Homology representations of braid groups
R.J. Lawrence
Abstract: In this thesis, a topological construction of Hecke algebra representations associated with two-row Young diagrams is presented. These are the representations which appear in the one-variable Jones polynomial, looked at from the braid point of view. The construction used obtains these representations from monodromy representations on a vector bundle whole fibre is the homology of a complex manifold with a suitable, non-trivial, abelian locaal coefficient system. Alternatively, they are expressed as the monodromy representations obtained from the solutions of suitable systems of differential equations.
In the work of Tsuchiya & Kanie and Kohno, another construction of these representations can be found, in terms of the monodromy of n-point functions in conformal field theory. A comparison between the two constructions is made, which leads to a detailed correspondence, and the implications of this, in the context of conformal field theory, are very briefly discussed.
Keywords: Braid groups, Knot theory, Burau representation, Conformal Field Theory, Hecke algebra, representation theory, monodromy representation.
Length: 147 pages
Reference: D.Phil. Thesis, Univerity of Oxford (June 1989)
Last updated on September 4th, 1996.
ruthel@ma.huji.ac.il