an outcome s-close to that in the
equilibrium, and the inspectee =strictly prefera legal teo illegal
behavior.

5, Inepector Leaderzhip with Incomplete Information

In the last section, We assumed that the inspector and the inspectee
know all payoff parameters in Table 1. There are, however, many real
situations in which this assumption of complets infermation iE teo
strong to be satisfied. In particular, it rarely happens that the
inspector has complete knowledge ©f the inspectee’s payoff. Therefore,
in this section we will modify our rule of the inspector leadership
game . dmecribed in Figure & so that it can capture a aituatien in
which the inspector is uneertain akout the inspectee’a payoff
parameter. We will use HARSANYI's model (1967/68) of games with
incomplete information and azsume:

{i} The inapectes's payeff 4 in case thae inspectee agts illegally (1)
and the inspector dees not raise an alarm is a random variable an
the interval [O.=) with the (cumulative) distribution F(.). Thisg
digtribution F(.) is known to beoth playerz., In what feollows we
will use the symbol £t foxr the value of this random variable.
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(ii) The inspectee knows the realized value t, but the inspector does
not. All other payoff parameters in Table 1 are commen Knowlsdge,
We may Jjustify this in such a way that the losses of the
inspectee in case of false alarmg or illegal behavier are
economic losSses or well-defined sanctions whieh are publicly
known, whereas his gain in cace of undetected illegal action can
only ke guessed by the inspector.

Let ®% = (%1 ,...,%) £ [®" denote a vector of observations. A general
test procedure of the inapector is represented by a measurable
function frem IR° ta [A,Al, therefore, we denote by

I = {o|o:IR" = {a,A}; o is measurable) (5-1)
the set of all test procedures.

Remark that we defined here the set of pure strategies, We could have
defined the set of mixed strategies (distributions on I} or the set of
behavieral strategies

L = [g¢|e: IR* = [0,1]; o is measurablel.
Howsver, for our equilibrium analyaiz, thiz larger set will not be
needed, and pure strategies will =zuffice.

Recall that a behavieral strategy of the inspectee in o is 7 = {g,p)
where ¢ is the probability for illegal bkehavior and p £ &4 is the
diverasien plan in <ase of illegal behavier., For g =1 or g = 0 we
Bhall alse write T = (T,p) or T =1, respactively. Ainy pair la,T}
determines a false alarm probability ag{o) which dependsa on o only and
non-detection probability plo,p) which depends on T only through u.
The rules of our game with incomplete informaticn are described as
follows:

@ First, a chance move selects a value of the inspectee’'s payoff t in
case of 'ne detestion' according %to the distribution F(.})., The
inspectee is informed of this value (his own type), and the
inspector is not.,

o The inspector selects a test procedure ¢ ¢ I and announces it to the
inspectee.

o With complate knowledge of (t,a}, the ingpectee soelacts
= (g T
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o Finally, a chance move selects “alarm” (A} or "no alarm” () with
the prekability distribution
(afa),1-aia)}
in case the inspectee seleets 1 or elee
(1-p{la, v} . B{a,p))
in cazse the inspectee gelecte 1 with a diversien plan u-

We call this game the dinespector leadership game with incomplete
information and dencte it by fz. The oxtensive form of this game is
described in Figure 10,

Chance

t

W A\ Inspector ‘\‘1)
\ A

inspectee

Figure 10: The extensive form of the inspector leadership game {2 with
incemplete information

Note that tha =et of pure strategies for the ingpector ia I as in To
or r: while for the inspectee the set of pure strategies is the set of
maps

[(O,w) @ E-.Tn
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We shall dencte this map also by T and use for instance T{(t,o) for the
element {g,p) in chosen by the ingpectee of type t when facing the
test procedure o & ¥.

In the following analysis it turns out that. since the inapectee makes
the last perseonal move. he may as well do without randomizing over 1
and 1 or over diversion plan u, therefare, frem now en we restrict the
strategies T to be pure, i,e.,

T [0,=) @ I=Te := 1l v [(T,u)|u zdnl. {5-2)

Given a strategy combination (o,T7), the conditional expected payoff
for the inspector, given that t is selected, is

I
=

-z-a{a) T(t.o)
In {o. 7|t} = for {65=3)
—a-(i-Ple.u)) - csBlo,ul Tit, @} = {1.u),
and the conditional expected pavoff for the inzpectee, given that t iz

salacted, is
=f-ai{a) Tit,o) =1

Oz (o, T |t} = for (5=4)

-b-(1-Pla, 1)) + £-Bla.p) T{t,or = (1,1),
regpectively. The expected payoff to the inspector is defined by

-
Is (B, T) = I I: (o,7|t) AF(t),
o]
whetreasa that to the inspectee is {6=5)

Dz (a1, 7Y = J 02 (g, 7|t) dF(t).
]

An eguilibrium point of the game Tz iz defined as follows:
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Definition 2

\ =atrategy combination {o",T*) of T2 iz a (subgame perfect)
uuilibrium point of (2 if and énly 1f

1} EIa {g*,T")} & EI: (a,7*) for all g e I,

2) Qzio* ,v*{t,o*)|t) = O:lo*.7T|t) for all r 5 T, and for all

t e [Q,=). ]

n order to simplify the =subzegquent Theorem and its preoof, in line
ith previous aszumptions we use
geumption 3

1) The distribution F(.,) has the density functien f(.), i.e., it can
be written as

t
Fi{t} = [ fi{t')as’ for all £ e [O,=),
[¢]

2) For every o & [0,1], the minmax problem

min max Bla,n)
g & g MW oedn

has a soalution. -

» dencte by B{a) the maximum and by B(a) the minmax value of B(a,u),

glo) = max Blo.u) {5=6])
U & Ay

Bilx) = min LEY fla,u} = min Blo}). (5=7)
g r Zx W E &n g e Ig

12 next theorem characterizes a (subgame perfect) eguilibrium point

the game [z,
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Theorem 3

under Assumptien 4.1, a pure sgtrategy combination (o*,T*} of the
ingpec¢tor leadership ogame {2 with incomplete information is an

eguilibrium point of 2 if and only if it satisfies the following
conditicons:

{l) The Zalse alarm probability a* = alo*) iz given by

a* = arg max [(-a-u)-F(K(u)) +
a e [G,1]
(5=-8)

+ (-a-(l-B(ﬂJ)-c-B(n))-(l—F(R(u)ﬂ
where Ki{a) is given by

Rla) = %%E%i - b t5-9)

and where B(m) iz given by (5-8).

{2) o iz an optimal =strategy of the inspector in the auxiliary game
Gaw, i.2., it is given by

o* = arg max min (1=-B (o, u)).
o £ Egn HE Axn

{3) For every pair (t.ao) & [D,=») & £,

1 hit,g) < 0O
™ (t,a) =4 1 or (I,u"(t,0)) if hit,e) = 0 (5-10)
(I.p*(t,0)) hi(t,o) > 0
where
hit,o}) = =b + {(b+t):-B(ao) + L.alo)
and
p* (t,z) = arg max Blo,.u).
W oedy
Proof
We will prove thirs theorem by "backward induction": Let (@*,T") ba ah

equilibrium point of f:. Firat, for every pair {(t,o0) ¢ [0,=) @ I and
everY 7 = (1,p) we have frem (5-4)
0: (o, 7|t} = {(brt).Blo,u) - b,
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linca b + t » 0, the left hand zide is maximized with re=spect to |y by
iaximizing B(o,w), and this maximum iz attained by Assumption 4.2.

iecond, given & pair (f,o) £ [0,=) (& ¥, the inspectee’s expected
sayeft is
=-f-a{c) 1
if he zelects
—br{1-Bl{a)) + L:Blc) 1.

heive of the alternative which gives a higher payoff yieldsa {5-9).

fe verify wondition {l) in Definpition 2 we have to show that

o* = arg mMax I Is (o, T |t) dF(t) {5-11)
g« I
Q
vhere by (5=3) and {(5-9) I:{o,T1" |t) i=s
—a-a < Q
Iz (g, 7 jt) = if hit, o)
~a+(1-Bla)) - €-B{g) » 0.

o do this, we first prove the fellowing

Proposition

If (o0,7) iz Nash Egquilibrium and if we let

a = [t]hi{t,o) =0, 0 ¢ qlt,a) < 1},
then prob{A) = 0.
Proaf

Let D be given by

D = inf{=-e+a—[-a-(1=B)=-c-B)) =2 a — e » 0;

o, B
in words: D is & lower bound for the inapecter's payeff difference
netween 1 and 1 ({(keaping his ewn =trategy unchanged). For ¢ » 0,
denote by o the modification of o such that &{e) = alg) + &, The

sonsegquenses of changlng o to o¢ are the following:

5 At any value of t in which the inspectee played 1 agalnst o, he will
certainly play 1 against oc, and the inspecter’'s payofl differenae
will change by the order of e.
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o At anvy value ef t in the event A the inspectee strictly prefers 1
aver 1 against oe, while he was indifferent against o where he
plaved i with probability gi{t,o). The inspector’'s payoff thus
increases by at least 4{t,o) D,

Summing up, the change in the inspector's pavoeff resulting £frem

changing o to o is at least of the order probliA):-git,c}:D-k.= which
iz positive for £ small enough contradieting the eguilibrium property
of (o,71). ]
Returning te (3-1l) and noting
I = \ﬁ,#/ ia
a ¢ [0,1]
we can rewrite the maximization problem posed by (5-11) as
-y
man max J Iz {a, T |t} dF(t). (5-12)
a e [0,1] o & Ix
0
We first consider the first maximization in (5-12):
o
max J Iz (g, 7% |[£) dF{t}. {5-13)
3 £ Ino
Q
For every o £ [0,1] and every o £ ¥« we have, using the Propesitioen,
J Ie {o, 7" | L) dF (t) = J (-=-a} -dF{t) =+
Q t:hit,ag) £ 0
+ J (-a-(1-B)=-¢-B) AF(t) = (5-14)

t:hi{e,a3) *» O

(=e:x) -dF (L) + (-a-(1-p)~e:p)-dF(t)

]
—
— 8

0 b-a E _
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where B = Blo). Since the sum of the two integrals in (5-14} is#
motonically decreasing a= a funetien of B, 0 & f £ 1, see AVENHAUS and
ORKADA (1988), the subpreklem (5-12) has the same solution as

min pla). (5-15)
G E En

Acceording te (5-7) we have denoted thiz minimum by B{x). Then the

maximization problem (5=10) is eguivalent to the maximization problem

K(a) =
max J (=a-x)-4F(t) + I (~a-{i-pB{a))=-a-Rlx}) - -dF it} =
« ¢ [0,1]
Kla)
= max (-e-a) - F{EK{a)) + (=a-(l1=-f(x)}=c-Bf{a})  (1=-F{R(x)))
e ¢ [0,1]

where Ela) is glven by {(5-%). Therefore, we can prove (1} and (2} in
the thesrem. Convarsely, we ¢an prove without mueh difficulty that a
pure strategy combination (o*,7*) =atisfying (1) te {3) in the Theorem
iz an equilibrium point of r=. -
Theorem 3 gives us the fellowing decisions for the inspestor and the
ingpectee at an equilibrium peint of the inspector leaderchip game T2
with incemplete information.

For any @ ¢ £, the inapectee

{1} gelects the illegal =atrategy | which maximizZes the nen-detectien
probability Blao,p), and

(2) behaves legally if his payoff t in case of no detection is smaller
than the gritical level

_ b-f-ats) _
Kig) = 7o) b

and behaves illegally if % is greater than Kla).
The inzpestor

{3} selects the false alarm prebability o' which maximizes his
expected payoff given in (5-8), and

{a) malects the tezt procedure g & Y2+ which minimizes the non-
detsction probability @ile,u) under the aszzumption that the
inspectes maximizes pl{a,p).

.11
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When the inspector employa a teat procedure ocig) which iz a selutien
of

min max Blo,w), 0 &8 o5 1,
g & Iy p e Dy

the inspectee behaves legally if b ¢ K(o) and illegally if t 3 K(a)
where EK(a) is given by (5-9). Thisz means that, from the inspecter's
point &£ wview, the inspectee behavez legally with probability F(K{a)}.

For any false alarm preobability a, K{@) represents the aritical value
of the inspectee’'s paysff in case of no detection which determines his
behavioer. We can shew that R{a} iz monoteonically inereasing in a (see
AVENHAUE and OKADA (1988)). This implies that the probability F(F(x))
foer 1legal behavior, when the ingpegtor selegtsz a  false alarm
probability a, is also méenoteonically increasing in o.

We now assgume that the distributisn F(.) has a bounded support [do.di]
where 0 ¢ de 2 di, Figure 11 illustratea the eoritical wvalue Ela) in
{5-9) betwsen legal behavier 1 and illegal bkehavier 1, the probability
F{K({a)) for legal behavier 1, and the inspector's expected payoff
funetien in beth cases of complete information {d=do=4d; ) and
incomplete information (de < di}. With the help of Figure 11, we can
see that the discontinuity of the inspector's payoeff with respect to
the false alarm probability in caze of complete information is removed
by the introduction of inceomplete infermation.

We have two pessibilitien about the egquilibrium false alarm
prokability o* in ecase of incomplete 4information, i.e., (1) an
interior solution in (oo ,o,) where do = Elag) and 41 = K(ay ), and (2)
the boundary solution &' = a:, From the viewpeint of the inspector,
the boundary solution g = o1 is important because the probability feor
illegal behaviar 1 is #%erc if he selects a*. We call an eguilibrium
point  with the boundary seolution o' = oy the legal behavier
eguilibrium point. In the following, we provide a sufficisnt conditien
for the ledal kehavier equilibrium point.

12
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Theorem 4

Assume that F({x) iz the uniform distribution en [de,d:] and that Rla)

ig differentiable in {d¢,d1) where Kime) = dp and Xim) = 41, If the
condition
1 . aK (&
Er:a?.( min -Eé_l> = 5%; (5=16)

T 5 a2 oo
holdz, then the egquilibrium £false alarm prepability e i= o = oy, and
the probability for legal behavisr is

K({a*)
F{R{a*)) = J ar(t) = 1.
o

Presf

We gan write F(t) as
£=de

d; -dd '
Then the inspector's expected payeff is given by

Gla) = —e-a-Eigl;gl + (—a-(l-B(u))-c-B(a))-QL:§igl.
@1 =co d; —da

Fi{e) = do 5 t 5 &y,

It can be seen without much difficulty that

ag(a) _ . Ela)-do _ ny GB{a) @1 ~R{a)
do L M= te=a) Ao dy —do +

d¥ (o) /do

+ {a-(l-pladt+e-pla)-e -} -“Fr_g—-

Therefore, we have

é%f—fé-uﬂ > —e + (a-(l-B(a))+c-l3(u<)—e-e:J-dglfdndq

for any o, % £ o £ m . Since
ar(l-pla}) + e-pix) - e:a
is memetenicglly decreasing in o, wWe obtain

46 o > - + (a-e)-dK{u £z for all ® O Oe F O S Oy .
-1 d1 —do

The conditian (5-161 implie= that
daG (a) /Ao > O for all 2 I Ty £ G X oO1.
Thereforsa, the boundary wvalue o = o, is the =solution of the

maximization problem {5=-8) in Theorem 3. -
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Using =ome praperties of the funetion K(z) whigh are given in AVENHAUS
and OKADA (1988), the econdition (5=16) shows us two situations in
which we can obtain the legal behavier eguilibrium point:

(1) the inspector's sost e in ease of Ealze alarm is small, and

(2) the possible values of the inspectee's benefit t in case of ne
detection are high under the condition that the difference di - do
iz fixed.

We @an 4interpret our results in both cases as follows: In case (13,
the inspector does not werry very much about his lossg in case of fal=se
alarm. Therefore, he can employ the test procedure with the high false
alarm prebability o . In case (3), the ingpectee has a nigh incentive
te behave illegally. Therefore, the inspecter employs the ftest .
progedure with the high f£al=se alarm probability o in order to prevent

the inzpectee from Behaving illegally.

&. Applicatlons

Even though we asasumed that the inspector iz inaempletely informed
apout the inspectee's gain in case of vndetected illegal behavier, in
practice, it will be difficult if not impossible xor him to get any
information about the inspectee’'s payeflf parametars., Therefore, it is
very important that Thaorem 3 glves us an advise for the construction
of bect test procedures whiech do not depend en the players' payoff
parameters, once the value of the false alarm probability is given. In
fact, this theeorem astablishes a bridge betwseen the game theoretical
appreach which is negessary for the appropriate deseriptien of the
inspection problem and the traditicnal statistical treatment whewa the
arrear sccond kind probability 4is mipimized for given value of the
error first kind probapility.

Ascerding to Theorem 3, the optimal decigion soheme of the inspector
for a ogiven wvalue of the false alarm probability & i= the schema
guaranteeing the' maxmin value of the auxiliary EEaro=3umn game
Ga = (Za, Ax,1=0f) in which the {inspector as player 1 chooses the test
G ¢ Iz, the inspectes a= plaver 2 choeses U & w, and the payeff from
player 2 to player 1 is the deteation probakility 1 - Bieo,w), 8o, one
has to find



27 Al

"Ea

14: =8 CEMTER FATIOMALITY 972 2 6213631 F.

358
max min (i-F(a,p)) (6-1)
g H
and +the coresponding strategies. COperationally, it is mueh more

canvenient to compute
min max {(1-Pi{c,u)) (-2}
H o

whiah, of course, would be the =same if Gg had s wvalue, However, the
existence of a wvalue Gn dees not follow from a standard minmax
thearem, =ince the payoff funetion 1 - B{c,u) dees net =atisfy the
ugual convexity reguirements, Tharafore, in applications ene
establishes the existence of this valug by finding it as well az the
optimal =strategies.

There are many applications of this procedure {see AVENHAUS ({1986)}.
AR examples, we consider once more the tWwo decision proklems which we
formulated in the second section. In the following, we censider only
the auxiliary game Gs WwWhich is an important element of the solution of
both games, with ox witheut commitment pewer.

In doing 8@, we make full wu=e of the multinermal distribution
properties in conjunction with the Neyman-Pearson test. We will
Eormulate a general theorem which coversz Dboth problems given in the
secand seation and, therealter, apply it [+ these problems,
specifically.

Theorem &

Given the multivariate nermally dietributed randem vecter X snd the
two alternative hypothese=s
Ho (1} 3 X =~ N{0O,I) _ {6=~3a)

Ho(I) & %~ Nlp,2), pree = M. - {6-3b)
{Do not confuse the acovariancs matriv I with the inapector’'s strategy
set EIg now!) Consider the game Ga = {(Is, Hx,1-B) in whieh the
inspactor az player 1 choosas the test 9 & Ig wWith a given false alarm
probability o for a decizion beween He and Hi, player 2 chooges a
diverzion gstrategy p e Aw, and where the payoff £from player 2 to
player 1 is the detection probability 1 - Blg,p).
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|en the game Gz has a value v given by
ve=1l-8 = gt—E— - ui-a) {6-4)
Ya'.L.e

ere g is the ocumulative stapdard normal distributien, and U dts
swwerse. The eptimal strategy oe* of the inspseter is given by the

Larm =et

[%|x'-e » ye-I-e-Ull-all. {6=5)
ae optimal strategy of the eperator i= the (pure) diversien vector -u*
iven by

M

= —— -

H =T .T. o I, {6=6)
rocf

e shall prove thisz theorem by showing that {(gu* ,pW*) is in fact a

addle peoint for 1 — E{oe.y) which means for all oo and y
glog* ,p) % Bloe* 1) & Bloa,p*),

e start by preoving the right hand side inequality.

{(&=T7)

F the inspectee behaves legally. the density of the random variable X
2 acgording te (&6-3a)

Lo (%) = (2M)=0/2 . |T|-1/2 vexpl= Zoxzmt k) (6-8a)
2

‘hile, if he makes a deviation y, the density is according to (6-3b)

fuix) = (zn)-n/=.|{|-1/=-exp(- L-(x-u)'-t'l-(x—u)). (6=8k)
2

& it is well known that, for any given u, the most powerful teat ou
tor testing (the alternative hypothesi=) 2. versus {the null
wpathesis) fo with type I error probability a is the Neyman—Pearson
‘ezt the alarm =set of whiech iz given bhy:
ix|M > Ko"] = [x|%'-I"t-p > Ka'l
fo {x)
sere Ke™ and EKa' are constants determined by o (only). This means

hat for all p and the ceorreaponding Neyman-Fearsen test op we have
Blow,p) = Bla,p) for all a,
for p = p* denste the corresponding Qus by o' whoge alarm 3sct ie

therefore:
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B

x| x're ¥ Koo'l ar (x]=x'+a » Kz

e'-L.e
for some other constant Ka.

Now, as a linear combinatien of multineormal randem wvariables, the
random variakle x'-e i=z normally distributed with expactation
E{x'+e) = E{x'):e = p'-g = M under Lu and E({x'.a} = 0 under £fs. For
both alternativesz (and indpendently of y) the variance of tEhi= random
varisble iz var{x'.a) = e'-I-e. Therefere, the falde alarm probability
o iz given by

11u=prubu(x'-esﬂu)=¢{ Fo 1.
ye'-L-e
and the probability &f net detecting the deviation ¢ i# given by
Bt = probu«{x'+e % Fa) = Py < L. S
ye' -L.e

Eliminating K« from these two equatiens implies !&=4} and (B-H).

In order to complete the proof, it remains te establish the leift hand
side inequality of {&=7). This, in £fact, follows readily, s=since for
all p with p'-2 = M
Ef{e':X) = e'-y = M,
and the variance of e'-X iz independent of u, implying
B{ca*,pn} = Bloa",u*) for all He -
Thia result =zhews that in koth examples, i.e., independently of the
atrusture of the covariange matrix, the optimal =strategy of the
inspeator iz to just add all observed data and to perferm a threshold
tast on the =um. Notiae that this procedure 1is independent of the
value of M, the order of magnitude of which the inspector might know,
rut not its precise value.

In ca=ze af the material accountancy exanmple this result iz ecspecially
interesting: With (5-4} we get

n n n n
I ¥ = T {Ti-1+Ra-8:-I3} =Ile + I Ry = I B - In
i=1 i=1 i=1 i=1

whish iz the material balance for the whole sequence of invantory
periodz. Hence, thim result means that all intermediate inventoriea
Ti,..0,T0-1 Mmust not be taken inte agcocount in the optimal procedure.

Let us repeat that this qurprising regsult has been derived under the
assumptian that "time is not wvaluable” as formulated in the second
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Lion: Obviously, one will have te uze the intermediate inventories
clesing intermediate balances if it is impertant for the inspector
deteact timely any diversion of materisl.

caze of the data verification example the reszult shows that the so-
led D-statistic
n

D= I X
i=1

ch has been introduced many ¥ears age alse in the area of auditing
KE, NETEE, LEITCH (1982)) 4is the best test atatistic of the
pector.

us mention that also in the other extreme of minimal =ample =ize
1) the trivial D-=statistic D = x iz the best{ test gtatistic,
ever, the optimal falsifigcation s=strategy 4is more complicated
‘ENHAUZ, BATTENEBERG, FALKOWSKI {1983)): If the total falzification #
emalier than some aritical value, then again the equal distributien
aptimal, etherwise, only one datum has to he faleified. This is
uitive: For =mall total falsifi¢ation, the falsifiecation cah be
dden” 4in the measurement uncertainty, whereas for large total
mification thisz is ne lenger possible; tharsfere, here the
ipeatee has te play 'wabangue"! He has te put everyvthing on one card
| hope that thi= eard is not drawn. For sanmple sizes between one and

the situation gets VBry complicated: numerical ealculations
licate that beyond gome total falsification tihe D—statistic is no
\ger eoptimal, hewever, one can give upper limite of that total
_mifisation below which the D-statistic i= optimal.

ine results are important for practitieners: For many years already
: TAEA has used the D-statiztic for the comparison of operators' and
spectars' data; originally, it ha=z been jJuatified hy heuristic
juments (STEWART (1970}). The theory prezsented here =hoWs its range
applicability and, furthermors, how the best tegt procedure would

je to ba dAetermined in general.
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