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The  Norma l  Dis t r ibut ion  and Repea ted  Games  

By J.-F. Mertens, Louvain a ), and S. Zamir, Jerusalem 2 ) 

Abstract: For a repetated zero-sum two-person game with incomplete information discussed by 
Zamir, it is proved here that lira x/n v n (/7) = q~ (p) where 4~ (P) is the normal density function 

n--+~ 1 1 ~P e -(1/2)x2 dx = p). Here evaluated at its p-quantile (i.e. 0 (P) . . . . .  e-(1/2)Xp where - -  
,,/2~ . ~ / ~  _o~ 

for 0 ~< p ~< 1, (p, 1 - - p )  is the a priori probability distribution on two states of nature, the actual 
state of  nature is known to the maximizer but not to the minimizer. Vn(P) is the minimax value of 
the game with n stages. 

1. The Result (3-1 / (_:-2 t 
LetA~ = ; A2 = 

- -  1 2 

For any p; 0 ~< p <~ 1 and any positive integer n define a two-person zero-sum game 
Pn (P) played as follows: 

Stage - 0: A chance move chooses an element k E (1, 2) with probabilities: 
Pr (k = 1) = p ; P r  (k = 2) = p '  (= 1 - p ) .  Player I is informed of the value o fk  but 
player II is not. 

Stage - m: (m = 1, 2 , . . . ,  n) Players I and II choose i m ~ {1, 2} and /m ~ {1, 2} 
respectively. After being chosen, the pair (ira, ]rn) is announced to both players. 

H 

At the end of the n-th stage player [I pays player I the amount 1 s akim n m =  1 ira' k being 

the element chosen by change at stage-0. (a~. is the (i, ]) element Of A k ) .  

Denote by v n (p) the (minmax) value of Pn (P)- 
Amazingly enough the above described simple looking discrete game turns out to 

involve in its value none other but the well known normal distribution: 
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Theorem 1.1 (main result): For  O<.p <<. 1, 

lim X/n v n (p) = 0 (P), 

where 

1 e_(1/2)x ~ . 1 Xp 
co )  = s 

_ _ c x ~  

e -(1/2)x2 dx = p .  

(1.1) 

In words; the limit of  X/nv  n (p) is the standard normal density function evaluated at 
its p-quantile. 

2. Background 

The idea behind the above described game is the following: We think of k as the 
state o f  nature about which there is an a priori probability distribution (p, p').  Player I 
knows the real state of  nature but player II does not know. However, player II can 
learn in general something about the real state of  nature k by observing the moves 
il, i2 . . . . .  of player I, since those would usually depend on k. 

Such repeated games were first discussed by A u m a n n  and Maschler [ 1966] who 
proved that for general A 1 and A 2 lim v n (p) = Cav u (p), u (p) being the (minmax) 
value of the matrix game A (p) = pA 1 + p 'A 2 and Cav u (p) is the concavification on 
[0,1] of u (p). For the game under consideration: 

A (p)=pA1 + p'A2 = 

3p + 2p' -- (p + 2 p ' ) l  

-- (3p + 2p') p + 2p' ] 

and it is easily checked that u (p) = value of A (p) = 0 for 0 ~< p ~< 1. Hence 
lim v n (p) = Car u (p) = 0; 0 ~<p ~ 1. Noticing that also 0 is the value of the game 

in which both players know the actual state of  nature, we may interpret this result as 
saying that in the long run, player I's advantage in information is washed out and even- 
tually he will have to release all his information (or else not to use it). 

What is the optimal speed for releasing the information? Mathematically speaking, 
what is the speed of convergence of v n (p) to 0? A u m a n n  and Maschler [1966] have 
shown that in such games the speed of convergence is bounded in order of magnitude 
by 1/x/n. For the game under conderation this means: 

c ( P ) '  0~<p '~<t '  1,2, (2.1) v ,  . . ,  

where c (p) is a constant depending on p. 
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Zamir [1971-1972]  has constructed this game just to show that it satisfies: 

Vn (P)> c* (p). O<~p<~ l" n =  1,2, (2.2) 

for some other p-dependent constant c* (p). In other words 1/x/n is not only an 
upper bound but also the least upper bound for the speed of  convergence. Combina- 
tion of  (2.1) yields: 

c* (p)<~x/n v n ( p ) < c  (p); OKp~< 1; n = 1, 2 . . . . .  (2.3) 

Does x /n  v n (p) converge? If  so what is then the limit as a function of  the variable p, 
which measures in a way the initial advantage in information of  player I over player 
II? Theorem 1.1 answers these questions making use of  a result on the variation of  
bounded martingales obtained recently by the authors. The role of  bounded martin- 
gales in repeated games of  incomplete information is so important and so essential 
that it is worth taking a short while to explain it: 

For a given strategy o o f  player I (say a behavioral strategy) and a given history of  
moves Xm_ l = (il, i2, �9 . �9 , ira. 1) define the conditional probability 

Pm = P r  (k = 1 t o, ~tm_l). 

We also write P m =  Pr (k = 1 I a, �9 ) and think of pro as a random variable. It is easily 
seen then that {Pm}~ , withpo -=p, is a martingale bounded in [0,1]. 

It turns out that the variation E (IPm + 1 - P m  ItPrn) plays the most important role 
m the analysis: On one hand it is proportional to the extra profit made by player I in 
stage-m by using his information about k (compared to what he could get if he would 
play independently of  k). On the other hand E (IPm + 1 - -Pm I[Pm) measures in a cer- 
tain way the amount o f  information concerning k released by player I at stage-re. For 
example if player I's strategy at stage-m is to play T (Top row) if k = 1 and B (Bottom 
row) if k = 2 then Pm+l would be either 1 (if T was chosen) or 0 (ifB was chosen). 
This may be called a completely revealing strategy sfl~ce once it is played, player II 

r 

knows k with probability 1. For such a strategy E ([Pm+l -Prnl[Pm) = 2PmPm. On 
the other extreme player I may use the same probability distribution on (T, B) 
say (s, s'), independently of  the value of  k. In doing so he is completely ignoring his 
information at that stage and there is certainly no way for player II to gain any infor- 
mation from such a behavior. In fact in this casepm+l =-~Pm and 

E (IPm+l -Pm[[Pm)  = O. 
With this observation it is quite understandable that the accumulated gain of  player 

I due to his extra information will turn out to be measured by E E (Ipm + 1 -Pro  J) 
rn=0 

which is nothing else but the variation of  the martingale of  conditional probabilities 

{Pro } o-  
Let us now turn to the proof o f  Theorem 1.1. 
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3. Proof of Theorem 1.1 

For  a n y p ,  O ~ < p ~ < l l e t  

,5 (p) = p A l  +p'A2 = 
(3p + 2p ')  p + 2 p  / 

and observe tha t  the value of  `5 (p) is 0 for 0 ~< p ~< 1. To find an upper  bound  for 
x/ff Vn (P) we consider the Maxmin of  the payoffs .  Let  o = (o 1 , o 2 . . . . .  o n) be a 
strategy of  player  I, where o m = (st(, s m) is his strategy at stage-m, meaning to play 

S m (T, B) wi th  probabi l i t ies  (s m, sm')  if k = 1 and with probabi l i t ies  ( 2 ,  sin') if k = 2. 

(0 ~< s~  ~< 1 and sm' = 1 - s m for i = 1, 2). The strategy o defines the mart ingale of  

condi t ionals  {pm} o by:  Po -=P and for  m = 1, 2 . . . .  , n - 1: 

Pr (Pm+l  = P m + l  (T) [ Pro) = sm;pr(Pm+l = P m + l  (B) IPm) = 1 --S m 

where: s m =pro sm + P'm sr~ (3.1) 

,7' ,7" 
Pm+l ( T ) = P m - ~  ; Pm+I (B)=Pm l _ s  m 

Against o consider the following response of  p layer  II: 
r = ( r  1 , r 2 . . . . .  ~n) where r m is an op t imal  strategy (o f  p layer  II)  in A (Pm)- Denote  

by  H m (o, r)  the expec ted  p a y o f f  at stage-m given o, r and Pro, then:  

7m +Pro m T m H m (o , ' ; )=PmomA1 ' 02 A 2 

where 

or~ =(s  m , s r ~ ' ) ; i =  1 2 and "r m = 
, t m' 

Using (3.1) we write 

H m (o, 7") = PmOA- l"cm +[Pm (ore -- o)A1 +Pm(om-o)A2]7m+pmOA2zm' ' 

where (3.2)  

6 = (s  m ,  1 - s in ) .  

Now by (3.1): 

~ --  ~ = P m  ( ~ - -  ~ ) 
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also since r m is optimal in s (pro): 

p 
Pm oA 1 rm +Pm ~A 2 7"m = ~2a (Pro) 7"m <~ value of  A (Pro) = 0. 

191 

From (3.2) we thus obtain: 

But 

H m (o, 7")-.~pmPm (o m -- o m) (A: - -A1)  v m. 

1)1 ( m)tm ( : )  Hence 
2 ' ( , 7 - , ~ )  H m (o,r)<~ pmPm 

(3.3) 

(3.4) 

(we may assume s m >~ s~ n since otherwise H m (o, r) could be increased by inter- 

changing s m and sm). 

By (3.1) we have also (since sin1 >~ sr~ ) 

- s ~  - 1 - ,~ 
E( lPm+l -Pmr fPm)=sm(pm s - ~ - P m ) - ( 1 - s m ) ( p m  1-~-~  Pro) 

Thus 

=2pmpm' ( s~ - s~ ). 

H m (o, r) ~<E (]Pm+l -Pro IlPm) (3.s) 

Taking expectation over all Pm and summing on m from 1 to n we obtain: 

n 

fn(O, 7-)~ ~ E(JPm+l--PmJ) 
m=l 

(3.6) 

where fn (o, r) is the expected accumulated payoff  in the n stages of  F n (p) (i.e. n 
times the payoff) when o and r are played. So: 

1 
v n (p) ~< max min n f  n (o, r) 

0 7" 
(3.7) 

1 n 
~ m a x -  Z E ( l P m + l - p m i  ). 

cr n m=l 
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We now recall the following result of ours (Mertens and Zamir [ 1975] Theorem 2.4) : 

lim sup 1 V(X n (p)) = q~ (p), (3.8) 

where 

X n (t9) = (Xm)no is an n-martingale bounded in [0,1] w i t h e  (X0) = p and the 

sup is taken over all such martingales. V denotes the variation i.e. 

n 

V(X~ (p)) = s E ([Xi+ 1 --Xi[ ). 
i=0 

If  we denote by pn = {Pro }~ the martingale of  conditional probabilities we have by 
(3.7) 

1 1 1 1 
v n (p) ~< - -  max - v ( p n ) ~ <  Sup V(X~ (p)) (3.9) 

and by (3.8); 

Lira Sup ~ v n (p) K ~ (p). (3.10) 

To get a lower bound for x /n  v n (P) we notice that if in Fn+ 1 (p) player I plays in the 
first stage: (s, s') i f k  = 1 and (t, t ')  i f k  = 2, he guarantees for the first stage' 

Min (p (3s -- 3s') + p '  (2t -- 2 / ) ;  p (-- s + s') + p '  (-- 2; + 2t')). (3.11) 

Depending on whether he plays T or B in the first stage we have: 

_ p s  . p s '  (3.12) p,  ( T ) = P r ( k  = 1 1 7 ) - e r ( T ) ,  p '  ( B ) = P r ( k =  l I B ) - p ~ ) ,  

where Pr (T) = 1 - Pr (B) = ps + p'  t. 
After the first move player I may play optimally in F n (Pl (T)) or in P n (Pt (B)) ac- 
cording to whether he played T or B in the first stage. It follows that: 

1 [ 
Vn+l (p) ~> n - ~  Max M i n ( p ( 3 s - - 3 s ' ) + p ' ( 2 t - - 2 t ' ) ; p ( - - s + s ' )  

O<~s,t<~l (3.13) 

+ p '  (-- 2t + 2{)) + n (7)  Vn P ~ )  ~Pr(B)] 

Actually (3.13) holds as an equality (see Zamir [1971-1972]  p. 184) but we do not 
need this stronger statement here. 

I p (s --  s') Then Restrict now the domain of  maximization in (3.13) by; t = ~ 2p' ' 

the expression (3.11) becomes p (s -- s') and also Pr (7)  = Pr (tt) = 1 7;P l  (B) = 2ps'. 
Denoting co n (p) = x /7  v n (p) we get from (3.10): 
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1 Max [p (s -- s') + ~ -  (co n (2ps) + (2ps'))] (3.14) 
con+l (P )~>x /n+  1 0~<s~<l " Can 

P (S-- S') <<. l 
O<~i 2p' " 

1 We may assume that s ~> 7 since otherwise replacing s by s' would increase the expres- 
sion to be maximized in (3.14). 

Define now x by: 2ps =p  + x which impliy 2ps '=p - -x  and x = p  ( s -  s'). Also 
1 p ( s - s ' )  

0 <~ ~ 2p' <<. l implies O <~ x <~ p' while x = p (s -- s') and �89 <<. s <~ l implies 

0 ~< x ~< p. In terms of  the variable x we then rewrite (3.14) as: 

1 v ; ;  
COn+ ] Max [x + ~ -  (con (P + x) + con (P -- x))]. (3.15) 

(P)>/N/n-k 10<~x<~pAp' 

~U Define now a sequence t n (P))o by U0 (p) = 0 and 

1 Max [x + ~ ( U  (p + x) + U (p -- x))] 
G + I  (to) N/n-b 10<~x<~pAp' 

for n = 0, 1, 2 . . . . .  
Clearly: 

(3.16) 

U n (p) ~ r n (p) for 0 ~< p ~< 1 and n = 1 ~ (3.17) 

Proposition. 

lim I n f U  n (p) ~>qS(p). (3.18) 
F/--+ ~ 

Proof: The proof  of  this proposition is actually identical to the proof  of Mertens and 
Zamir [1975] gemma 3.8 (for a slightly different sequence of functions): 
For any n we claim that: 

n+k o;,+~ (p)>~r z c 
2 V ~ + k  ~=~ i2 , (3.19) 

for k = 0, 1, 2 , . . .  where c is a constant satisfying: 

x/n- _ c_ (3.20) 1 Max [ x + ~ -  ( 4 ~ ( P + X ) + C ( p - - x ) ) ] ~ > C ( p )  n 2 
x/n + 1 O<~x<~pAp' 

(See Mertens and Zarnir [ 1975] Lemma 3.5). 
(3.19) is proved by induction on k: For k = 0 clearly: 

U n (p)~> Of> r (p ) - -  �89 Assuming (3.19) for k and using (3.16) we have: 
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1 
G+~+I (P)- 

,v/n + k + 1 

1 
~> Max 

~ 1  O<~x<~pAp' 

v~ 
r ( p - x ) -  

2.,In + k 

1 
Max 

~ ]  O<x<pAp' 

Max { x  x / n 4 k  Un+k(P--X)) } + -2- - -  (G+k (P +x)+ O<~x<~pAp' 

E + 
X + ~  (~(p+x) 2 x / n ~  i=n 

.+k 1} I2 c 
i=n 

{ + - - 4  x - -  ( r  

Nfff n + k C 
E - -  

2 n x / ~ +  1 i=n i 2 '  

so by (3.20) 

u~+k+1 (p) > r (p) 

=r 

c N/n n+k c 
E - -  

( n + k +  1) 2 2x/n+ k + 1 i=n i 2 

N/n n+k+l c 

2x/n + k + i i=n i2 

which establishes (3.19) from which we get: 

c 
lira In fU  n ( p ) =  lira I n f U  n+k(p) >~ ~ ( p ) -  ~ i-Z" 

n - ~  k ~  i=n 

Since this must hold for every n and since E c_  < 0% the proof of our proposition is 
completed, i=n i 2 
Combining (3.17) and (3.18) and (3.10) we have: 

lim Inf x/~ v n (P) <. lim Inf U n (p) >~ r (p) ~ lim Sup ~ v n (p). 

Thus, finally we conclude that: 

lim ~ v  n ( p ) = r  

which is what we claimed in Theorem 1.1. 
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4. On the Heuristics of the Result 

In view of  the fact that our result is not very intuitive and its proof is based on a 
result on the maximal variation of a bounded martingale, which is by itself surprising 
and requires a rather lengthy proof, we feel it would be helpful to outline the heuristic 
arguments that lead to the result. We hope that this argument will make the result less 
puzzling. 

Our departure point is the rather intuitive recursive formula for v n (p) proved in 

Zamir [1971-1972,  p. 184]. This is just (3.13) written as equality instead of  inequality. 
1. We assume that, as is usually the case in such a maximization problem, the Max 0 < s, 
t < 1 is achieved for s and t that equalizes the two functions under the Min sign. i.e. 

p (3s -- 3s') + p '  (2t -- 2t') = p (-- s + s') + p '  (2t + 2t'). 

1 P (~ - ,  S')and hence to the recursion formula This leads to the restriction t - 2 (3.16) 

in which x -- p (s - s') and U n (p) = V ~ v  n (p). 
2. Assuming convergence of  the functions U in (3.16) to some function r one gets, 

lettingx = Vc n- : 

x / ~  (~) an 1 

~ ~2 j 
Maxl + + 
c~ n [ /7 

O~ 2 
_ n , , ,  1 

= ~ + 1 M a x  [a n + ~ -  tp ] = ~ 2nr ' 
n an 

On the other hand: 

1 
x/1 + 1 ~  ~ + ~n~O. 

- 1  
Thus ~ = =7-. In other words, assuming that x/nv n (p) converges, the limit is a solu- 

tion of  the differential equation ~ "  + 1 = 0. 
�9 , P 1 

3. From the differential equation ~ + 1 = 0 we have - ~' (p) = f - alp. We have 
1 1 / 2  

, 1 chosen ~- as a bound of  the integration so as to have ~ ~ = 0 which is implied by the 
1 symmetry of  ~ (p) about p = ~-. 

P --dpl d p  Letting z (p) = -- r  (p) = f we have z '  (p) = 1 and thus ~ - - - .  
1/2 t p - -  ~ dz 
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4_ Now replace in our differential equation the variable p by the variable z: 

t t d p  _ 
~o z = ~op ~z - ~p~O = --  z~o 

and thus 

In ~o = K - l z 2  

or  

1 e_l/2za ~ 0 = A ~ -  

~o = ~z p we get: Since 

z(p) l e.1/2x= 
p = c +  f A dx  

(4.1) 

(4.2) 

Denoting by F (x) the cumulative standard normal distribution we have therefore: 

(z) = AF '  (z) (4.3) 

p = c + A F  (z)  (4.4) 

Now ~0 ~> 0 and ~ ~ 0 implies A > 0 from which follows by (4.2) that z (p) is mono- 
tonously increasing with p. Since ~ (0) = ~0 (1) = 0 we have by (4.1) : z (0) = - 0% 
z (1 )  = + o o  
From (4.2) we thus have: 

1 = c + A. (4.4) 

From ~ , ( ' 1 )  1 , 1 = 0 we have z ~  = ~0 ~ = 0, hence from (4.2): 

1 1 
= c + ~ A. (4.5) 

We conclude from (4.4) and (4.5) that c = 0 andA = 1, thus finally: 
~o (p) = F '  (z); p = F (z) i.e. the limit ~0 (p) is the standard normal density evaluated at 
its p-quantile. 
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