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Chapter 1

MINMAX AND EQUILIBRIA

The first and simplest game theoretical model we shall discuss is meant to des-
cribe the following interactive decision situation: Two decision makers, called play-
er I and player II have to choose an action each. Player I chooses an element Xx of
a set X while player II chooses an element Y of a set Y . The choices are done
simultaneously and the chosen x and y determine a certain money (or utility)

transfer between the players. This motivates the following.

Definition 1.1 A two-person zero-sum game 1s an ordered triple (X, Y, h) where

X and Y are sets and h is a real-valued function defined on the product set
) iy [ SRR

Remarks: 1) The sets X and Y will be referred to as the strategy sets of
player I and II, respectively. The function h 1is called the pay-off function. For
x €EX and y €Y , h(x, y) is interpreted as the amount of money that player Il pays
player I if 1 chooses x and II chooses y . In view of this interpretation
player I will also be called the maximizer and player 1I the minimizer.

2) Two aspects of the interpretation should be emphasized for future reference:
(i) The strategy choices are done simultaneously and independently, e.g. each player
hands his choice to a referee who then announces (x, y) and executes the pay-off.
(ii) The data of the game, namely (X, Y, h) are 'publicly' known to both players,
what we shall later call a common knowledge.

Throughout this lecture, unless we 3pecify otherwise, we shall say for conveni-

ence 'a game' instead of 'a two-person zero-sum game'.

Example 1.2 The special case in which X and Y are finite will be called a

finite game or a matrix game. In this case, the function h 1is described as a pay-
off matrix A whose rows names are labelled by the elements of X (usually denoted
as M= {1,...,m}) and the columns by the elements of Y (denoted as

N = {1,...,n}). Examples of matrix games are:

?xi% | TP N j\i» Lo
1 1

- 2 -1 4 ' 1
el L e N S0 R TS S

5 9 -8 -3 -1

Definition 1.3 The upper value of the game G = (X, Y, h) -is v Ei[-m,“ﬂ

defined by: v = inf sup h(x, y) . The lower value is v = sup inf h(x, y)
yEY XE€X XEX y€Y
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It readily follows that for any game G :

v = sup inf h(x, y) < inf sup h(x, y)' = v . (1:1)
5 x€EX y€Y yEY Xx€X

Strategies x* € X and y* € Y for which v = inf h(x*, y) and v = sup h(x, y*)
yEY x€X

are called minmax strategies of the respective players. That is, if player I has a
minmax strategy then the sup may be replaced by max (similarly for player II). In

example (i): v = max min aij = 1 (a minmax strategy i = 2)
i ]

1l
[a—

(a2 minmax strategy j = 3)

< |
Il

min max a. .
L ; 1_]
) 1

In example (ii): -1 (both i =1 and i = 2 are minmax strategies);

1 (both j =1 and j = 2 are minmax strategies).

Definition 1.3 A game G = (X, Y, h) is said to have a value (or a minmax value)

if both players have minmax strategies and:

sup inf h(x, y) = inf sup h(x, y) = v : (1.2)
x€EX y€Y yeY Xx€X
v is called the value of the game and the minmax strategies are then also called
optimal strategies. So the game (i) has a value v =1 with i =2; j =3 as opti-

mal strategies while game (ii) does not have a value.

Definition 1.4 A pair of strategies (xo, yO) € X x Y is called a saddle-point
of the game G = (X, Y, h) 1if

h(x, y,) < h(xgp yg) = h(x,> ¥) vV (x,y) €XxY

In game (i): (2,3) is a saddle-point with a corresponding pay-off h(2, 3) =1
(which is the value of the game).

In game (ii): There is no saddle-point.
The relation between the notions of the minmax value and the saddle-point 1is

formulated in the following lemma whose proof is rather simple and will be omitted.

Lemma 1.5 A game G = (X, Y, h) has a value if and only if it has a saddle-

point. In such a case:

(i) The value of the game is the pay-off corresponding to the saddle-point.

(ii) Any pair of optimal strategies is a saddle-point and any saddle-point con-
sists of a pair of optimal strategies.

In view of non-existence of the value for matrix games such as game (ii), 1t 1is
self-suggested that a player can sometimes do better by choosing his strategy random-
ly. For instance, if in (ii) plyaer I chooses his two strategies each with probabi-
lity % his expected pay-off will be 0 independently of what player II does (compared

to his security level v = -1). This motivates the following definition:
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Definition 1.6 The mixed extension of a matrix game G0 = (M, N, &) is the

game G = (X, Y, H) where

e g e Pl 20, ¥TAEK: Do wil
i = soomsi
iE€EM
Y = {y€R|y;20, ¥ JEN; Ly, =1}
JEN 1
H(x, ¥) = xAy (x and y are rows, Yy is the transposition of ¥ ).

In other words, the strategy sets in G are the (m - 1) and (n - 1) dimensional
simplices of probability distributions on M and N , respectively. The pay-off
function H is just the expectation of the random pay-off aij . The extreme points
of X (or Y) can be identified with the strategy set M (or N) 1in GO . They

are therefore termed pure strategies compared to mixed strategies, which is the name

for general elements of X and Y .

Example. The mixed extension of the matrix game (ii) is G = (X; Y H) where:

X e 4P

R, L= %0 Ex=s 1y ¥ y=(y, 1 -y)|o<y<1}

H(x, v) = XAy = 4xy - 2x - 2y + 1

Unlike the original game this game has a value 0 and optimal strategies which are

(%, %) for both players.

Theorem 1.7 (The Minmax Theorem, J. Von-Neumann, 1928). The mixed extension of

a (finite) matrix game has a value.

Proof. Let A = (aij) be an m x n matrix game in which the (pure) strategy
sets are M= {1,...,m}, N= {1,...,n} . In view of Lemma 1.5 it 1is enough to prove
the existence of a saddle-point for the mixed extension, i.e. the existence of x* € X

gnd- v* EY s.t. ¥ x€X and ¥ ye ¥ :

Hiie 77 2 WY ¥ .5 B 3 (1.3)
Here i and j stand for e’ - the i-th unit vector in X - and e the j-th
unit vector in Y - respectively, i.e. V X € X v ¥& Y
; 1,~
H{i, y] = eAy = L a,.Y¥:
jEN 1))
Hlx, 3] = ke’ =& Lo, . X,
iegMm 13 ¢

Consider now the product space S = X x Y and define £ § > R as follows:

For s =[x, ¥y) €8, £(s8) = (fl(S),...,fm(S); fl(s),...,fn(s)) where:
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£ (s) = max(H(i, y) - H(x, y), 0) ; ¥ 1 €M
(1.4)
£l(s) = max(H(x, y) - H(x, §), 0) 5 ¥ jEN
Define a mapping F: S =S by: For s = (. %] &5
1 n
F(s) = (Fl(s),...,Fm(s); B i(s),«»E (s8)) whexe
x,. + £.{s)
Fis)ie e , Y 1€M
E 1+ I £p(s)
LEM (1.5)
]
: Yy, ¥ £+(s)
Fl(s) = — ; , V jEN
1 @ & F{s)
LEN

; m+n . ,
S is a convex compact set (in R 7). H and f are continuous functions and

therefore F is continuous. It follows by Brouwer's fixed point theorem that there

exists s* = (x*, y*) € S s.t. F(s*) = s* . By (1.5) this implies

g fs*)y = x¥ L F(8") ; ¥ 1€&M
: " e (1.6)
f‘j(s*) = YR X fe(s*) : Y 5 €EM

J 9€N

Claim. There exists i1 €M s.t. x; > 0 and fi(s*) = 0

Assume this is not true. Using the definition of f we would have that

x; > 0 implies fi(s*) > 0 i.e. H(i, v*) » H(x*, y*) . "Thus:
L xtH(1, y*) > 2 XY H(x*; y*)
{ilx#>0} * {ilx¥>0} *

which implies 3 xiH(i, y:) > H(x®, ¥y*) & x; , a contradiction since both sides
i€M i€&M
equal H(x*, y*) . It follows from this claim that L fo(s*) = 0 and since
LEM
fiﬁs*) > 0 (by definition of f) it follows from (1.4) that H(i, y*) < H(x%*, y*)

V i €M which is one part of (1.3). The second part is proved in the same way
showing that (x*, y*) is an equilibrium point and thus (by lemma 1.5) it is also a
pair of optimal strategies and H(x*, y*) 1is the value of the game.

Q.E.D.

Remark. The proof of the Minmax theorem given here is due to John Nash. Of the

many other proofs of the theorem, at least two should be mentioned: the one using
the duality theorem in linear programming, and the one using a separating hyperplane

argument. Actually, the Minmax theorem is equivalent to the duality theorem in
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linear programming.

Extensions

The Minmax theorem was extended to apply for games far more general than mixed

extensions of finite matrix games. Let us mention here two important results. The
first result is that of Sion (1958) which proved the theorem for a game (X, X, h)

under rather weak properties imposed on X, Y, and h .

Theorem 1.8 (M. Sion) Let G = (X, Y, h) be a game in which X and Y are

convex topological spaces of which one is compact. h 1s an extended real-valued
function defined on X x Y and satisfying the following condition: For every real
¢ ., the sets {y]h(xo, y) < c} and {x|h(x, yOJ > ¢} are closed and convex for

every (xo, yo) € X xY . Then

sup inf h(x, y) = inf sup h(x, y)
x€EX y€Y yeY x€&X

If X (respectively, Y) is compact then sup (respectively, inf) may be replaced
by max (respectively, min).

The second result to be mentioned is in the direction of extending the range of
the pay-off function h : assuming that h 1s not necessarily a real-valued function
but rather has values in some ordered field F . That is, a commutative field
with a subset P of positive elements which is closed under addition and multipli-
cation and for any x € F either x €EP or x=0 or -x €P . The order in F

is then defined in the natural way: a >b iff a -b €P , etc.

Theorem 1.9 Let A = (aij) be an m x n matrix with elements aij in an
ordered field F . Then there exists a unique element v of F and there exist

X X -a@nd YyseeesY in F s.t. x, > 0- N -1-6M.,; yj >0 ¥..) EN;

12Xy
% X, = Yy. = 1 and
i€M jeM A

Zy.ai.fv ¥ 1 €M inai.g_v YV j €N
jen J I iem *

The proof follows frop the fact that a solution of an L.P. problem e.g.

by the simplex method can be carried out in any ordered field. For real

closed F the result follows from the standard minmax theorem using Tarski's
principle.

Non-zero Sum Games

We end our first chapter by mentioning briefly a possible extension of our
model of two—persdn zero-sum games to more players and to pay-offs not necessarily

adding up to 0 .

Definition 1.10 A non-cooperative n-person game in strategic form is an ordered
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on-tuple: G = (xl""’xn; hl,...,hn) where Xy,...,X, are sets and for each 1 ,

¥4 <n ; h. iS4 real-valued function defined on X = Xlx,...,xxn .
all iy i

Tnterpretation. N = {1,...,n} is the set of players, for each i € N, X, 1is

the strategy set of player 1 and hi is his pay-off function.

Remark. Our model of two-person zero-sum game (X, Y, h) is the special case in

which N = {1, 2} ; Ky = o8- T ¥ 5 B = h ; h2 = -h

Now two concepts were used in the two-person 0-sum case: the solution of min-

max and that of equilibrium. Each of these concepts lends itself to a natural exten-

sion to the more general case. To do that let us introduce some notations. Given

a game (Xl,...,Xn, hl""’hn) we let X = ‘X Xi and V 1 €N, X—i = _X.Xj
i€N j#1

Each X; € Xi and X ; € X_i determines an element of X which is denoted by

(xi, x_i) ., FPor x € X and gi € Xi we denote by (xlgi) the element of X

e

obtained from x by replacing the i-th coordinate X, by X5

Definition 1.11 The Mimmax value of player 1 in the game

G = (Xl,. ,Xn 3 hl,...,hn) is denoted by vy and defined by
v. = sup inf h.(x., X .) . A strategy X, which satisfies
1 = TN * -1 7
x. €. % .EX
T ™
Wy inf hi(ii, X i) is called a minmax strategy of player i . (Thus, if
x .EX N
=3 =1

player i has a minmax strategy, the sup may be replaced by max.) .

Definition 1.12 A strategy n-tuple x* € X 1s called a Nash Equilibrium
Point (N.E.P.) if for each i € N :

* *
h (%) = Wy(x*) VX € X,

As the name suggests, the concept of Equilibrium was introduced by John Nash in 1950
who proved its existence for mixed extensions of finite (strategy sets) games. The
proof is almost identical to the one we gave here for the two-person (-sum case.
Here again the result was generalized by considerably weakening of the conditions on
the strategy sets and the pay-off functions (see, for instance Glicksberg, 1952) .

It should be emphasized, however, that Lemma 1.5 is no longer true for the general
case. Even if there are only two players, then generally the case is that a pair of
minmax strategies is mot an E.P. and vice versa: a strategy in an E.P. 18 not a
minmax strategy. An easy example which demonstrates this diversion of the two con-

cepts is the following two-person non-zero sum game.

Rl 4, 4
(4, Y. =2, 2)
That is, each player has two strategies and the pay-off functions are given by the

2 x 2 matrix whose entries are ordered pairs (aij, bij) where aij is the pay-off
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for player I and bij for player Il.
The following observations are easily verified.

(1) The minmax values are:

for player I, v, = 2% with minmax strategy (4, %)

W
-

for player 11; Vv, = with minmax strategy (%, %

2
(2) The unique N.E.P. is (%, %) for player I and (2, 4) for player II corres-
ponding to the pay-offs (3, %2)., So, although the equilibrium pay-offs are equal to
the minmax payoffs, the equilibrium strategies are not minmax strategies, and vice
versa. In other words, by playing (%, %) 1in equilibrium, player I does not guaran-

tee 2 which he can guarantee by playing

(3, %) . However, if both players will
play minmax to guarantee the pay-offs €A %) , this will not be 1in equilibrium, each

of them can improve his pay-off by a unilateral deviation.

Remark 1.13 It should be noted that there 1s no analogue of Theorem 1.9 for the

N.E.P. in the non-zero sum case. In other words, a finite game with pay-offs in a
certain ordered field may not have a N.E.P. in that field. To see that, consider a
three-person game in which player 1 chooses one of two rows, player II chooses one of
two columns and player III chooses one of two pay-off matrices:

0,55 1 1, 0y D 25 05 O 0, 23 ©
A = { 1\ or B = ( \

0,-1, 0O 1, 0O 0}

It can be shown that this game has a unique N.E.P. 1n which players I, II and Il use

\1, 0, O 0, l,ﬁl}

the mixed strategies (x, 1 - x); (y, 1 - y) aand (2, 1 - 2} , respectively, where

9 ¥ v24 Lo el 12 - v24

T 19 ’ he 25 ’ e 15

Hence, the game does not have a N.E.P. within the ordered field of rational numbers.

Glicksberg, I. (1952). A further generalization of the Kakutani fixed point
theorem with application to Nash Equilibrium points. Proc. Amer. Math.

Society, 38, 170-174.

Nash, J.F. (1950). Equilibrium points in n—-person games. Proc. National
Academy of Sciences, USA, 36, 48-49,

Von-Neumann, J. (1928). Zur theorie der gesellschaftesspiele. Mathematische
Annalen, 100, 295-320.

Von-Neumann, J. and O. Morgenstern (1944, 1947). Theory of Games and Economic

Behaviour. Princeton University Press: Princeton.

Weyl, H. (1950). Elementary proof of a minmax theorem due to Von—Neumann.
Contributions to the theory of games L. Ann. Mathe. Studies, no. 24,

19-25, Princeton University Press: Princeton.
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Chapter 2

GAMES IN EXTENSIVE FORM

So far we know only one way to describe a game, namely the strategic form. Let
us try to describe the game of chess in this way. That is, we look for an ordered
4-tuple (SI, SII’ hI’
players, respectively. SI’ SII are their respective strategy sets and hI’ hII are
the pay-off functions. This game has only three outcomes: W (white wins), B (black

hII) , where by convention I and II are the white and black

wins, and D (draw). It is natural to have pay-offs 1 for I and -1 for 11
when the outcome is W ; -1 for I and 1 for II when the outcome is B:; @and 0
for both players when the outcome is D . This makes chess a zero-sum game. But;
what are the strategy sets? A strategy in chess (for I or II) is a complete in-
struction book for the player which instructs him in choosing his move in any possi-
ble situation in the game, where by 'situation' we mean here a complete history of
the play which led to that decision point.

One readily observes that:

1. The rules of chess allow only a finite number of moves (though very large) for
each player, thus:

2. Both §; and S, are finite but astronomically large. Therefore:

3. By the minmax theorem we can conclude that the game of chess has a value and
each player has an optimal mixed strategy which guarantees this value.

This description of chess looks quite artificial and not very appealing. Our
strategic form model for chess suppressed its dynamic structure and condensed all
decision-making into one stage. The strategies are extremely complex objects and non-
manageable in any practical sense: even more so are the mixed strategies.

Is there a more appealing way to describe the game of chess? Yes, there is the

natural way of describing the evolution of the play using the notions of graph theory:

I makes a move

IT makes a move

. a9 -
LT 1 'Y 1] L]

I makes a move

¥
[} . [ ] @ ) L]

and so on until terminal points denoted by W , B or D are reached.

Such a description of a game is called an extensive form game. In its simplest

version it is defined formally as follows:

Definition 2.1 A finite two-person zero-sum game in extensive form is an
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ordered collection I = (X, XI, XII’ XT, Xy £, h) where:

1) X is a finite set (the set of positions);

2) The sets XI (decision positions of 1), XII (decision positions of 1II),

and XT (terminal positions) form a partition of X into disjoint sets.

3) X, (the initial position) is a point in X; U XII .

4) f (the immediate predecessor mapping) is a mapping from X - {xo} onto

X - Xp s.t. for any x € X there is an integer n>0 satisfying fn(x) = XO ;
5) h (pay-off function for player 1I) 1s a real-valued function defined on
XT :

An extensive form game is also called a game tree.

Remark. At a later stage, as we generalize our model, we shall refer to the

games defined in Definition 2.1 as extensive games with perfect information. For the

moment, since these are the only extensive games we have, we prefer to use a simple
name.
A (pure) strategy of player I in I 1is a complete decision rule for him, 1i.e.

a mapping s which maps each Xx € XI to an alternative available for him at Xx ,

i.e. an element of the set A(x) = {y € X|f(y) = x} . Denote by S, the set of all
pure strategies of I . SII is derived similarly.
A play (or a path) in the game I is a finite sequence p = (Xy,...,X ]} of

n
pointes in X 8.t. f(xk) = X Yik > 1 - _and X € XT :

k-1

It is easily seen that a pair of strategies s € SI and t € SII determine
uniquely a play P(s, t) = (xo,...,xn) and thus a pay-off H(s, t) = h(xn)

As long as we are interested merely in the strategies used by the players and
the resulting pay-offs, any game in extensive form I 1is equivalent to the game in
strategic form T = (SI, SII’ H) with the above-derived SI’ SII and H . However
it is important to notice the following.

1) Different extensive form games may have the same equivalent strategic form.

2) Not any finite strategic form game is obtainable from some extensive form
: 1 ; : .
game. For example, the matrix game (0 2:} is not equivalent to any extensive form

game as defined in Definition 2.1.

The most important feature of this structure is:

Definition 2.2 Given a game T = (X, XI, XII’ XT’ X0 f, h) and any

X € X - XT , the subgame starting at Xx 1s the game Px = (i, iI’ iII’ iT’ E, ﬁ)
where:

1) X = {y € X |there is n > 0 S.t. fn(y) = %}

2) XI =X NX, ; XII =X N XII - XT = XN XT .

1
3) EO = x ; f is the restriction of f to X - {x} and h is the restric-
tion of h to XT ‘

This special structure of the game tree lends itself to a dynamic programming
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approach to determine the value of and the optimal strategies of the game by forward
or backward induction, using the finiteness of the tree. The first result of this

approach 1is:

Thereom 2.3 (Zermelo) Any finite zero-sum two-person game in extensive form

has a value and each player has a (pure) optimal strategy.

This can be considered as the first important result in game theory, proved by
7ermelo in 1912 for chess. The proof, which is a standard induction argument (on the
maximal length of the game), is valid for any game given by Definition 2.1.

Note that inaddition to the more appropriate description by a game tree we have
here a result stronger than the one provided by the minmax theorem, namely the exis-
tence of pure optimal strategies. In other words, given an extensive form game, 1ts
reduction to a strategic form Ztself (rather than its mixed extension) has a minmax

value.

n-person Non-zero Sum Games

Definition 2.1 has a straightforward extension to n-person non-zero Sum games 1n

extensive form. Any such game has a reduction to an equivalent strategic form game.

The induction proof of Zermelo's theorem can be repeated to yield:

Theorem 2.4 Any finite n-person game in extensive form has a Nash equilibrium

point (in pure strategies).

Two properties of the extensive games discussed so far were very crucial for the
proof of Theorem 2.4, namely:
1. The game tree 1s finite.
2. The collection of positions succeeding a certain position x 1is a subgame
(Definition 2.2).
In the rest of this lecture we discuss the generalizations of the model obtained by

abandoning these properties.

Infinite Extensive Form Games

Infinite games in extensive form were discussed first by Gale and Stewart who
considered zero-sum two person games similar to those of Definition 2.1 but with
infinite length. To simplify the model, let us consider a very simple pay-off func-
tion which attains the values 1 (I wins) or -1 (II wins) only. One then obtains

what is called a win-lose game defined as follows.

Definition 2.5 A win-lose game I is an ordered collection

X , £, S, SI’ SII) where:

(X, X X

| ke | SR §
1) X is an infinite set (the set of positions);

2) XI, XII is a partition of X .
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3) X € X .
4) f maps X - {xo} onto X s.t. for any x € X there is an integer n > 0

satisfying fntk) = Xy -

5)1 S is the set of infinite sequences S = (SO, 51,...) of elements of X
satisfying Sy = Xg and 5, = f(si+1) for all i > 0 . An element of S
is called a play.

6) SIJ winning set for I) and SII winning set for II) form a partition
of S

Example 2.6 The two players alternate in choosing 0 or 1 . A play can then
be identified with a point in S = [0, 1] (i.e. the binary expansion of ..). S;

and S

[ are two disjoint subsets s.t. SI U SII = [0, 1]

The notion of a (pure) strategy is exactly as in the finite case, namely:
A strategy of player I (respectively, II) is a function 0 (respectively, T)
with domain X (respectively, XII) satisfying o) € fyl(XJ (respectively,

I
) € f_l x)) . We denote the players' strategy sets by ZICF) and X (?I . Any

pair of strategies [©, T) , © € Z‘?’, 0 Z(¥E determines in an obvious way a

play s €S which we therefore write as (0, T)
A strategy O of player I is a winning strategy if (O, T) EfSI for all
T € ZII(I) . A winning strategy for II is defined similarly. To say that the game

has a minmax value is equivalent to:

. " - s f - L] .
Definition 2.7 A game T X, X1 XII’ S 8. SI’ SII) is determined if

one of the players has a winning strategy.

An extension of Zermelo's Theorem 2.3 for infinite games would say that any such

' is determined. However, this turned out to be false.

Theorem 2.8 (Gale and S tewart) There is an infinite game

F(X! XI? XII} XO, f} S.‘l SI SII)

The proof is by constructing a counterexample of the type of Example.2.6. The

which 1is not determined.

construction is based on the observation that, roughly speaking, the strategy sets

of the players are '"very big' namely 30 - Consequently, given any strategy of
one of the players, the other can force 2" different plays Wwhich is also the
cardinality of the set S of all possible plays) . This enables construction of two

disjoint sets of plays A and B such that: given any strategy of II , player I
can force an outcome in A ; and given any strategy of I player II can force an
outcome in B.

In view of this negative result, the natural question is: hhat interesting
families of gémes can be proved to be determined? To put that more formally, let us
introduce a topology on S . Actually, there is a natural one, namely the topology

in which the basic open sets are those of the form {s ]pn (s) = Py (SOJ} for some

So €S and for some integer n > 0 , where Py denotes the projection operator on
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the first n coordinate space. It is a matter of straightforward verification to

prove that this 1s a Housdorff topology for S in which S is totally disconnected.
A game I = (X, XI, XII’ X £, SI, SII)

according to whether SI is open, closed, GS ete.

is said to be open, closed, G6 etc.

Theorem 2.9 (Gale and Stewart) If SI belongs to the Boolean algebra

generated by the open sets then ' is determined.

An important consequence of this result is that any game with continuous pay-off

function h has a minmax value and the players have optimal strategies.

Theorem 2.10 (Wolfe) Any win-lose game 1is determined if one player's winning

set 1S G(5 ’

The problem of determinacy of games in which SI is any Borel set was a long-

standing difficult problem which was finally proved by D. Martin in 1975.

Theorem 2.11 (D. Martin) Any Borel game 1is determined.

The consequence of this result is that any game with a measurable pay-off func-
tion h has a minmax value. However, in contrast to the continuous pay-off case,
the players may not be able to guarantee the value but rather only e€-guarantee it

for any ~ & >0 .

Games with Imperfect Information

Let us look now at the second property — the subgame property' used in the proof
of Zermelo's theorem (and Martin's theorem). Consider the game of 'matching pennies'.
Two players, I and II choose simultaneously H or T . If they both choose the
same thing II pays I one dollar, otherwise I pays IT one dollar. Can this game be

described in extensive form? The obvious candidate for a game tree 1.5

1 -1 -1 L
It is readily seen that this 1is not an appropriate description of the game unless we

add more structure to it: player II cannot distinguish between positions b and
c . This means in particular that he cannot choose T inb. and H in c¢ - (8s.he
would certainly like to do). We indicate this by saying that b, ¢ 1is an

information set of player II and describe it by:

W i




85

In other words, the right notion of decision point of a player is not a node in
the game tree but rather a set of nodes which are indistinguishable for him. One

immediately realizes that this gfme does not have a value. In fact, it is equiva-
lent to the matrix game {i _},/ which has no value (in pure strategies). This shows

already that Theorem 2.3 cannot be extended to extensive form finite games with

additional structure of information sets. The failure of the inductive proof is quite
transparent: the part of the tree succeeding node b (or c¢) is not a subgame.

Unfortunately, the formal definition of this intuitively simple notion 1s quite

complicated. This is so because one has to express the fact that a player cannot
distinguish between two nodes in the same information set. This means, for instance,
that he must be (from his point of view) in the 'same stage of the game'. Also, we
allow chance moves in the game tree. This makes the pay-offs random variables whose

expectations are all by convention the utilities of the corresponding players.

Definition 2.12 Extensive form game T of n-players consists of the following

elements:
(1) Aset N= {1, 2,...,n} of players;
(2) A finite connected graph G with no cycles called the game tree.

(3) A distinguished node of the tree called the first move. A node of

X

0
degree one, different from Xy is called a terminal node. The set of
terminal nodes is denoted by T .

(4) The set X of non-terminal nodes is called the set of moves and is parti-

0 1 n

tioned into. o+ 1 sets X , X ,ssuesA Elements of Xl are called

moves of player i , while elements of XO are called chance moves.

0

(5) For each node in X  there is a probability distribution on the branches

out of it with positive probability to each one of them.

] 1 1
1""’Uk-
information sets of player i , such that for each j € {1,...}ki} ’

(6) For each i € N, there is a partition of X" into U , called the
(i) There is a 1 - 1 correspondence hetween the sets of outgoing branches
of any two nodes 1in Uj _
(ii) Any path from X to a termipal node (i.e. a play) can Cross U? at
most once.
(7) For each terminal node t € T attached an n-dimensional real vector

h(t) = (hl(t),...,h"(t)) called the pay-off vector at t

If all information sets are singletons the game is called a game with perfect infor-

mation. Thus the game in Definition 2.1 is a finite game with perfect information and

no-chance moves, while the games of Gale and Stewart are infinite games of this kind.
; £ k. b d =
A pure strategy of player i 1is a k. -tuple o = (o (Uj))ji1 where Gl(U;)

is an element of the set of alternatives available to player i in his information
set U.
J

Denote by Ss* the set of pure strategies of player i and let S = Slx e
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Given an n-tuple of strategies s = (sl,...,sn) € S the eapected pay-off to player

i is defined as

H'(s) = Z P (%) h' (t)

t €T

where P (t) is the probability that t € T will be reached when s 1is played.

Any finite n-person game in normal form can be reduced to a strategic form
game (Sl,...,Sn, Hl,...,Hn) _ If the extensive form we started with was a game of
perfect information, by Zermelo's proof it will have an N.E.P. in pure strategies.
This result is no longer true for imperfect information games as the game of matching

pennies already shows. For these games we have, by Nash's result, the existence of

N.E.P. for the mixed extension.

Behaviour Strategies

In a game in extensive form, a mixed strategy means a single randomization at
the beginning of the game after which a certain pure strategy 1s followed, i.e., a
deterministic choice of an alternative at each information set. Another way for a
player to randomize his choice is to randomize on his possible alternatives at each
information set, and to do these randomizations independently in his various infor-
mation sets.

Definition 2.13 A behaviour etraﬁegy, b* , of player i in an extensive form

game I is a k -tuple | (b (U ))J e where b (U ) 15 a probability dlstrlbu—
tion over the set of alternatives at the information set UL . Denote by B* the
set of behaviour strategies of player i , and denote by 51" his set of mixed strate-
gies (i.e., probability distributions on Si).

Beside ite intuitive appeal for extensive form, the behaviour strategies set is
usually much smaller than the mixed strategies set. For instance, consider a game
in which a certain player i has three information sets with two alternatives 1in
each. Then |Si| = 8 and therefore Zi is seven-dimensional simplex. On the
other hand, a behaviour strategy is determined by three probabilities 1n 18, 4]
and thus Bi is a three-dimensional cube.

In what circumstances can we werk with Bi instead of Ei ?

First observe that any b* € B generates in a natural way a probability
distribution on S , i.e. a mixed strategy X €% . “This xi Leads to the same
pay-offs as bfL regardless of the strategies chosen by the other players. In this
sense we may say that xl is strategically equzvalent to b' . Denote this mapping
by : Bi-+ Ei ., If p is Yomto' (i.@., (B ) = ) then any gi € Zi could be
replaced by a behaviour strategy which is strategically equivalent to it, namely any
bl € © (U ) . However, ¢ may not be 'onto' as can be seen in the following

example.
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chance move

With the obvious notation player I has four pure strategies:

{(s, K); (8, T); (C, K); (C, T)} . It is easily seen that if we consider the mixed
strategy Ui = 4(S, T) + %(C, K) , (which happened to be the optimal strategy of
player I), then there is no bi 3 B:'l R AR q{bi) = Gi . The reason for that is also
quite transparent: in ol , the choices in the two information sets are highly
correlated. This correlation cannot be produced by appropriate choices of the
probability distributions comprising the behaviour strategies since player I, when

in Ué , does not remember his move 1in Ui

Definition 2.14 An extensive form game I 1is said to be a game with perfect

recall if each player at each move remembers what he knew in previous moves and what

choices he made at those moves.

Remark: There is no difficulty in writing this formally at the cost of intro-

ducing some more notations which we prefer to avoid here.

Theorem 2.15 (Kuhn, 1953) Let I be an extensive form game in which player 1

has perfect recall. Then, for each mixed strategy ol € ri , there is a behaviour
strategy bi & Bi which is strategically equivalent to ol , 1.e. for each j € N
and 0 €& , Hj(c) = Hj(olbi) , where (U|bi) is the n-tuple 0 1in which ol is
replaced by bl ;

Corollary 2.16 Any (finite) game [ in extensive form has a N.E.P. 1n

behaviour strategies.

Aumann (1964) generalized Kuhn's theorem to infinite games with perfect recall,
i.e. both the length of the game and the number of alternatives at each move may be

infinite.
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Chapter 3

MULTISTAGE GAMES

The Notion of SEEpr—Game

Multiperson decision situations for which we attempt to provide game theoretical
models, are very seldom one-time affairs, but rather repeated over and over again.
One may therefore gain additional insight about various phenomena by studying not
merely the static one-shot games but also some multi-stage or a repeated game. These
models seem to be the correct paradigm for studying phenomena such as communication,
retaliatioﬁ, flow of information, etc.

Consider the following two-person non-zero sum game known as the '"Prisoner's

Dilemma'':
G C
G (1, 1 5 %
Vo, 5 4.4

The only N.E.P. in this game is (G, G) yielding a pay-off of (1,.1} =whiech-is
dramatically inferior to (4, 4) from the point of view of both players.  This 1s
especially disturbing if the game is played many times by the same players, since one
would expect some 'silent understanding' between the players and the emergence of the
cooperative outcome (4, 4) at least in some of the repetitions. Can we provide

a model that predicts this phenomenon?

The first attempt is to consider, say, a 1,000-times repeated prisoner's dilem-
ma played by the same players. One easily sees that the only N.E.P. in this game 1s
again such that each player plays G 1in all stages independently of what the other
player does. So this is not the appropriate model we are trying to find. A moment
of reflection reveals the reason. The presence of a last stage which is recognized
as such by both players, aside from being unrealistic, creates unnatural end effects
which propagate themselves backwards and distort the entire analysis. This suggests
that a game "without an end" may be more appropriate. Without bothering much about

details, let us show the following.

Proposition 3.1 In the infinitely repeated Prisoner's dilemma there is an

N.E.P. with the cooperative pay-offs (4, 4) as an '"average" pay-off for the players.

Proof. Consider the following strategy, o , for a player. Play C in the
first stage and keep on playing C as long as the other player continues playing C .
As soon as he plays G , play G following that stage on.

Clearly, if both players play o the pay-off sequence for both of them will be:
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W', 0). = R, oF—=={44, 4;-.0)

If a player, say player I, uses o # 0 , while the other player is using O
he will play G for the first time, say at stage k . His pay-off sequence will be
at most (coordinate-wise): (4,...,4,51,1,...) with 5 as the k-th coordinate.
By any reasonable definition of 'average pay-off' such as Cesaro limit, Abel

limit, or any Banach limit, the value of (4, 4,...) is 4 and that of

(4.5 0o, 5, v wv) 385 "1 o THus {6 © 18 1N Z8ct 8 NEP: with 'pay-offs' (4, 4).

Q.B.P.

So, what the players could get in the one-shot game, by signing a binding agree-
ment to play (C, C) can be self-enforced as an N.E.P. in the super-game (i.e., the
infinitely repeated game). Many other pay-offs can be reached in the one-shot game
via binding agreements. For instance, the expected pay-offs (2,2) by signing an
agreement to draw a lottery (controlled by the 'authorities') to choose C or G
with respective probabilit es % and %2 . Whatever the outcome is both players are
committed to play it. Their expected pay-off 1is %(4, 4) + %(1, 1 =42, 2) . Can
this also be sustained by an N.E.P. in the super-game? The answer is 'yes' and the
N.E. strategies are the following (again, the same for both).

Play repeatedly C, G, G, C, G, G,... so long as the other player is following
the same pattern. As soon as the other player deviates from this preseribed pattern,
play G from there on. It is clear that when both players follow this strategy each

will have the pay-off sequence (4,1,1,4,1,1,...) that is, worth 2 by any reasona-

ble definition. Any unilateral deviation of one of the players will yield him a payoff

sequence with at most 1 from one stage on.

The general ideas should be clear by now, and we move quickly towards the general

theorem.

Consider an n-person game in strategic form T = (Sl,...,Sn, hl,...,hn)

Definition 3.2 A correlated strategy of a coalition T < N 1s a probability

distribution on T S .
1ET
When correlated strategies are used the set of expected vector-payoffs is the
convex hull of the vector payoffs attainable by pure strategies. We denote this set

by C and refer to it as the set of correlated pay-offs.

Definition 3.3 The individual rationality level of player 1 1s r. defined
by:
Ty & min max Hl(o, T)
T o)

where 0 ranges over the (mixed) strategies of i and T ranges over all correlated

strategies of N~{i} .

A pay-off vector (al,...,an) is said to be individually rational if a; > r;

e
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for all i €N .

Remark 3.4 Note that min max Hl(a, T) max min Hl(U, T) but this i1s sO
A ==

because N~N{i} are allowed to use correlated strategies. It is not true if T

ranges over mixed strategies of N~{i} . As an example, consider the three-person
game in which I chooses a row, II chooses a column and III chooses the matrix.
The pay-offs for III are

(-1 0) (-3 0)
\ a8 -3)] \0 -1}°

If we denote by (x, 1 - x), (y, 1 -y) and (z, 1 - z) the mixed strategies of
the three players, respectively, then for player III:

min max H(x,y,z) = min max (-xy - 3(1 - x)(1 -y), -3xy - (1 - x)(1 - y)) = -1
X,y 2 X,y

while

max min H(x,y,z) < min(-2 -3(1 - z), -3z - (1 - z)) < =2
A

Theorem 3.5 (the "folk theorem') The pay-off vectors to Nash equilibrium points

in the super-game I'* are the individually rational correlated pay-offs

o= xECx=3>r ¥ i €N

This theorem has been known for about 2Q years but has not been published and
its authorship is obscure although it is probably to be credited mainly to Aumann
and Shapley. The idea of the proof is the one that can be read in our example:
prescribe the right pattern of correlated moves to approach the desired point in CR :
As soon as player i deviates MNJ{i} switch to the punishment strategy, i.e., the
correlated strategy that keeps his pay-off to T,

We shall not go through the formal definitions of the super-game I here.

Later we shall discuss the point of the definitions of pay-offs, which is an issue

of general importance to all infinite stage games.

Stochastic Games

Stochastic games are multistage games in which the game played at each stage
changes randomly. The following short review of the subject will be confined to two-
person zero-sum stochastic games with finitely many states and finitely many alterna-
tives in each for both players.

The first model and result is due to Shapley (1953). There is a finite set of
states S = {1,...,S} and additional state s = 0 which is the 'game is over' (by
abuse of notation, S denotes both the set and its cardinality as does I, J, etc.).

| S for
S

At state s € S each player has a finite number of possible actions: 1
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E for player 2. We may assume w.l.g. that I = I and

Vs 3 for-all & €8S , and thus associate to each s €8 an 1 xJ pay-off

matrix A® (£rom: 2-. to 1).=Ffor "1 £ 1, i €J and § €S ‘there is a transition
st
ij)t=0,l,...,s

player 1 and j=1,...,J

probabilities vector Pij = (P

The stochastic game is played in stages: at each stage the game is in some
<tate s €S U {0} . If s # 0 , player 1 chooses i € I , player 2 chooses J i e
Then (i, j) is announced, player 2 pays player 1l aij , the referee chooses the
new state according to the probability vector Pij and informs the players about
the new state asking them to play the next stage (unless the new state is 0 ).

Stochastic games generalize Markov decision processes in that Markov decision
processes may be viewed as stochastic games in which one of the players has only one
action in each state.

The most crucial element in Shapley's first model was:

SO

Assumption 3.6 A = min Pij > 0
s P [

Due to this assumption, expected total pay-offs are bounded and the existence of
value and optimal strategies could be derived from general minmax theorems. However,
we shall use an alternative approach used by Shapley and proved to be very fruitful

in more general models. This is basically the dynamic programming approach.

Spectal Case: If P:? = A for all i,j, and s €S we have a A\-discounted
game: we may forget about the state o and normalize the probability vectors on S
(i.e. divide by (1 - A)). The game then has denumberably many stages and a pay-off

stream X = (Xy3X,,...) is evaluated by L Ak_l X
1252 Lo k

For the sake of simplicity of notations, we shall derive Shapley's results for
this special case.
. i 3 : . ; n-1 ; ;
A history prior to stage n 1is [(1k, Jies sk)]k=1 , where i, J, are the
actions chosen at stage k and S, Wwas the state at stage k . Denote by Hn' the

set of all possible such histories.

Definition 3.7

Q0O

(i) A behaviour strategy of player 1 is a sequence o = (6.) where

n’ n=1
g ¢ I-In x S -1, and I* is the simplex of probability distribucions on I
(ii) If the mappings o0 are to I (i.e. the extreme points of I*), then O

is a pure strategy.

(iii) If the o 's are independent of H_, then o is called a stationary

strategy.

Strategies for player 2 are defined similarly. We denote by I, I, the sets

2
of (behaviour) strategies of the two players. Given an initial state s €S , any

pair of strategies (o, T) € I; x I, determines a probability distribution on
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pay-off streams. The expected evaluation of these vector streams defines a pay-off
function H_: L. x L_->R . Denote by FS(A) the two-person zero-sum game

s
(£,; L5 H) and let T = (T;(A),...,Tg(A))

2;
Given the pay-off matrices A = (Al,...,ﬁs) and any Xx € RS define
G(x) = (Gl(x),...,G (x)) where Gs(x) is the I x J matrix defined by:

1°

S

(G ixl ) 2. Sa
i t

st

D.. X
o g e

n ™MW

Denoting by 'val' the value operator, and val G = (val Gl,...,val Gg) we have:

Theorem 3.8 The stochastic games I'(A) = (Fl(h),...,Ié(A)) have a value
V(A) = (Vl(k),...,VS(A)) which is the unique solution of the equation

x = val G((1 - AM)x) . (3.1)

Proof. Observe first that with respect to the norm |x| = max Ixsl we have for

any. X,y € R®: 2

lval G(x) - val G(y) | < |x - y |

From this it follows that the function of x , val G((1 - A)x) 1is a contraction and
thus has a unique fixed point which is a solution for (3.1).
Next, if we denote by TH(A) = (FT(A),...,F%(A)) the stochastic game with n-

stages and its values by vl o= (V?,...,Vg) we readily see that:

V' = val G((1 - A)Vn-l) : e L2 ees 3
with VO = % IR | Therefore 1lim vl o= x , the only solution of (3.1).
1—7>°°
Finally, for any € > 0 both players can guarantee 1im Ve up to an € by

1 e
playing optimally in FN for some N large enough (remember that A > 0 amrd hence

the contribution to the pay-off of stages n > N is less than € if N 1is large
enough) .
Q.B.B.
As for the optimal strategies, given any S-tuple of mixed strategies
X = [xl,...,xs) of player 1 (or 2), in the one-stage game (i.e., elements of I*
or J*). We identify x with the stationary behaviour strategy which consists of

playing the mixed strategy x> whenever the state is s

Theorem 3.9 If for each s €S, x  is an optimal strategy in the matrix

GS((l - A)V(A)) , then x = (xl,...,xS) is a stationary optimal strategy in the A-
discount game I'(A)

Proof. For each n let fn(l) be the same game as Pn(k) , except that when
stage n is reached and the state is s , the pay-off is according to GS((l - A)V(A))




94

instead of A° . One checks then easily that: (i) By using the stationary strategy

x each player guarantees V(A) in %n[l) . (ii) The difference in pay-offs between
?H(A) and Pn(k) is arbitrarily small. if n is large enough. Hence, for any e > 0
choosing n large enough, x guarantees Vn(h) +€ 1in PHCA) and hence V(A) + 2¢€

in T'(A\) . Since this is true for any € > 0 , the result follows.
QB D,

The great importance of Shapley's work is not only in formulating the first
model and opening a new field of research, but also in using the dynamic programming
approach and the contraction mapping which proved to be very useful tools in most of
the research that followed.

However, as soon as assumption 3.6 was to be relaxed, that is, away from the
A-discount game, a lot of mathematical ingenuity and depth was needed. We are able
to mention here only part of the important results.

Gillette (1957), Hoffman and Karp (1966) and Stern (1975) looked for conditions
under which the undiscounted infinite stage game (to be defined later) has a min max
value. Such a condition was, for instance, that for any pair of strategies used by
the players, the resulting Markov chain is ergodic. An example in which this condition
is not satisfied was studied by Blackwell and Ferguson (1968) under the name of ''the
Big Match." Their result was generalized by Kohlberg (1968) to 'games with absorbing
states.' The most important breakthrough was done by Bewley and Kohlberg (1976),
and finally Mertens and Neyman (1981) answered the long-standing difficult problem
by proving that any stochastic game has a value.

Bewley and Kohlberg (B.K. hereafter) studied the asymptotics of stochastic
games in two directions:

(i) Considering the A-discount game I'(A) and letting A tend to O .

(ii) Considering the undiscounted (A = 0) n-stage game ™ and letting n

to to o

From Shapley's result we know that for any X > 0 the \-discount game T(})

has a value V(A) . If we think of A as the probability of stopping the game after
each stage then the expected number of stages is 1/A and then AV(A) can be inter-
preted as 'a value per stage'. B.K. proved:
Theorem 3.10 lim AV(A) exists.
A0

Considering now the limit value of the undiscounted truncated game " , note first
that there is no problem of existence for the value Vi of T" . In order to: com-

pare games of different lengths one looks at the 'value per stage' Vin . B.K.'s

next results were:

Theorem 3.11 lim V®*/n  exists.
N0
Theorem 3.12 1lim AV(A) = 1lim V%¥n

A0 Nn->oo
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Actually, B.K. managed to find the expansion of the value V(A) and the optimal

strategies in fractional powers of A  for an interval 0 < A <A - Similarly,
they found an approximate expansion of i in powers of n . More precisely, they
proved:

Theorem 3.13 There exists an integer M such that:

(i) There exists RO > 0 such that the following expansion holds for
" - :
0 < A _{AO

A-(M-l)/M : A-(M-z)/M ML)

=1
V(A)- = aph” + ay g =1

(ii) There exists a stationary strategy for player 1 described by vectors:

i 1/M M-
xs(l) - X. ¥ xlsh + XZSA + /

Os

where xs(h) is a probability vector in I* , and X s € RI for all k , and there
exists AOO >0 such that for each 0 < A-E-AOO , the stationary strategy

x(A) = (xl(K),...,xE£K)) is optimal in I'(A) . The above works similarly for
player 2.

(iii) There is an expansion of the form

I

Wy = agh + aM‘ln(M_l)/M + + alnl/M

5 Ll S 2
such that IVZ = WZI <Clog (n+ 1) for some constant C .

To prove these results, B.K. adopted an algebraic approach rather than analytic.

Their impressive proofs are based on the following main steps:
Step 1: Consider the ordered field F of real Puiseux series, i.e. series of

the form X ake = , where M is a positive integer, K 1is any integer and ay

are real numbers. Addition and multiplications are defined in the natural way and
K

order is defined by: ) akek/M >0 if and only if ay > 0 where N 1is the
=00

largest integer k s.t. a; e Dl

Step 2: If the fundamental limit discount equation (3.1) (with 8-1 replacing

A),
|
%, = yal G(f1l = & “)x) , (3.2)
has a solution in F , then for small enough A , substitution of l_l for 6 gives
V(A) . In other words, this is then the desired expansion. Thus the problem is

reduced to prove that (3.2) has a solution in F .

Step 3: As it was noted in our first lecture, the minmax theorem is true in any

ordered field (Weyl, 1950), thus val G is defined for any matrix G with entries

in an arbitrary ordered field, F in our case. Furthermore, an equation of



96

the type y = val G may be expressed as an elementary formula over F , i.e. an
expression constructed in a finite number of steps from atomic formulae (p > 0 or
p =0, where p is a polynomial with integer coefficients, in one or more variables)
by means of conjunction (A) , disjunction (v) , negation (~) and quantifiers of
theform 3x , VX

The statement, '"there exists a solution x in F to x = val G((1 - e"l)x)”,
can be expressed as an elementary sentence in F 1i.e. an elementary formula in which
all variables are quantified by 3 or V .

Step 4 (Tarski's Principle): An elementary sentence which is valid over one

real closed field is valid over every real closed field. (An ordered field F 1is
real closed if it has no ordered algebraic extention.)
Step 5: By Shapley's result, the elementary sentence stating, 'there 1is a

solution in H to (3.2)', is valid over the real closed field of the real numbhers.

Step 6: F 1is a real closed field, therefore by Steps 4 and 5 (3.2) has a

solution in F .

n : : .
For the n-stage values V the same real closed field of real Puiseux series

is used with 6 representing the function n .

Remark Parts (1) and (ii) of theorem 3.13 apply for non-zero sum n-person

games as well. The result is then the existence of pay-off vectors v(A) and
strategy vectors x(A) each of which has a convergent expansion in fractional power
of )\ such that in some neighborhood of A =0, x(A) is a N.E. point in the A-

discounted game with corresponding pay-offs v(A) (see Mertens, 1982).

The Value of the Infinite Game

In the asymptotic approach of Bewley-Kohlberg one considers the Zimit of value,
either the 1limit of AV()\) as X - 0 or the limit of V%! as n + o . Another natural
approach to study the very long undiscounted game is to look at the value of the
Limit, i.e. the value of the undiscounted infinite stage game e The strategies
in [ are defined as in definition 3.7. However, there is a technical difficulty
in defining an appropriate pay-off function. This difficulty which is common to all
undiscounted infinite state games (not necessarily stochastic) can be overcome by one

of two ways:

(1) By defining the evaluation of a pay-off stream x = (xl, X, s —as
1im i1nf, lim sup or more generally any Banach limit of the n-stage averages
n
1
I A s S
noon,_4 k

(ii) By avoiding the definition of pay-off function and defining directly the

notion of value.

We shall adopt usually the second alterantive. More precisely, we define:
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Definition 3.14 An undiscounted infinite stage game I is said to have a

"

value v 1f Yo >0 there-is-a -strategy 5 of player 1 and T of player 2

and an integer N > 0 8 T

P

Dn(U:TJf_V-E; Y n>N V. T
Dn(%: ) % W 4E vV n>N V O

where pn[a, T) is the expected n-stage average pay-off when o and T are used.
This implies in particular that player 1 can guarantee that lim inf Py will be as
close as he wishes to v and player 2 can guarantee that lim sup p, will be as

close as he wishes to v . We shall use the following terminology: o0 (as well as

Fat
T) €-guarantee v 1in [

m L]

Remark 3.15 Note that if T has a value v and if we denote by v_ the

(average per stage) value of Fn then 1lim Ve exists and is equal to v .
n

The problem of existence of a value for a general undiscounted stochastic game
[ was an open problem for many years, in spite of many attempts to solve 1t. It
was finally solved in 1981 by Mertens and Meyman who used the B.K. asymptotic theory

to prove:

Theorem 3.16 The infinite game has a value which equals the asymptotic values:

v = valff )} = 1im W) = lim V'/n
A0 n->e
A rough description of the strategy of player 1 which guarantees
lim inf pn‘z_v - € 1looks as follows. At stage k player 1 computes a number
kk € (0, 1] and plays optimally in the Ak-discounted game (according to the state
he is in). Ak = A(&k) where A: [1, ») = (0, 1] 4is an appropriately @esigned
continuous decreasing function and &k is a statistic updated as follows:

€k+1 = Max[C, gk HiX . AkV(kk) + 4] ,

where C > 1 is a sufficiently large constant. So roughly speaking, Ek is the

gxcess of the actual pay-offs. X, + X, % -+« .+

X
1 2 k
AIV(AI) + AZV(AZ) + see 4 AkV(kk) . The higher Ek becomes the lower Ak is,

which means that he plays for lower discount rates, i.e. with more importance attached

over the intended pay-offs

to later stages compared to the present one.

Remark 3.17 Mertens and Neyman's result holds for a class of stochastic games

much wider than that treated by B.K. One does not have to make any finiteness

assumptions, neither on the state space nor on the action sets, provided the following

conditions hold:

(1) Pay-offs are uniformly bounded.
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(ii) The value V(A) of the A-discounted games exists.

(iii) V € < 1 there exists a sequence A; decreasing to Q such that

Ai+1 3_€Ai V i and ZI]V(Ai+1) - V(Aijll <

It 1s a consequence of B.K.'s results that these conditions are always

satisfied in the finite case treated there.

Aumann, R.J. (1981). Survey of repeated games. In R.J. Aumann, et al. Essays
in Game Theory and Mathematical Economics in Honor of Oskar Morgenstern,

Wissenschaftsverlag, Manheim, Wien, Zurich.

Bewley, T. and E. Kohlberg (1976a). The asymptotic theory of stochas-—
tic games. Math. Oper. Res. 1, 197-208.

Bewley, T. and E. Kohlberg (1976b). The asymptotic solution of a recursion equa-
tion occuring in stochastic games. Math. Oper. Res. 1, 321-336.

Blackwell, D. (1956). An analog of the minmax theorem for vector pay-offs.
_P_Q.Cifi_(_'.‘._ J- Mat';h._ 6, l—8|

Blackwell, D. and T.S. Ferguson (1968). The big match. Ann. Math. Statist. 39,
159=163

Gillette, D. (1957). Stochastic games with zero—stop probabilities. Contribu—

tions to the Theory of Games, Vol. III (Ann. Mathe. Studies, No.39,).
Princeton University, NJ., 179-187.

Hoffman, A.J. and R.M. Karp (1966). On nonterminating stochastic games.
Management Sci. 12, 359-370.

Kohlberg, E. (1974). Repeated games with absorbing states. Ann. Statist. 2,

Mertens, J.-F. (1971-72). Repeated games: an overview of the zero—sum case.
Advance Economic Theory, W. Hildenbrand (ed.). Cambridge University Press:
Cambridge, 175-182.

Mertens, J.-F. and A. Neyman (1982). Stochastic games. Internat. J. Game
Theory 10, 53-66.

Shapley, L. (1953). Stochastic games. Proc. Nat. Acad Sci U.S.A. 39, 1095-1100.

Stern, Martin A. (1975). On stochastic games with limiting average pay-off.
Doctoral dissertation in mathematics, University of Illinois.



99

Chapter 4

MODELING INCOMPLETE INFORMATION

In all models we discussed so far there was an implicit but very crucial under-

lying assumption: the description of the game and all the data involved in this
description is known to all players.

sets and the pay-off functions.

realistic assumption:

In particular each player knows the strategy
On the other hand we know that this is not a very

players are often uncertain even about their own pay-off

function and their available actions, and even more so about those of the other

players. Can we model such situations in which players are uncertain as to what

game they are playing?

Example 4.1 The state of nature is chosenby a chance move to be B (black) or

W (white) with probability % for each possibility.

Players I and II are engaged in
the following situation. Player I has to choose B

or W . Hearing that, player II
also chooses B or W

, if they both choose the same thing they receive 2 each,

If one chooses B and the other W , the one choosing the real state of nature

receives 5 and the other player receives 0 .

Case (7). Both players do not know the real state of nature. This is the game:

Game G
chance

h;\hl
- =

Y, P

UL

B '\\r B// W B \\T
(2,2) (5,0) | (0,5) (2.8 (2,2 |(o,5)| (5,0) (2,2)

and with a unique N.E. pay-off (5, 0) + %(0, 5) = (2%, 2%)

Case (i1). Player I knows the state of nature while player II does not, even
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though he is aware of the fact that I knows. The game is then:

VaDs G2 chance
¥
B W
> *5
B W B \f
./ s up! :
pll \ A \
B'/ W B N B/ W B W
(2,2) (5,0) (0,5) (2,2) =22 (0,5) (5;0) [2,2)]

with a unique N.E. pay-off (2, 2)

Here we already see a tricky thing about information: additional information
may be disadvantageous. A moment of reflection shows that the problem of Player I
is thatplayer II knows that he knows. In fact if 1 could get his information

without player II suspecting as much, we would get:

Case (i17t). Player I (and only he) knows the state of nature and player II

'""thinks'" that he does not know. The pattern of behaviour will be:

chance
&
B W
1 L
2 2
B W B W
11
/ /\ Ug I\ D
e
pll
/\ 1
B \w B / W B \w B W
(2,2) (5,0)] (0,5) (2,2) (2,2) (0,5) ](5,0) (2,2)
with the resulting pay-off (5, 0) -- the best possible for player I. Notice that
we were careful not to call the last case a 'game'. In fact this is not a game.

This is a situation in which player I knows that he is playing G,

while II thinks
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that he is playing G More typically player II may not be sure whether player I

knows the state of naiure. In such a situation he is not sure whether he is playing
G1 or G2 . And what about player I? What does he think about player II's beliefs
concerning the real game he is playing? And what does player II think about this?

The problem is getting more and more complicated and the question is how to treat it.

To fix ideas we consider a situation of incomplete information involving a set
of players N = {1,...,n} , the members of which are uncertain about the parameters
of the game they are playing which may be any element of some set S (we may think
of a point of S as a full listing of the strategy sets and the pay-off functions).
We shall refer to S as the set of States of Nature.

As we ;ﬁw already in our example, a full description of the situation should
include the beliefs (i.e. subjective probability distribution) of each player on S .
These may be called the first level beliefs. Then we have to include what each
player believes about the other player's beliefs on S . These are the second level

beliefs. Then we have what a player believes are the second level beliefs of the
others (i.e. what he thinks that they think that he thinks...) and so on, We are led
to an infinite hierarchy of beliefs which seems inavoidable and hardly manageable.

In an attempt to overcome this difficulty, Harsanyi (1967-68) introduced the
concept of Zype. A type of a player is an entity that summarizes all parameters and
beliefs (of all levels) of that player. The game starts by a chance move that
selects the type of each player. Of course each player knows his own type and has
some beliefs (as part of his type) on the types of the other players.

The concept of type proved to be very useful but its formal derivation from the
more basic notions of beliefs, beliefs on beliefs, etc. was done only some 12 years
later (Boge and Eisele, 1979; Mertens and Zamir, 1985). Let us look briefly at
this result.

We start with the set S of states of nature which we assume to be compact.
For any compact space X we denote by I[I(X) the compact space of probability
measures on X endowed with the weak* typology.

First level beliefs are just the elements of II(S)

Second level beliefs are elements of II(S x [H(S)]n) y etc. We dafine
a sequence of spaces {Yk}:=o as follows:

YO = S and for k=1l,2,.

n

Y, = {yk €Y X [H(Yk_l)] s.t. if t' denotes the projection on the

k-1

i-th copy of e , then:

(a) V 1, the marginal distribution of t%(yk) on Yk_2 is ti(yk_l)

(b) V¥ i , the marginal distribut@on of tl(yk) on the 1i-th copy of
II(Yk_2) 1s a unit mass at tl(yk_l)}
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Conditions (a) and (b) are coherency conditions saying that each player knows
his own beliefs and any event whose probability can be computed according to beliefs
of two different levels, will have the same probability in both levels.

Now let Y be the projective limit of {Yk};zo . Y is a well-defined compact

space 1f S 1s compact. Let T* be the projection of Y on player i's coordinates.
e T T (4.1)

The set T- can be called the set of types of player i . Clearly all T" 's are

copies of the same set T . An element t' € T" defines uniquely a probability
distribution on VY i.e. on S X Tl B e TN . By properties (a) and (b), the
marginal distribution of t" on T ' is a unit mass on {t'} . This is a formal

expression of the fact that each player knows his own type. Therefore:

Thicm T8 % XTI (4.2)
j#i

Equations (4.1) and (4.2) give the structure of what we call the universal beliefs
(BL) space Y generated by S and n . A point y = (s, tl, t2,...,tn) o
may also be called a state of the world (compared to state of nature which is an
element of S). A state of the world thus consists of a state of nature and an n-
tuple of types, one for each player. A type of a player which can also be called
the state of mind of the player is just a joint probability distribution on the

states of nature and the types of the other players.

Beliefs Subsggces

As the name indicates, the universal beliefs space is a very big space. It
contains all possible configurations of hierarchy of beliefs. Often the uncer-

tainty of players is confined to a small subset of Y .

Definition 4.2 A Beliefs subspace (BL subspace) is a closed subset C of Y

STh A R (B B aseey b)) BT e (0= L WA

This is the notion of common knowledge, first defined formally by Aumann (1976):
Every player knows that the state of the world is in C , he knows that everybody
knows that the state is in C , he knows that everybody knows that everybody knows
that the state is in C , etc.

Example 4.3 Players N = {I, II}

C = {Yl: yzr ysl Y4} where:

2 1 2
yl o {Sll; (;: g: 0: U); ('J 0: 3: 0)}
2 3 3 1
yZ = {512; (EJ g: 0: 0): (0: ZI: 0: 1)}
2 _ & L. g 2
yS ¥ {5211 (0.1 0: g: g): 3: 01 3: 0)}
_ _ g 3 1
Y4 {5223 (0: OJ 5: ;): (0: ZI'_! 0.1 21"_)}
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In this BL subspace there are two types of player I:

2-3 _ L 41
I]. . (g; "S"; 0; 0): 12 — (0: 0: 515) 3

and two types of player II:
2

1
IIl ey (3: 0: 3: 0): IIZ (0

3 1
’ a: 0; Z)

The mutual beliefs of each player on the other player's types are:

L, .- I, e
¢ |32 3 ol o
I w18 5 i 5 3
¥ -on [L% B on . 1
I 4 1 - 1
o 3B

This is equivalent to the situation in which the pair of types is chosen according

to the following probability distribution on the product of the type sets:

I, s
I 2 3
1| To 10

4 1
b 50 10

Then each player is told his type from which he derives his subjective probability as
'""the conditional probability on the types of the other player given my own type.'

When such a prior on the BL subspace exists it is called a consistent BL sub-

space.
Example 4.4 N ={I, I} ; C={y;, Y3 Yz Y4}
y; = 1sy75 (%, %, 0, 0); (%, 0, %, 0)}
Vo = (5,5 (2o 35 0, D3 (0, 2» 0, &3
y; = {5595 (0, 0, i, EJ; é, 0, g, 0)}
Yo = {85 0, 0, 7 P: W E G 2)
I, 11, IT, IT,
A STa%
bSO ko : g 2 It .on 1 : 2 4
21 4 4 2 1-% c
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No prior on {I;, I} X {11, X II1,} can give these as conditionals which means

that this is an inconsistent case.

To define formally the notion of consistency we need some notation. If C 1s

1 i

a BL subspace and y = (s, t ,...,tn) € C we denote player I's type, t~, in Y

(which is a probability measure on C) by t; 3

-

Definition 4.5 A BL subspace C is comsistent if there exists a probability

measure P on C s.t. V 1 € N:

pow i €L a0 - s (4.3)
& if

We will also say that this P € [I(C) is consistent. Any Yy € C is a consistent
state of the world with respect to P .

With the appropriate measurability structure on G -and of'- IHC) ; 18t F(tl)
be the sub o-field of measurable sets of II(C) generated by the projection

tl .  Then:

Theorem 4.7 If y is a consistent state of the world w.s.t. a consistent

P with finite support, then P (and in particular its support - the BL subspace

containing y) is uniquely determined and is common knowledge.

In other words, each player, with his information only, can answer the question:
Is the state of the world consistent? If the state is in fact consistent all players
will know that and compute correctly the same BL subspace and the prior on 1it.

The way for player i to find the BL subspace, which he believes contains the

state of the world y , is rather straightforward. In Yy = (s, tl,...,tn) player 1
knows t- . He finds C; 4 = Supp(t;) (i.e. support of t; ) and then inductively:
i P ! i =
Cy,k+1 = cy’k U [~Eci U Supp(t;)] k=1.2, .
L T
We have C; Ta C; g & 4o and if C (the support of P) is finite we get a limit

set C; . Theorem 4.6 asserts that if y is consistent then C; is the same for
all i . Denoting this by C , it is the minimal BL subspaces containing the real
state of the world acecording to the beliefs of every player.

The fact that the prior P on C can be computed correctly by each player

follows from the consistency of P which implies:
1
t ()
57 AP > 0 . From this it
P(z) L
t; (2)
follows by proceeding inductively on sets converging to C; , that for any y ‘and

i either P(C;) =0 or P(-IC;J is uniquely determined by C .

If Flz) > 0. _angd y € Supp(t;) then

So in a consistent state of the world, players cannot draw wrong conclusions
concerning the consistency. Can this happen in an inconsistent state of the world?

It turns out that if y is inconsistent then player i may think
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wrongly that y is consistent only if y 3 Supp(t;) . Otherwise he concludes
correctly that y is not consistent. For instance, in Example 4.4 1in any state
y € C both players will recognize correctly that the state is not consistent.

On the other hand, look at the following example.

Example 4.8 Consider the following BL subspace consisting of 16 states and 4

types for each of the two players. We arrange the 16 states in a matrix as a product
of the two type sets (ij means player I is of type i and II of type j). Being
interested only by the beliefs structure we omit from y the state of nature s and
write next to each row the corresponding type of player I which is a probability

distribution on the columns (types of player II). We do similarly for player Il.

= 0
- 0 0
) 0 0 0
5 B
ty
0 1 1 1
2 ? 3
1 0 l l .?_
y
A ) 7 2 3 :

1 0 0 0 I | l - 1 3 1 4

1 1 1 real state of the world
z = g Z 2 2 4
3 3 3 0 2 I (: ::H

=5 1
. -l C
3- 9 y
- 0., & 31| 32 ™33 334
g | |
0 0 g- é- 41| 42 |a3 a4 Y

5 3 the state of the world 1s y = 23 it is inconsistent. Also, for this state
y € t; but y £ ti so we expect player I to get to the correct conclusion which
may not be the case for player II. In fact, player I will compute
c; = {11, 21, 22, 23, 32, 33, 34, 42, 43, 44} but no consistent probability
distribution on it, so he will conclude that the state is inconsistent. On the
other hand, player II will compute C2 = {33, 34, 42, 44} with the consistent

y
distribution P = (1/4, 1/6, 1/4, 1/3) on it. So he may wrongly conclude that the

state 1s consistent.

Approximation of a BL subspace by a Finite BL subspace

As it aan be easily seen, even if we start with a finite get S , both Y and

'most' of its BL subspaces are sets of high cardinality. On the other hand, most of
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the work on games with incomplete information assumes finitely many possible states
of the world. To make this discrepancy slightly less disturbing we have the
following theorem which we bring without its proof which is technically quite

complicated (see Mertens and Zamir, Theorem Sl )

Theorem 4.9 For any BL subspace C of Y and any finite open cover 0 of

Y , there is a finite BL subspace C* of VY s.t.

(i) Cc u{0 € 010 n C* # ¢}

(ii) C*< u{0 € 0lo N C # ¢}

In other words this theorem states that the finite BL subspaces of Y are dense
in the set of all BL subspaces of Y in the Hansdorff topology on the closed sub-
sets of Y .

Nash Equilibrium

Unlike Boge and Eisele who incorporated the strategy choices of the players
as part of the space on which the hierarchy of beliefs are built, we adopted here the
attitude of keeping this out of the BL space. So far we developed only the beliefs
structure of the problem. To define a game based on Y we need a few more
ingredients: |

- V i € N, player i has an action set A" which we assume w.l.g. to be
independent of his type.

: N
- V i €N, V y €Y there is a utility function u; : XA >R.
j=1

Recall the type set T* which is a projection of Y on one of its coordinates.

Definition 4.10 The vector pay-off game defined on a BL subspace C of V¥

is the game in which:
- the set of players is N = {1,2,...,n} ;
- the (pure) strategy set Zi of player i 1is the set of mappings
Ui: # *-Ai which is Ti-measurable;

- the ‘pay-off' to player i resulting from an n-tuple of strategies

g = (Ul,...,cn) is a vector u, = (u i) e where
- teT
uil@ = J u;(a(?)) dt1(¥) , with the interpretation that type t= is
paid u . (0)
¢l
We note that uti is T -measurable as it should be. Although this is not a game

in the usual sense, the concept of N.E. can be defined in the usual way, namely:
g = (01,...,Gn) is N.EB. 1f:

ViEN, V £ €T, V& e€r, w0 > u;@F),
—. g
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where as usual (UISi) is the n-tuple o in which the i-th component is replaced
by Si . This is also called a Bayesian Equilibrium.

When C is a finite BL subspace this game is an n-person game in which the
pay-off for player i is a vector of dimension equal to \Til , the number of
types of player i. This is actually the game studied by Harsanyi. We can, in this
case, make this an ordinary n-person game in which the pay-off to player i 1is

i = 5 - Y-3 Uy where ¥ Ea g , Y,i 1s a strictly positive constant.

k- adert B o y

Clearly, independently of the constant Y 5 - M8 choose, this game has the same
t

N.E. points as the above vector pay-off game. Aumann and Maschler (1967) suggested

Yeid s.t. tiéTthﬁ'z 1 to treat the inconsistent case.

Notice that both the vector pay-off game and the ordinary game we defined are

well defined independently of whether the BL subspace C 1is consistent or not.

Harsanyi preferred to discuss mainly the consistent case. This is because in that
case the game in strategic form is equivalent to what Harsanyi calls a ''game in

standard form."

Theorem 4.11 (Harsanyi): Let C be a consistent BL subspace of Y with a

consistent prior P . Then the strategic vector pay-off game defined on C has the
same N.E. points as the following game:

- A chance move chooses y € C , then each player i is informed of £

= ¥ i €N , player 1 then chooses at € A and receives u;(al R L

b

Proof. The proof readily follows from the definition of the games, the
definition of N.E., and the fact that Supp(P) = C .

Harsanyi made the argument that the players 'should' believe in P as the
prior on C . We by no means claim that here. The introduction of P is just a
matter of mathematical convenience. It serves to find the original N.E. points
naturally defined by C via subjective probabilities. Furthermore, since by
Theorem 4.7, P is common knowledge (in the consistent case), the above-described
'game in standard form' is also common knowledge which gives even more justifi-

cation for using it in analyzing the situation of incomplete information.

Aumann, R.J. (1976). Agreeing to disagree. Ann. Statist. 4, 1236-1239.

Aumann, R.J. and M. Maschler (1967). Repeated games with incomplete information:
a survey of recent results. Mathematica ST-116, Ch.III, 287-403.

Boge, W. and Th. Eisele (1979). On situations of Bayesian games. Internat. J.
Game Theory 8, 193-215.

Harsanyi, J.C. (1967, 1968). Games with incomplete players played by Bayesian
players. Parts I, II, III. Management et 14 (3,5.7).

Mertens, J.—-F. and S. Zamir (1985). Formulation of Bayesian analysis for games
with incomplete information. Internat. J. Game Theory 14, 1-29.
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Chapter 5

REPEATED GAMES WITH
INCOMPLETE INFORMATION (I)

One of the most interesting and important aspects of incomplete information
situations is the strategic use of information: When and how to reveal information?
When and how much to invest in collecting new information? How does information
flow between players? and so on. Clearly the right setting to deal with these
issues is that obtained by combining the Bayesian games of the last chapter with
repeated games. This is what we plan to do here. Most of the research done so far
in this direction was in the consistent O-sum two-person games. This is because

problems of information appear already in this case.

Incomplete Information on One Side

The first and simplest model of repeated games with incomplete information was
presented and studied by Aumann and Maschler in 1966. In their model the state of
nature was presented by a pay-off matrix chosen at random and known to one player
only:

- At stage 0 chance chooses k € {1, 2} with probability (1/2, 1/2) . The
result is told to player I (the maximizer) but not to player II (who knows only the
probability (1/2, 1/2)).

- At stage m , m=1l,2,... player I chooses im € I and player II chooses
g € J and (i, j,) 1s told to both players.
- After stage n , player II pays player 1 £ E aimjm where Al = (aij)
and A2 = (afj) are two I x J matrices known to Bgzi_players.
Denote this game by Fnﬁ%) , and its (minmax) value by vnﬁ%)
Example 5.1 Al = ((1] g), A2= (g 2)
It is easily seen that vl(%) = 1/2 and 1I's optimal strategy is to play his J

dominating strategy: i =1 if k=1 and i =2 if k = 2 . However, this I
strategy is completely revealing (CR), i.e. after the first stage II will deduce
from the move of I the k chosen and from then on he can guarantee not to pay

more than O . Thus the CR strategy yields player I a pay-off -E%- which tends to

0 as N = .

The other extreme behaviour of I is to play without using his information.
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This will be a non-revealing (NR) strategy since, being independent of k , player

I's move will give no information to II (about k). In this case each stage of

Pn(%l is equivalent to the following one-stage game:
fis eronas et o, g LS RN

&('ﬁ)""ﬁA +'§A —\0%/.
This game has the value % so in any Fn(%J with n > 2 , player I does better
by not using his information than by fully using it immediately. Later we shall
show that 1lim vn(%J = 4 , thus asymptotically player I cannot get more than

T—=>°0
what he gets by playing NR.
Ls==0+ A% - TR R
Example 5.2 A" = \ 0 0)} s A = (0 —l} :

Repeating the same discussion as in the previous example we have: By playing CR,

player I can guarantee 0 . By playing NR he can guarantee the value of
-1
A(%) ( 5 ?) which is -% . Since clearly vn(%) =0 V n it follows that
=
in this case the CR is the best strategy for I
=44 Q.2 2 . (6 4 -2
Example 5.3 A = (4 0_2) g A = (0 4 2)

- By playing CR player I guarantees 0 since the value of each matrix is 0 .

- By playing NR he guarantees the value of A(%) = (g g 8) which is again 0 .

- We claim that player I can do better than 0 , he can guarantee 1 in any Tn(%)

To do that player I 'prepares' two coins Cl and C2 . Both have the outcomes

{1, 2} with probabilities (%, %) in Cl and. (%, %) in C2 . If the game is

Ak he uses Ck to choose i € {1, 2} and then plays that move i in all stages.
The only information player II obtains is the outcome i of the coin without

knowing which coin was used. However, the probability distribution of k is

updated as follows:
Pk =1li=1) = %; “Pk=1li=2) = %

o, if 1 = 1 , the expected (row) pay-off-is:

%(4: 0: 2) + '1'5(0: 4: "2) (3: l: l)
If i1 =2 the expected pay-off is

13(4: 0: "'ZJ * %(0: 4: 2)

(1, 3, 1)

In any case, the expected pay-off is at least 1 . We shall see later that

it v - [5)-=-1 .
neeo
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Limit of Value and Value of Limit

As a first step in the development of the theory it is important to clarify the

notion of value for repeated games in general. As we mentioned in previous lectures
one would like basically to model a many times repeated game. Two approaches suggest
themselves: The first one which we used in discussing the examples may be called
limit of value, and consists of considering the value of the n-stage game I

(with pay-offs divided by n), letting n > * . In the second approach value of
1imit, one defines the infinite stage game I and considers its value. The

problem in defining [ 1is the lack of an obvious candidate for a pay-off function,

n
since the expectation of 1lim -%- L g s where - is the pay-off at stage m , may
> m=1

fail to exist. As we mentioned in relation to stochastic games, to overcome this
difficulty we either define some kind of limiting average or we define the value of
153 divectly without defining the pay-offs. This is what we did in definition 3.14
and this will be our attitude whenever we treat the infinite game.

Unlike the situation in stochastic games where the two approaches yield the
same value, in repeated incomplete information games, they may differ. To see how

this can happen let us first observe:

Remark 5.4 1f v is the value of T then lim v, exists and equals to V.

To see this note first that a strategy o (or T) in T defines uniquely a
strategy O, (or Tn) in Fn for n=1,2,... . This may be called the n-stage
projection of ¢ (or T) . Our remark then follows from definition 3.14 which

implies that if a strategy e€-guarantees Vv in T its n-stage projection g-

o 2
guarantees Vv 1n Fn for n sufficiently large.

In view of remark 5.4 the only divergence which may occur is when limit of value
exists while the value of limit does not. The first example of this kind was
provided by Zamir (1973). Due to time constraints we do not analyze that example
here but we shall see this phenomenon later on in our lectures.

Let us now reconsider our first model generalized in the obvious way.

- The states of nature are Ak = k€ K= {1,...sK} , which are 1 x J  pay-
of f matrices of a zero-sum two-person game in which I = {1, . wssl} and I = {1,500
are the pure strategy sets of player I and II respectively.

The state of nature is chosen according to a given probability vector

1 K., k K
p€P={p=0@®,..,p)lp 20, VvV k; Ep = 1}

We denote the repeated games by I (p) and their values by v,(p)

Lemma 5.5 vn(p) is concave on P for all n=1,2,...

Proof. Let py, P, be in P and o in [0, 1] such that ap, + (1 - a)p2_= P

Consider the two games Tﬁ(a, Py p2) and TH(@, Pq> p2) defined as follows:

s
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- In T'' chance chooses r € {1, 2} with probability (a, 1 - @) ; both
players are informed about the outcome. Then Pn(pr) is played.

- F; 1s defined in a similar way but only player I knows the r chosen.

- The above description is common knowledge.
Note that player I has the same strategy set in both games while player II's strategy
set in FH 1s contained in that of Fﬁ . Thus, denoting by vy and vy the

values of the games, it follows that vﬁ E_VH ‘

Now clearly vﬁ = avn(plj + (1 - a)vn(pz) . On the other hand FH has the
same value as I (p) since for player I the knowledge of r is useless (he will
know k), and for player II, k is chosen (in two steps) with probability

ap; + (1 - a)p, =P . Hence ve = v,(p) , and the result follows. e

In considering the value of Fn(p) we make use of the minmax theorem which
says actually that an optimal strategy of player I guarantees the value even if
playerIT knows that it is being used. Now given a strategy o of player I in L
playerII can compute before each stage m a posterior probability p, on K,
that is, the conditional probability distribution on K given O and given the
history up to that stage. The random variable Py, plays a very fundamental role
in the theory; the role of state variable in the dynamic programming approach.

The use of this approach is possible due to the following theorem which we mention

here without proof (see Mertens and Zamir, 1971-72).

Theorem 5.6 The game Fn(p) has the same value as the game in which player I

announces his strategy and at stage m a new game (pm) 1s played.

I‘n-m+1
The most important consequence of this theorem is the following recursive

formula for Vo

. k k.k .
max {m%n(Z p s A )j + n ; Sivn(pi)} A (5.1)

1
y S j k i

(p) =

n+l n

3 1

Here s = (Sk)kEK is the first stage strategy of player I, i.e. sk = (s?). —
a probability vector on I . s = I pksk and P; 1s the probability vector on K

k

: k -
given by P; = Py Si/si ;

Lemma 5.7 For all p € P the sequence vn(p) is decreasing.

Proof. vn+1(pj f_vn(p) 1s proved inductively using (5.1) and the concavity of

% (Lemma 5.5) which implies: E S, Vn(pi) f_vn(p) Q.B.D,
Definition 5.8 The nonrevealing (NR) game is the one-stage game, denoted by
A(p) , in which the pay-off matrix is I pkAk . The value of the NR game is denoted

by u(p) 8

This is the game in which none of the players is informed about the choice of
k
. A
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Lemma 5.9 For all n , vn(p) > (cavu)(p) on P .

Here Cav u is the smallest coneave function on P which is greater or equal to u.

Proof. By using an optimal strategy of A(p) in each stage of Fn(p) , player
I guarantees u(p) per stage thus vn(p)_z_u(p) . Since ¥ is concave, the

result follows. Q.E.D

Lemma 5.10 For each n , Vn(p) is Lipschitz.

Proof. 1t follows from the easily proved observation that if A and B are

two pay-off functions of the same dimension then:

|lval(A) - val(B)| < mg; Iaij - bijl Q.E.D.

Corollary 5.11 As n=>«, v, uniformly converges on P to a concave

function v which satisfies v(p) > (Cav u) (p)

Proof. The proof follows from the monotonicity, the Lipschitz property, and

the concavity of Vo combined with the compactness of P .

For notational simplicity only, let us assume from now on (unless otherwise

specified) two states of nature K = {1, 2} . Then P can be identified with the

unit interval [0, 1] , where p € [0, 1] is the probability of Al
To get a deeper understanding of the monotone convergence of Voo let us recall

the sequence (pn)gzl of posterior probabilities (thus random variables in [0, 1]),

and observe that this is a martingale bounded in P .

Lemma 5.12 For any strategy o of player I in Fn(p) we have:

n
LElp,,, - Pyl < —#PU - D)
/n

m=]

=

Here E 1s the expectation with respect to the probability induced by o and p .

Proof. Since p_ 1is a martingale with expectaticn p (which is pl) we have:

n n
2.7 - 2
ECZ (pp,q - Py ) = ECI (ppyy -P))" = E(p,; -pP)° < p(-p)
m=1 m=1
The result now follows by using Cauchy-Schwartz inequality. Q.E.D
The expectation E|pm+1 - p.| is a measure for the amount of information

revealed in stage m by player I. In particular, if, at that stage, he plays NR

(i.e., independently of k) then P, = Pp and thus E|pm+1 - Pml The next

lemma says that if player I does not play NR his extra gain is somehow proportional

to the information he reveals. At any stage m let S = (si, si) be the one-
stage strategy played by player I (i.e., play the mixed strategy S; if the state
is Ak). Let t be the mixed strategy of player II and let gm(sm, tm) be the

conditional expected pay-off (given pp) at that stage, then:
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Lemma 5.13 For all Sm and t

g fos t) - g (5 ot 3f-% B (ip

k - . P & 2
where ¢ = 2 ?a§ . Iaij| s 8. is the NR strategy Sm. pmgm + (1 - pm)sm , and
Em is the conditional expectation given P -

We omit the proof which is a matter of straightforward verification (see

lemma 2 in Zamir, 1971-72).

Lemma 5.14 For all p E€P , Vn(p) < (Cav u)(p) + 0(1/vn)

Proof. For any strategy o of player 1 compute p_ and let player II play at
stage m a mixed strategy tm which is optimal in a(pm) . Denote this (response)
strategy of player II by T and by pn(G, T) the expected average pay-off for o
and T .

Since §m is an NR strategy, gm(ém, tm) E_u(pm).f_(Cav u) (p,,) - Using (5.2),
averaging over m and using the Jensen's inequality for Cav u we obtain:

n

C
p (0, ) < (Cau)(p) + ;;mElEE\Pmﬂ =9 )

Combining this with lemma 5.12 we conclude that for each o there exists T such

that

p (0, ) < (Cavuw(p) + — AT -p) .
/n Q.E.D.

The following theorem, due to Aumann and Maschler (1967), is a corollary of

what we have so far.

Theorem 5.15 (i) 1lim vn(p) = (Cavu)(p) V p € P and the convergence is

)

uniform.

(ii) There exists ¢ > 0 such that

- < Vn(p) - (Cav u) (p) < cvp(l - p) for all p EP and all n .
=4 5 %

Zamir has shown (1971-72) that the bound O0(1/v/h) for the speed of convergence

is the best uniform upper bound. This was done by the following.

Example 5.16 Consider the game in which:

Eem ol i e i i b
5 G- ) RN R )

Here u(p) = val(_g tg _g : ;) e~ Yp €10, 1)
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We state without proving that v_(p) > p(l - p)/v/n for all p and all n .
(Here (Cav u)(p) =u(p) =0 V p€P.)

Remark 5.17 The central fact to emphasize in theorem 5.15 is that Fn(p)

cannot be analyzed for a single 0 < p <1 unless we study the whole family of

games Fn(p) to p EPR .

Examples Revisited

Example 5.1: u(p) = val(p 0 \\= p(l - p)

0 1-p)
Since u(p) 1is concave lim vn(p) = (Cav u)(p)y =p(l = p) . In
particular 1lim vn(%) =4 .
_ b -p 0 \_ ;A . .
Example 5.2: u(p) = val R ETE b -p(1 - p) , whose concavification is 0.

Therefore 1lim Vn(p) =:(Cav-8){p).= @ ¥ p € [0, 1]

. ’ 4p  4(1-p)  2(2p-1) : -
Example 5.3: Here wu(p) = val(4p 4(1-p) 2(1-2p) is the following

function:

Therefore (Cav u) () = ‘() + m(d) =1 .

The value of I'w(p)

By remark 5.4, if T (p) has a value it must be (Cav u)(p) . To prove this
(see Definition 3.14) one has to show that:
(a) for each € > 0 , Player I can guarantee- (Cav u)(p) - € ; ”

(b) for each € > 0 , Player II can guarantee (Cav u)(p) + € .

The proof of (a) is the easier part. It is even true that Player 1 can guarantee
Cav u , i.e. he has a strategy o such that pn(o, 1) > (Cav u)(p) for all n and
all T of player II. This strategy is quite transparent in Example 5.3. There
player I constructs a type-dependent lottery in such a way that given the outcome of
the lottery the (posterior) probability of Al is either % or 4 with equal
probabilities. According to the outcome of the lottery he then plays optimally in
A(’%) or A(%) in all stages of the game. In such a strategy, the revelation part

is only in the first step, which we may call the splitting part. That is the part
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in which the first stage posterior is distributed in the 'right way' so that
E(pl) = p and Eu(pl) = (Cav u)(p) . After the splitting part, player I plays an

NR strategy which is an optimal strategy in &(pl)
The fact that this splitting can always be done in the desired way yields the

following (see Mertens and Zamir, 1971-72, Lemma 2 or Sorin, 1980, Lemma 2.17).

Lemma 5.18 If player I can guarantee f(p) 1in I _(p) , he can also guarantee
(Cav £) (p)
Corollary 5.19 Player I can guarantee (Cav u)(p) in T_(p)

Proof. Player I can guarantee u(p) per stage by playing at every stage, and
independently of his type, an optimal strategy in A(p) . The result now follows

by Lemma 5.18.
To prove (b) let T be an optimal strategy of player II in.Fn(p) . Lot

N2 N, be large integers (to be specified later) and consider the
following strategy T of player 2 in TI_(p): At the first stage play 1, . At the
next 2N, stages play N, times T, and so on. After 1 + 2N, + ...+ mN_

stages play Nm+1 times Rt~ 3 At the beginning of each 'block' player II ignores
the history, as if the game newly started. With this T player II's average pay-off

for the first (1 + 2N, #+ ... * mNm) stages is at most:

(vl + 2N2v2 i +mvam)/(1 + 2Ny + ...t mNm) ; (5.3)
Now given € > 0 we can choose NZ’ NS"" so that the expression in (5.3) will
be at least v - %— for sufficiently large m . Since 1lim v, = Cav u this is at

least (Cav u)(p) - € for sufficiently large m .

This concludes the second result of Aumann and Maschler.

Theorem 5.20 For all p € P, (Cav u)(p) is the value of [.(p)

Admittedly, the above-described strategy of player II to g-guarantee Cav u
is far from being appealing. Even for very moderate m , T, may be practically
nonfeasible to compute even by the largest existing computer. In contrast, we
shall now describe another very elegant, appealing and easily computable e-optimal
strategy for the uninformed player, player II. This strategy relies on a
fundamental paper of Blackwell (1956).

Blackwell considered a two-person game with a '"pay-off matrix'" B whose
elements {bij|i € I, j €J} are vectors in the K-dimensional Euclidean space
RK . The game is infinitely repeated. After stage m , both players are told the
vector pay-off 5. € RK reached at that stage so that the total information up to

this stage is the m + 1 "“history" hm+1 = (gl,...,gm) . A strategy of a player is

a sequence of mappings from histories to probability distributions on his pure

strategies (I or J).
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PDefinition 5,21 — A §et "5:G RK is approachable for player II with Ty if

for each € > 0 there exists N
E
o)

0 such that for all o of player I,and all p> N

= 0
Tm(d(S,.gn) ) <€ _, where d(+, *) 1is the distance 1n RK,

’

n
&, " (1/n) 2 En and E 1s the expectation with respect to 0 and T .
m=1 Us'lp 0

S is excludable by player 1 with I, if there exists 6 > 0 and N,
such that for all T and all n_ziNO s EAd (S, gn)) >

Similar definitions are obtained by inversing the roles of the players. S 1is
approachable for a player if he has a strategy with which it is approachable 1or
him,

For each t = (tl,...,tJ) , a probability distribution on J , denote
R, 7(t) convex hull of {'EJ tjbij ;-4 € I} . Hence; if player 1l uses € s
expected pay-off will be in Fﬁj{t) . The following theorem is the only part of
Blackwell's results needed here:

Theorem 5.22 (Blackwell 1956): Let S be a closed set in RK . If for each

x £ S there exists t(x) , a probability vector on J such that if y in S 1is
the closest point to x , the hyperplane perpendicular to the line x - y through
y separates Xx from Iytgt(x)) , then S is approachable for player II. An
approaching strategy is given by:

- at stage 1 or if én € S play anything;

- otherwise play t_ ., = t(@m) = R» 1

With this theorem at hand we now construct a strategy of the uninformed player

which €-guarantees (Cav u) (p)

Step 1. - Let H= {x € RKla ».x = .0-+ p} Dbe the supportiﬂg hyperplane to

Cav'u at the point p , 1.8. @ € RK satisfies:

(Cav u)(p) = o -« p and Uigl =< . a «u4f - for a1l ¢ & P

(As usual, x - y denotes the dot product 1in RK =

Step 2. Consider the set S = {y € RK|yk E_ak. for all k€ K} ;-i.e.-the
‘corner set! 1in RK defined by o . It is enough to show a strategy of player II
with respect to which S would be approachable for him, since this would mean that
the average expected pay-off up to state n will be at most

o« p+ €= (Cavu)(p) + € for n large enough.

K
otep 8., Let X € R~ be the average vector pay-off at the end of stage n - 1,
and let Yo be the point in S closest to X, The approaching strategy for
player II is as follows. At stage n:

- If Y =t (1.8, X € S) play anything.
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- If x, £ S let p' €P be a vector in the direction of xn =T Play

t which is optimal in A(p')
Note that the hyperplane H' through Yoo is perpendicular to p'
H' = {y € RKlp' 3 = -pt-s yn} separates X_ from X (since S 1is convex). Thus
in view of Theorem 5.22 it remains to show that RTI(tn) is on the same side of H'
as— 5 . -In fact, since t. is optimal in A(p') we have
z p'k sAktn §_u(p') <o + p' for all mixed strategies s of player I.

k
Now remark that if p'k > 0 then yi = uk goithat o+ p' =y ¢ p = o TR

i.e., when t_ is used, the resulting expected vector pay-off for that stage is on

the opposite side of H' from X s that is to say, on the same side as S .

Remark 5.23 Comparing Definition 3.14 and the notion of approachability in

Definition 5.21 we actually prove a somewhat stronger result than needed.

Not only that, for each € > 0, playexr Il has a strategy T which guarantees

pn(d, TE) < (Cav u) (p) + € for large enough n for every 0 , but he has one

strategy T which does this for all € > 0 .

Remark 5.24 When in the above-treated model the informed player is player 11,

the minimizer, then the Aumann-Maschler's result reads: 1lim Vi = value of T _ = Vex u,

where Vex u is the largest convex function ¢ satisfying f(q) < u(q) for all
g€ ¥ .




118

Chapter 6

REPEATED GAMES WITH
INCOMPLETE INFORMATION (II)

Incomplete Information on Both Sides

The first model of incomplete information for both players was given by Aumann
and Maschler (1967) and was the natural generalization of their first asymmetric

model treated in the previous chapter.

The Model. The states of nature are I x J matrices Aks where
k €K =1{1,...,K} , s €S=1{1,...,8} . p€P and q € Q are probability
distributions on K and S , respectively.

At stage 0 , chance chooses the state of nature according to the product
probability p X q., i.e. Pr(AkS) = pkqS V k, s . Player I is told the value of
k and player II is told the value of s . (That is, K and S are the type sets

Of players I andII respectively.)

At stage m , m=1,2,... player I chooses 1o € I and player II chooses
3 €J and (i, Jm) is announced. ¢
In the n-repeated game, denoted by Fn(p, q) , the pay-off is _%- z a?sj )
m=1 "m m
and the value is denoted by vn(p, q) . In the infinitely repeated game

I _(p, q) we again define the value v_(p, q) without defining a pay-off function
(Definition 3.14).

Remark 6.1 Note that in our model the types of the players are chosen

independently. We shall later refer to this as the independent case in contrast to

the dependent case to be introduced later.

The nonrevealing game (NR), denoted by A(p, q) is the zero-sum two-person
k s,ks

game with the matrix pay-off I p'q"A™” ., Its value is denoted by Wiy, QJ- .
k,s
For any real function f(p, q) defined on P x Q we denote by Cav f (-, q)
D
the concavification with respect to p , the value of q being fixed. Vex f(p,*)

is defined similarly. With minor abuse of notation we write Cav f(p,q) and V?f f(p,q)
p

instead of (Cav f(+, q))(p) and (Vex £(p, +)(q) , respectively.
P q

The Infinitely Repeated Game TIw(p, q)

We recall without repeating the notion of strategies in I (P, q) . Note

||




119

k
that for player I a strategy 0 can be looked at as a K-tuple o = (o ) —
where Uk is a usual infinite game strategy (used by player 1 if he is of type Kk).

A similar description is valid for the strategies of player II.

Definition 6.2 f(p, q) is said to he the minmax of r . (, q). TE

(i) For each strategy T of player II, V € > 0 there is o of playerlI
and N such that Dn(U, T) > £lp, §q) -~ € Tor aFk # Z N .

(ii) VY € > 0 , there is N(€) and a strategy Te of player II such that
Dn(U,TE) < f(p, q) + € for all o and all n > N(€)

The notion of maxmin is defined similarly.
Condition (ii) says that player II can guarantee f+ € in terms of 1lim sup.
Part (i) asserts that he cannot guarantee anything lower than f even in terms of

lim inf.

Theorem 6.3 The minmax of T_(p, q) equals Vex Cav u(p, q)

qQ P
The maxmin of T_(p, q) equals Cav Vex u(p, q)
P q

Proof. We prove only the first part, the second follows then similarly.

Step 1. 1If player II ignores his private information (s) and plays NR,
the game [ _(p, q) reduces then to fW[p) with lack of information on one side

defined by the matrices Ak = L qshks and the probability p on K . By

S e
Theorem 5.20, in this game player II can guarantee (Cav u) (p) where u is the value
of E pkﬁk ~ kE pquAkS which is just u(p, q) . That is, player I1I can guarantee
»S

Cav u(p, q) in the stronger sense of Remark 5.23: he has a strategy T which
guarantees pn(a, T) < Cav u(p, q) + € for all ¢ and for all € >0 for n large

enough. ¥

Step 2. By Lemma 5.18 used for the uninformed player 1I,he can also guarantee

(in the same sense) Vex Cav u(p, q)
qQ P

This concludes the proof of (a somewhat stronger version than) (ii) in the
definition of minmax. The proof of (i) is more technical, therefore we only outline

the idea and main points in the proof.

- Given a strategy T , player 1 can compute the posteriors q_ on S . Now

(qm]z=1 , being a martingale bounded in the simplex Q , converges with probability

1. In terms of information this means that far enough in the game, player II will
reveal almost no information. Player I can therefore play NR during a large number
of stages N in order "to exhaust the maximal amount of information from T."
Afterwards the situation is almost the same as if playerII plays NR so player I can

obtain u(p, qNJ , hence Cav u(p, qn) . His expected pay-off is (up to an ¢€),

P
E Cav u(p, qN] which is at least Vex Cav u(p, q) .
P qQa P
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The technical steps which turn this idea into a formal proof are:

0

S S S S

- < - 11 o. Thus let o* be the
1 Ep,G,T Emil(qm+l . b § ¢ {1l =9 ) fora us le e

strategy of player I which e-achieves the supremum of this quantity up to stage N .
2. Since q depends only en q , 7T, hm and jm , the 'average' NR strategy

Oy Wwhich will have the same distribution on j_ will produce the same q_  as

o* and thus will do the same job as o* .

3. For any strategy o which coincides with o, up to the stage N we get

0
for all n > N, E(E|qi = q;|J < M/e for some constant M .
= . s

4. Given T and € > 0 , player I plays 0, up to stage N , then does the

'splitting of p ' to (Pi)i€I with probabilities (Ai)i€I such that E Aipi =p

and % Au(p,, qy) = Cav u(p, qy) and then play optimally in A(p,. qy) Q.E.D.

Corollary 6.4 The infinite game has a value if and only if:

Cav Vex u(p, q) = Vex Cav u(p, q) . (6.1)
P q q P

The following example provides a game in which (6.1) does not hold and hence

[.(p, q) does not have a value.

Example 6.5 (See Mertens and Zamir 1971-72) Let K = {1, 2} , S = {1, 2} and:

Am:(O - A =0 32 Ll wk 1=, L%
-1 1

T

Il
/.il'-
O
o
-
-
S—

/3% SR -1 1 -1 1 22
A"’(oooo) A

u(p, q) , which is the value of the game

1
® o "
— O
|

OO
— O
|

ol
S

(p-q q-p pP-q q-p)
q'=p P-4’  p=q'. q'-p

with p'=1-p; q'=1-p , 1s given below together with Cav Vex u and

Vex Cav u .
(1,1) S Ty e 1o
l l.,n:[we = '

i oS i (2¢-1) %" |(2p™-1)%
_’l -2 —2 = — }'5

(27-1) 9' [(2p-1)9

—1_
q * (0,0)

Cav Vex u Vex Cav u
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The Finite Games I'(p,q)

With the nonexistence of value for I (p, q) there still remains the question
of existence of the limit of vn(p, q) , the value of the n-repeated games
Tn(p, q) . This is answered by the following theorem which we bring without proof

(see Mertens and Zamir, 1971-72).

Theorem 6.6 For all (p;, q) EP x Q , lim vn(p, q) exists and is the only

simultaneous solution of the following two functional equations.

v(p, q) = Vex max {ulp, @), v(p, q)} (6.2)
q

v(p, q9) = Cav min {u(p, q), v(p, @)} . (6.3)
P

f Remark 6.7 Let us show that when Cav Vex u = Vex Cav u this is also the

f unique solution of (6.2) and (6.3), as it should be.

- First observe that Vex Cav u <s a solution of (6.2). In fact, notice that

Cav and Vex are monotone operators, therefore, on one hand:
Vex Cav u = Vex max {u, Cav u} > Vex max {u, Vex Cav u}

On the other hand, Vex Cav u < max {u, Vex Cav u} . Taking Vex from both sides

yields the other inequality and so Vex Cav u = Vex max {u, Vex Cav u }.

-~ Similarly, Cav Vex u is a solution of (6.3). Therefore, if

Cave Vex u = Vex Cav u , this is a common solution of (6.2) and (6.3). That
it is the only common solution follows from:

- Any v which satisfies (6.2) and (6.3) satisfies Cav Vex u < v < Vex (av u.
In fact, from (6.2), v > Vex u . Sinece by (6.3) v 1is concave we have

v > Cav Vex u . The second inequality is obtained similarly.

Extensions of the Model

Of the variants of the above-described basic model let us mention two. One is
the direction of allowing a more general mechanism for revealing information than
just through the moves. The other is in allowing a more general structure of prior

information and dependence between the types of the two players.

Stgnaling matrices. We modify our model by introducing two matrices H?s and

H?? of dimensions I x J and with elements h?s(ij) and h??(ij) in some finite
set H . If the state of nature drawn at stage 0 1is ks and if at stage m the

players choose im and jm , then player I is informed of h?s(im,jm) and player II
g s s e R
of hIi(lm,Jm) .  When h%s(l]) = h%%(l]) = (i, j)- forall k-and s -this is the

usual model which we shall therefore call the standard signaling case.
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Aumann and Maschler (1968) proved their result for the incomplete information
on one side. v = lim vn = Cav u for general signaling matrices, of course after
redefining appropriately the NR game and its value u . It turns out that the
signaling matrices for the informed player are immaterial for this result (they may

have an effect on v but not on its limit).

Definition 6.8 For p €P a one-stage strategy of player I is nonrevealing
(NR) if for each j € J , the distribution on the letters of H in the row h?fij)

is the same for all k . (That is, this is a strategy after which the posterior on
K cannot change.)

Denote by NR(p) the set of nonrevealing strategies of player I at p . (Note
that NR(p) may be empty, but is nonempty when p is an extreme point of P .)
Define the NR game A(p) as the game in which player I is restricted to NR(p) if
it is not empty. Finally:

value of A(p) if NR(p) # ¢
u(p) = {

- if NR(p) = ¢

With this definition Aumann and Maschler proved:

Theorem 6.9 lim vn(p] and v (p) exist and both equal to (Cav u)(p) .

11—+

The generalization of Blackwell's approachability strategy for the uninformed
player was done by Kohlberg (1975).

For incomplete information on both sides Mertens and Zamir (1980) proved the
above-stated results about minmax; maxmin and 1lim v for signaling matrices which
are independent of the state of nature. The model they treated was more general

also in another respect, namely, they treated the dependent case which shall be
explained briefly now.

The Dependent Case. As we remarked before (Remark 6.1), the Aumann Maschler
model for incomplete information on both sides assumed that the types of the two
players are chosen independently. In such a model the probability distribution of a
player on the types of his opponent is independent on his own type.

The Model. The set K 1is the set of states of world and p € P is a probabi-

lity distribution on K . kI ana xII

are two partitions of K . (The elements of
kI and k! are the types of players I and II, respectively.) The signaling
matrices H; and Hjyare the same for all states of nature (and this is a very
crucial assumption without which the results are not valid).

As mentioned above all results to the special case were extended to this general
case where u(p) is the value of the one-stage game in which both players are
restricted to NR strategies, i.e., strategies which produce a probability distribu-

tion on the signals of the opponent which is independent on the state of the world k
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(no matter what the opponent does).

The main difficulty was the extension of the operators Cav and Vex since
we no longer have the natural variables p for concavification and q for convexi-
fication. The key to the right generalization is the following observation. If
the distribution on K is p € P , since any one-stage strategy of player I is
e
stage will be in the set HI(P)‘Z P defined by:

-measurable, the resulting posterior distribution on K given his move at that

I
I (p) = {(Otlpl,...,aKpK) GP\(ak)kEK is K -measurable}
I
Similarly,
II
I (p) = {(Blpl,...,BKpK) € PI(Bk)kEK is K -measurable}
110 ¢

Clearly for any p € P both HI(p) and HIIQi) are nonempty convex and campact
subsets of P . A real function f defined on P will be called I-concave if
for any py € P, f(p) restricted to II;(py) 1is concave. The notion of II-convex
is defined similarly. Then we define C?v £ and V?% f in the natural way and

we have:

Theorem 6.10 (a) The minmax of T (p) is Vex Cav u(p)

) 6 A |
(b) The maxmin of T_(p) is C%¥ V?x u(p)

(c) For each p € P, limv_(p) exists and is the only

solution v of the following two equations:

(i)  -¥(p) -= Vex max {u(p) , v(p)}
(ii) vip) = C%v min {u(p), v(p)!}

The existence of a unique solution to (i) and (ii) is an interesting duality
theorem that can be proved without any mention of game theory (see Mertens and

Zamir 1977b, and Sorin 1986, forthcoming).

Speed of Convergence and the Normal Distribution

We have seen that in the case of incomplete information on one side and standard
signaling, the speed of convergence of Vn(P) is bounded by 0(1/v/n) and this is the

best bound. This turns out to be the case also for incomplete information on both

sides with standard signaling. When signaling is by H; and ‘HII independent of
)

the state of nature we have a higher bound of 0(1/n2) and this is the best bound

(Zamir, 1973a).

Let us recall example 5.16 with Al = (_g _i) , Az - (_

2 -2

5 2) « <~ FOYT Eh1s

game (Cav u) (p) u(p) =0 V p €P and




124

p(l -p)//n < v.(p) < AT -p) //n . (6.4)

The order 0(1/v/n) may be explained by the following argument. Since
Cav u(p) = u(p) , the informed player must 'essentially' ignore his information and
play the same mixed strategy (%, %) at each stage independently of his type. The
average pay-off will be a random variable with variation (namely standard deviation)
of the order of (1/v/n) . In the example under consideration the informed player
can take advantage of this natural variation by 'pretending' to play (%, %), but
actually deviating slightly from it. This deviation is exactly of the order that
the uninformed player might expect as random but is actually used to the advantage
of the informed player.

The following, quite surprising, result (Mertens and Zamir, 1976) shows a much
closer connection to the Central Limit Theorem than outlined above: the normal

distribution appears explicitly.

Theorem 6.11 For the game in Example 5.16: 1lim Jﬁlvn(p) = ¢(p) , where

n—>xo
¢(p) is the standard normal density evaluated at its p-quantile, i.e.

o(p) = (1/V27) exp(—%xé) and (1//§Ej IXP exp(-%szdx = D : (6.5)

In a recent unpublished result, Mertens and Zamir showed that this is generally
true at least for the case of two states of nature. Whenever the error term
vn(pJ - 1im vn(p) is of the order of (1/vV/n) the coefficient is the normal
density function. The proof has nothing to do with the above intuitive argument.
The normal distribution comes out as a solution of a certain differential equation.
At this point, this result is quite mysterious and the "something behind" is still
to be discovered.

The result of Theorem 6.11 is intimately related, actually equivalent, to the
following optimization problem, which makes no mention of game theory (Mertens and

Zamir, 1977). Let X(p) = pgs Pys..-Pp, be a martingale with values in [0, 1] and

Pg =P - Let M(p) be the set of all such martingales.
n
Theorem 6.12 lim ( Sup (1/vn) I E|lp S pml) = ¢(p) ,
no X(p) EM(p) m=0

where ¢(p) 1is given by (6.5).

The connection between the two problems should be clear by now. The (pm)n 1
1 i

are the posterior probabilities of A~ (given that player I is using a certain
strategy o). Efpm+1 - Pml is a measure of the information revealed by player I
at the m-th stage. This is also his pay-off at stage m (compared to u(pm) = 0

that he would get if he would play NR). Therefore, the objective function to be
n
- = L] L] n L L] -
maximized is mEOElpm+1 - Pm, . But since (pJ . is a martingale bounded in
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[0, 1] , this expression is bounded by 0(1//n) and is in fact of that order.

Relations to Stochastic Games

By now it should be clear that repeated games of incomplete information are
fundamentally different from stochastic games. In repeated games of incomplete
information the state of nature is fixzed but may be unknown by some players. It is
the 'state of mind' of the players that changes along the play. In stochastic games,
on the other hand, the state of nature changes randomly but it is known to all
players. This difference is well manifested in the results: infinite undiscounted
stochastic games have a value while incomplete information infinitely repeated games
have no value in general (except for some special cases). Nevertheless there is a
close relation between the two models which consists mainly of the fact that some
incomplete information games can be transformed to equivalent stochastic games. To

see that, consider the following examples.

Example 6.13 In a two-person zero-sum game [ there are two states of

12
nature {1, 2} chosen with equal probabilities. The pay-off matrices are:

_ (0 0}Y\ . _ (0 -2
A‘l_({]dl)’hz_(Z 0)‘
No player gets any prior information and both get the same signals according to the

signaling matrices

_ fa b . - % B
Hl“(cd)’Hz‘(cd)

Since the values of both Al and AZ are 0 it follows that:
- As soon as signal b or e is announced a pay-off -1 is made and the
games moves to an absorbing state with value 0 (we denote this by -1, =+0%*).
- As long as neither b nor e was announced, any signal a yields a pay-off

0 for that stage and the same game is repeated again, similarly for c¢ and
d .

We summarize this as follows:

(0, +same -1, »0* )
1, +same 2, +same

This means that our game is equivalent to the infinitely repeated game with one

x
absorbing state: (? g ). (We omitted the -1 since it does not affect the evalu-

ation of the pay-off sequence which is 0 from a finite stage on.)

Now this game has clearly the value 1 , therefore this is also the value of the

infinitely repeated game in our example.
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Example 6.14 Consider the game I, which is of the same type as T;, of

the previous example, but with states of nature {2, 3} and:

T e e %
By 8 (2 (J) iR (-4 -2) ;

Reeitla oy de
i DK |

: |

\ This is equivalent to the infinitely repeated game (_1 _1) with value -1 . |
\

|

| Example 6.15 (Mertens, 1982)  Consider now the same type of game with three

i states of nature {1, 2, 3} chosen with probabilities (;, é, é) . The pay-off

and the signaling matrices are as before: |

HEH O SR ) TR ¢

a. b _ a e : - Y
2 Shks (c ci) ’ By (c (i) ’ 3 (c ci)

Using the same reasoning as before we reduce our game to: |

I
I
I

Ay

g 2/%:1"12 _g 2/3<F23 |
1/3% A, &' 178 A |
|

—%, »>same —%,-+same

T e s e )

By our previous examples V(PIZ) = ] . V(st) = -1 . Also V(Al) = V(AS) = -

2

* _1%*
Therefore our game is equivalent to the repeated game B(El i} ) :

This is a special stochastic game called '""The Big Matgh" (Blackwell and

Ferguson 1968). The foregoing reduction of some games with incomplete information
to games with absorbing states is due to Kohlberg and Zamir (1974). By induction on
the number of states of nature they proved this type of reduction to the family of
repeated two-person zero-sum games with incomplete information in which:

(i) The players have no prior information on the state of nature, 1i.e.,

|
o= =K

(ii) The signals are the same for both players.
(iii) The signals tell the players at least each other's pure strategy choices.
As a matter of fact, it was this work of Kohlberg and Zamir that motivated the
generalization of Blackwell and Ferguson's results about the Big Match to general
stochastic games with absorbing states. This generalization, which was accomplished
by Kohlberg (1974), accelerated the research on stochastic games which was concluded
g in a very satisfactory way by the works of Bewley-Kohlberg (1976a, 1976b, 1978) and
| Mertens-Neyman (1981).
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