
Chapter 6

Random Variables (Continuous
Case)

Thus far, we have purposely limited our consideration to random variables whose
ranges are countable, or discrete. The reason for that is that distributions on count-
able spaces can be specified by means of the point distribution; the distribution is
uniquely defined by specifying it only for elementary events. The construction of
a distribution on an uncountable space is only done rigorously within the frame-
work of measure theory. Here, we will only provide limited tools which will allow
us to operate with such variables.

6.1 Basic definitions

Definition 6.1 Let (⌦,F ,P) be a probability space. A real-valued function⌦→
R is called a continuous random variable, if there exists a non-negative real-
valued integrable function fX(x), such that

P({! ∶ X(!) ≤ a}) = FX(a) = � a

−∞ fX(x)dx.

Moreover, fX is normalized,

� ∞
−∞ fX(x)dx = 1.

The function fX is called the probability density function (pdf) ( �;&#-5;%% ;&5*57)
of X.



132 Chapter 6

Comment: Recall that a random variable has a �-algebra of events FX associated
with its range (here R), and we need X−1(A) ∈ F for all A ∈ FX. What is a
suitable �-algebra for R? These are precisely the issues that we sweep under the
rug.
Thus, a continuous random variable is defined by its pdf. Since a random variable
is by definition defined by its distribution PX, we need to show that the pdf defines
the distribution uniquely. Since we don’t really know how to define distributions
when we don’t even know the set of events, this cannot really be achieved in this
course.
The cumulative distribution function FX defines the distribution PX for the follow-
ing type of events:

1. For every segment a < b,

(a,b] = (−∞,b] � (−∞,a],
hence by additivity,

PX((a,b]) = FX(b) − FX(a) = � b

a
fX(x)dx.

2. For every A ⊂ R expressible as a disjoint countable union,

A = ∞�
j=1
(aj,bj],

we have
PX(A) = �

A
fX(x)dx = ∞�

j=1
� b j

a j

fX(x)dx.

3. For every a ∈ R, and for every n ∈ N,

�a − 1
n + 1

,a + 1
n + 1

� ⊂ �a − 1
n
,a + 1

n
� ,

and
{a} = ∞�

n=1
�a − 1

n
,a + 1

n
� .

By the continuity of probability for decreasing events,

PX({a}) = PX �∞�
n=1
�a − 1

n
,a + 1

n
�� = lim

n→∞�
a+1�n

a−1�n fX(x)dx = 0.
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4. By the additivity of probability for disjoint events,

PX([a,b]) = PX({a}) + PX((a,b)) + PX({b}) = PX((a,b)).
Comment: We may consider discrete random variables as having a pdf which is a
sum of �-functions.

Example: The random variable X has a pdf of the form

fX(x) =
�������

2C(2x − x2) 0 ≤ x ≤ 2
0 otherwise

.

What is the value of the constant C and what is the probability that X(!) > 1?

The constant is obtained by normalization,

1 = 2C� 2

0
(2x − x2)dx = 2C �4 − 8

3
� = 8C

3
.

Then,

P(X > 1) = 2C� 2

1
(2x − x2)dx = 1

2
.

▲▲▲

6.2 The uniform distribution

Just as for discrete random variables, we will encounter next a collection contin-
uous random variables that are su�ciently recurrent in applications to deserve a
spacial name.

Definition 6.2 A random variable X is called uniformly distributed in [a,b] (-;/
�$*(! 05&!" #-5), denoted X ∼U (a,b), if its pdf is given by

fX(x) =
�������

1
b−a a ≤ x ≤ b
0 otherwise

.
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Example: Buses are arriving at a station every 15 minutes. A person arrives at
the station at a random time, uniformly distributed between 7:00 and 7:30. What
is the probability that he has to wait less than 5 minutes?
Let X(!) be the arrival time (in minutes past 7:00), and Y(!) the time he has to
wait. We know that X ∼U (0,30). Then,

P(Y < 5) = P({X = 0} ∪ {10 ≤ X < 15} ∪ {25 ≤ X < 30}) = 0 + 5
30
+ 5

30
= 1

3
.

▲▲▲
Example: Bertrand’s paradox: consider a random chord of a circle. What is the
probability that the chord is longer than the side of an equilateral triangle inscribed
in that circle?

The “paradox” stems from the fact that the answer depends on the way the random
chord is selected. One possibility is to take the distance of the chord from the
center of the circle r to be U (0,R). Since the chord is longer than the side of
the equilateral triangle when r < R�2, the answer is 1�2. A second possibility is
to take the angle ✓ between the chord and the tangent to the circle to be U (0,⇡).
The chord is longer than the side of the triangle when ⇡�3 < ✓ < 2⇡�3, in which
case the answer is 1�3. ▲▲▲

6.3 The normal distribution

Definition 6.3 A random variable X is said to be normally distributed with pa-
rameters µ,�2, denoted by X ∼ N (µ,�2), if its pdf is

fX(x) = 1√
2⇡�2

exp�−(x − µ)2
2�2 � .

X is called a standard normal variable if µ = 0 and �2 = 1.
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σ

µ

Proposition 6.1 This is a pdf, i.e., fX is non-negative, integrable and

� ∞
−∞ fX(⇠)d⇠ = 1.

Proof : Non-negativity is obvious and every continuous function is integrable.
It remains to prove the normalization condition. Define x = (⇠ − µ)��. Since
d⇠ = �dx, we need to prove that

1√
2⇡ �

∞
−∞ e−x2�2 dx = 1,

i.e., that the pdf for X ∼ N (0,1) is normalized. Since the integrand is symmetric
we need to show that

� ∞
0

e−x2�2 dx = �⇡
2
.

Taking the square of this equation, we get

� ∞
0

e−x2�2 dx� ∞
0

e−y2�2 dy = ⇡
2
.

We turn the left-hand side into a double integral,

� ∞
0
�� ∞

0
e−(x2+y2)�2 dx� dy.
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Changing variables x = yt,

� ∞
0
�� ∞

0
ye−y2(1+t2)�2 dt� dy.

Using Fubini’s theorem, we interchange the order of integration,

� ∞
0
�� ∞

0
ye−y2(1+t2)�2 dy� dt.

Changing variables once again, y2(1 + t2)�2 = s, so that ds = y(1 + t2)dy, we get

� ∞
0
�� ∞

0

e−s

1 + t2 ds� dt.

Integrating over s and then over t we get

� ∞
0

dt
1 + t2 = tan−1 t�∞

0
= ⇡

2
.

n

Proposition 6.2 Let X ∼ N (µ,�2) and set Y = aX + b, where a > 0. Then

Y ∼ N (aµ + b,a2�2).
That is, the collection of normal random variables is closed unit linear transfor-
mations.

Proof : Consider the cumulative distribution function of Y ,

FY(y) = P(Y ≤ y) = P(X ≤ a−1(y − b))
= 1√

2⇡�2 �
a−1(y−b)
−∞ exp�−(x − µ)2

2�2 � dx

= 1�a√
2⇡�2 �

y

−∞ exp�−(a−1(u − b) − µ)2
2�2 � du

= 1√
2⇡a2�2 �

y

−∞ exp�−(u − b − aµ)2
2a2�2 � du,

where we have changed variables, x = a−1(u − b). n
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Corollary 6.1 If X ∼ N (µ,�2) then (X − µ)�� is a standard normal variable.

Notation: The cumulative distribution function of a standard normal variable will
be denoted by �(x),

�(x) = 1√
2⇡ �

x

−∞ e−y2�2 dy.

(This function is closely related to Gauss’ error function).
A table of the values of �(x) is all that is needed to compute probabilities for
general normal variables. Indeed, if X ∼ N (µ,�2), then

FX(x) = P(X ≤ x) = P�X − µ
�
≤ x − µ
�
� = �� x − µ

�
� .

Because of the central importance of normal random variables, tables of � were
given in many reference books before the appearance of computers.

Example: The duration of a normal pregnancy (in days) is a normal variableN (270,100). What is the probability that a pregnancy lasts less than 240 days or
more than 290 days?
Let X be the actual duration of the pregnancy. The question is

P ({X > 290} ∪ {X < 240}) =?,
which we solve as follows,

P ({X > 290} ∪ {X < 240}) = 1 − P(240 < X < 290)
= 1 − P� 240 − 270

10�����������������������������������������(−3)
< X − 270

10�������������������������∼N (0,1)
< 290 − 270

10�����������������������������������������
2

�

= 1 − (�(2) −�(−3)) ≈ 0.241.

▲▲▲
The importance of the normal distribution stems from the central limit theorem,
which we will encounter later on. The following theorem is an instance of the
central limit theorem for a particular case:
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Theorem 6.1 (DeMoivre-Laplace) Let (Xn) be a sequence of independent
Bernoulli variables with parameter p and set

Yn = Xn − p�
p(1 − p) .

(The variables Yn have zero expectation and unit variance.) Set then

S n = 1√
n

n�
k=1

Yk.

Then S n tends, as n→∞, to a standard normal variable in the sense that for every
a < b,

lim
n→∞P (a ≤ S n ≤ b) = �(b) −�(a).

Comment: This theorem states that the sequence of random variables S n con-
verges to a standard normal variable in distribution, or in law.

Proof : The event {a ≤ S n ≤ b} can be written as

�np + �np(1 − p)a ≤ n�
k=1

Xk ≤ np + �np(1 − p)b� .
The sum over Xk is a binomial variable B (n, p), so that we are trying to prove
that

B (n, p) − E[B (n, p)]
�(B (n, p)) n→∞�→ N (0,1)

The plots below show the (discrete!!!) distributions of “normalized” binomial
variables for p = 1�3 and various values of n,
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By the properties of the binomial distribution,

P (a ≤ S n ≤ b) = np+�np(1−p) b�
k=np+�np(1−p) a

�n
k
�pk(1 − p)n−k.

(We will ignore the fact that limits are integer as the correction is negligible when
n→∞.) As n becomes large (while p remains fixed), n, k, and n−k become large,
hence we use Stirling’s approximation,

�n
k
� ∼

√
2⇡n nne−n√

2⇡k kke−k
�

2⇡(n − k) (n − k)n−ke−(n−k) ,

and so

�n
k
�pk(1 − p)n−k ∼

�
n

2⇡k(n − k) �np
k
�k �n(1 − p)

n − k
�n−k

,

where, as usual, the ∼ relation means that the ratio between the two sides tends to
one as n → ∞. The summation variable k takes values that are of order O(√n)
around np. This suggests a change of variables, k = np+ �np(1 − p)m, where m
varies from a to b in units of �m = [np(1 − p)]−1�2. Thus,

P (a ≤ S n ≤ b) = 1√
2⇡

b�
m=a

�
n

k(n − k) �np
k
�k �n(1 − p)

n − k
�n−k

= 1√
2⇡

b�
m=a

����n2 p(1 − p)
k(n − k)�������������������������������������������������������������������������

I

�np
k
�k

�������������
II

�n(1 − p)
n − k

�n−k

���������������������������������������������������������������������
III

�m.

Consider the first term in the above product. As n→∞,

lim
n→∞ I = lim

n→∞
�

p(1 − p)�(k�n)(1 − k�n) = 1.
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Consider the second term, which we can rewrite as

�np
k
�k = � np

np + r
√

n
�np+r

√
n

,

where r = �p(1 − p)m. To evaluate the n → ∞ limit it is easier to look at the
logarithm of this expression, whose limit we evaluate using Taylor’s expansion,

log�np
k
�k = (np + r

√
n) log�1 + r

p
n−1�2�−1

= −(np + r
√

n) log�1 + r
p

n−1�2�
= −(np + r

√
n)� r

p
n−1�2 − r2

2p2 n−1� + l.o.t

= −r
√

n − r2

2p
+ l.o.t = −r

√
n − 1

2
(1 − p)m2 + l.o.t,

where l.o.t stands for lower-order terms. Similarly,

log�n(1 − p)
n − k

�n−k = r
√

n − 1
2

pm2 + l.o.t.

Combining the two together we have

lim
n→∞ log ��np

k
�k �n(1 − p)

n − k
�n−k� = −1

2
m2.

By the continuity of the exponential function,

lim
n→∞P (a ≤ S n ≤ b) = lim

n→∞
1√
2⇡

b�
m=a

e−m2�2�m = �(b) −�(a),
where we have used the fact that an integral is a limit of Riemann sums. This
concludes the proof. n

Example: A fair coin is tossed 40 times. What is the probability that the number
of Heads equals exactly 20?
Since the number of heads is a binomial variable, the answer is

�40
20
��1

2
�20 �1

2
�20 = 0.1268...
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We can also approximate the answer using the DeMoivre-Laplace theorem,

X − 40 × 1
2�

40 × 1
2 × (1 − 1

2)
≈ N (0,1) .

The number of heads is a discrete variable, whereas the normal distribution refers
to a continuous one. We will approximate the probability that the number of heads
be 20 by the probability that it is, in a continuous context, between 19.5 and 20.5,
i.e., that

− 1
2
√

10
≤ X − 20√

10
≤ 1

2
√

10
.

Finally,

P�− 1
2
√

10
≤ N (0,1) ≤ 1

2
√

10
� ≈ 2��� 1

2
√

10
� −�(0)� = 0.127...

▲▲▲

6.4 The exponential distribution

Definition 6.4 A random variable X is said to be exponentially distributed with
parameter �, denoted X ∼ Exp (�), if its pdf is

fX(x) =
�������
� e−�x x ≥ 0
0 x < 0

.

λ

λ
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The corresponding cumulative distribution function is

FX(x) =
�������

1 − e−�x x ≥ 0
0 x < 0

.

An exponential distribution is a suitable model in many situations, like the time
until the next earthquake, or the time a hitchhiker has to wait for a car to stop (the
the time a fisherman has to wait for the fish to bite).

Example: Suppose that the duration of a phone call (in minutes) is a random
variable Exp (1�10). What is the probability that a given phone call lasts more
than 10 minutes? The answer is

P(X > 10) = 1 − Fx(10) = e−10�10 ≈ 0.368.

Suppose we know that a phone call has already lasted 10 minutes. What is the
probability that it will last at least 10 more minutes. The perhaps surprising answer
is

P(X > 20 �X > 10) = P(X > 20,X > 10)
P(X > 10) = e−2

e−1 = e−1.

More generally, we can show that for every t > s,

P(X > t �X > s) = P(X > t − s).
A random variable satisfying this property is called memoryless. ▲▲▲

Proposition 6.3 A random variable that satisfies

P(X > t �X > s) = P(X > t − s) for all t > s > 0

is exponentially distributed.

Proof : It is given that

P(X > t,X > s)
P(X > s) = P(X > t − s),
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or in terms of the cumulative distribution function,

1 − FX(t)
1 − FX(s) = 1 − FX(t − s).

Let g(t) = 1 − FX(t), then for all t > s,

g(t) = g(s)g(t − s),
and the only family of functions satisfying this property is the exponentials. That
is, there exists a number a, such that

g(t) = at = et log a,

or
F(t) = 1 − e− log(1�a) t.

n

6.5 The Gamma distribution

Recall that the Gamma function is defined by

�(x) = � ∞
0

tx−1e−t dt

for x > 0; fwe have seen that or n ∈ N,

�(n + 1) = n!,

A random variable X is said to be Gamma-distributed with parameters r,� if it
assumes positive values and

fX(x) = �r

�(r) xr−1e−�x.

We denote it by X ∼ Gamma (r,�). This is a normalized pdf since

� ∞
0

fX(x)dx = 1
�(r) �

∞
0
(�x)r−1e−�x d(�x) = 1.

Note that for r = 1 we get the pdf of an exponential distribution, i.e.,

Gamma (1,�) ∼ Exp (�) .
The significance of the Gamma distribution will be seen later on in this chapter.
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6.6 The Beta distribution

A random variable assuming values in [0,1] is said to have the Beta distribution
with parameters K, L > 0, i.e., X ∼ Beta (K, L), if it has the pdf

fX(x) = �(K + L)
�(K)�(L) xK−1(1 − x)L−1.

6.7 Functions of random variables

In this section we consider the following problem: let X be a continuous random
variable with pdf fX(x). Let g be a real-valued function and let Y(!) = g(X(!)).
What is the distribution of Y?

Example: Let X ∼U (0,1). What is the distribution of Y = Xn?
The random variable Y , like X, assumes values in the interval [0,1]. Now,

FY(y) = P(Y ≤ y) = P(Xn ≤ y) = P(X ≤ y1�n) = FX(y1�n),
where we used the monotonicity of the power function for positive arguments. In
the case of a uniform distribution,

FX(x) = � x

−∞ fX(x) =
�����������

0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

.

Thus,

FY(y) =
�����������

0 y < 0
y1�n 0 ≤ y ≤ 1
1 y > 1

.

Di↵erentiating,

fY(y) = dFY(y)
dy

= �������
1
n y1�n−1 0 ≤ y ≤ 1
0 otherwise

.

▲▲▲
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Example: Let X be a continuous random variable with pdf fX(x). What is the
distribution of Y = X2.
The main di↵erence with the previous exercise is that X may possibly assume both
positive and negative values, in which case the square function is non-monotonic.
Thus, we need to proceed with more care,

FY(y) = P(Y ≤ y) = P(X2 ≤ y)
= P(−√y ≤ X ≤ √y)
= FX(√y) − FX(−√y).

Di↵erentiating, we get the pdf

fY(y) = fX(√y) + fX(−√y)
2√y

.

▲▲▲
With these preliminaries, we can formulate the general theorem:

Theorem 6.2 Let X be a continuous random variable with pdf fX(x). Let g be
a strictly monotonic, di↵erentiable function and set Y(!) = g(X(!)). Then the
random variable Y has a pdf

fY(y) =
�������
�(g−1)′(y)� fX(g−1(y)) y is in the range of g(X)
0 otherwise

.

Comment: If g is non-monotonic then g−1(y) may be set-valued and the above
expression has to be replaced by a sum over all “branches” of the inverse function:

�
g−1(y)

�(g−1)′(y)� fX(g−1(y)).

Proof : Consider the case where g is strictly increasing. Then, g−1 exists, and

FY(y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)),
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and upon di↵erentiation,

fY(y) = d
dy

FX(g−1(y)) = (g−1)′(y) fX(g−1(y)).
The case where g is strictly decreasing is handled similarly. n

The inverse transformation method An application of this formula is the fol-
lowing. Suppose that you have a computer program that generates a random vari-
able X ∼ U (0,1). How can we use it to generate a random variable with cu-
mulative distribution function  ? The following method is known as the inverse
transformation method.

If  is strictly increasing (we know that it is at least non-decreasing), then we can
define

Y(!) =  −1(X(!)).
Note that −1 maps [0,1] onto the entire real line, while X has range [0,1]. More-
over, FX(x) is the identity on [0,1]. By the above formula,

FY(y) = FX( (y)) =  (y).
Example: Suppose we want to generate an exponential variable Y ∼ Exp (�), in
which case  (y) = 1 − e−�y. The inverse function is  −1(x) = − 1

� log(1 − x), i.e.,
an exponential variable is generated by setting

Y(!) = −1
�

log(1 − X(!)).
In fact, since 1 − X has the same distribution as X, we may equally well take
Y = −�−1 log X.

▲▲▲

6.8 Multivariate distributions

We proceed to consider joint distributions of multiple random variables. The treat-
ment is fully analogous to that for discrete variables.
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Definition 6.5 A pair of random variables X,Y over a probability space (⌦,F ,P)
is said to have a continuous joint distribution if there exists an integrable non-
negative bi-variate function fX,Y(x, y) (the joint pdf) ( �;5;&:/ ;&#-5;% ;&5*57)
such that for every (measurable) set A ⊆ R2,

PX,Y(A) = P({! ∶ (X(!),Y(!)) ∈ A}) =�
A

fX,Y(x, y)dxdy.

Note that in particular,

FX,Y(x, y) = P({! ∶ X(!) ≤ x,Y(!) ≤ y}) = � x

−∞�
y

−∞ fX,Y(x, y)dxdy,

and consequently,

fX,Y(x, y) = @2

@x@y
FX,Y(x, y).

Furthermore, if X,Y are jointly continuous, then each random variable is continu-
ous as a single variable. Indeed, for all A ⊆ R,

PX(A) = PX,Y(A ×R) = �
A
��
R

fX,Y(x, y)dy� dx,

from which we identify the marginal pdf of X,

fX(x) = �
R

fX,Y(x, y)dy,

with an analogous expression for fY(y). The generalization to multivariate distri-
butions is straightforward.

Example: Consider a uniform distribution inside a circle of radius R,

fX,Y(x, y) =
�������

C x2 + y2 ≤ R2

0 otherwise
.

(1) What is C? (2) What is the marginal distribution of X? (3) What is the proba-
bility that the Euclidean norm of (X,Y) is less than a?
(1) The normalization condition is

�
x2+y2≤R2

C dxdy = ⇡R2C = 1.
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(2) For �x� ≤ R the marginal pdf of X is given by

fX(x) = �
R

fX,Y(x, y)dy = 1
⇡R2 �

√
R2−x2

−√R2−x2
dy = 2

√
R2 − x2

⇡R2 .

Finally,

P(X2 + Y2 ≤ a2) = a2

R2 .

▲▲▲
Independence We next consider how does independence reflect in the joint pdf.
Recall that X,Y are said to be independent if for all A,B ⊆ R,

PX,Y(A × B) = PX(A)PY(B).
For continuous distributions, this means that for all A,B,

�
A
�

B
fX,Y(x, y)dxdy = �

A
fX(x)dx�

B
fY(y)dy,

and since this should hold for every pair of sets A and B, we conclude that

fX,Y(x, y) = fX(x) fY(y).
Similarly, n random variables with continuous joint distribution are independent
if their joint pdf equals to the product of their marginal pdfs.

Example: Let X,Y,Z be independent variables all being U (0,1). What is the
probability that X > YZ?
The joint distribution of X,Y,Z is

fX,Y,Z(x, y, z) = fX(x) fY(y) fZ(z) =
�������

1 x, y, z ∈ [0,1]
0 otherwise

.

Now,

P(X > YZ) =�
x>yz

dxdydz = � 1

0
� 1

0
�� 1

yz
dx� dydz

= � 1

0
� 1

0
(1 − yz)dydz = � 1

0
�1 − z

2� dz = 3
4 .

▲▲▲
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Sums of independent random variables Let X,Y be independent continuous
random variables. What is the distribution of X + Y?
We proceed by examining the cumulative distribution function of the sum

FX+Y(z) = P(X + Y ≤ z) =�
x+y≤z

fX(x) fY(y)dxdy

= � ∞
−∞ �

z−y

−∞ fX(x) fY(y)dxdy

= � ∞
−∞ FX(z − y) fY(y)dy.

Di↵erentiating, we obtain,

fX+Y(z) = d
dz

FX+Y(z) = � ∞
−∞ fX(z − y) fY(y)dy,

i.e., the pdf of a sum is the convolution of the pdfs, fX+Y = fX ∗ fY .

Example: What is the distribution of X+Y when X,Y ∼U (0,1) are independent?
We have

fX+Y(z) = � ∞
−∞ fX(z − y) fY(y)dy = � z

z−1
fX(w)dw.

The integral vanishes if z < 0 and if z > 2. Otherwise,

fX+Y(z) =
�������

z 0 ≤ z ≤ 1
2 − z 1 < z ≤ 2

.

▲▲▲
We conclude this section with a general formula for variable transformations. Let
X = (X1,X2) be two random variables with joint pdf f

X

(x), and set

Y = g(X).
What is the joint pdf of Y = (Y1,Y2)? We will assume that these relations are
invertible, i.e., that

X = g

−1(Y).
Furthermore, we assume that g is di↵erentiable. Then,

F
Y

(y) =�
g(x)≤y

f
X

(x)dx1dx2.
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We change variables, x = g

−1(u), and get

F
Y

(y) = � y1

−∞ �
y2

−∞ f
X

(g−1(u)) �J(u)� du1du2,

where J(y) = @(x)�@(y) is the Jacobian of the transformation. Di↵erentiating
twice with respect to y1, y2 we obtain the joint pdf,

f
Y

(y) = �J(y)� f
X

(g−1(u)).
. Exercise 6.1 Let X1,X2 be two independent random variables with distribu-
tion U (0,1) (i.e., the variables that two subsequent calls of the rand() function
on a computer would return). Define,

Y1 = �−2 log X1 cos(2⇡X2)
Y2 = �−2 log X1 sin(2⇡X2).

Show that Y1 and Y2 are independent and distributedN (0,1). This is the standard
way of generating normally-distributed random variables on a computer. This
change of variables is called the Box-Muller transformation (G.E.P. Box and M.E.
Muller, 1958).

Example: Suppose that X ∼ Gamma (K,1) and Y ∼ Gamma (L,1) are indepen-
dent, and consider the variables

V = X
X + Y

and W = X + Y.

The reverse transformation is

X = VW and Y =W(1 − V).
Since X,Y ∈ [0,∞) it follows that V ∈ [0,1] and W ∈ [0,∞).
The Jacobian is

�J(v,w)� = �w −w
v 1 − v� = w.

Thus,

fV,W(v,w) = (vw)K−1e−vw

�(K) [w(1 − v)]L−1e−w(1−v)
�(L) w

= wK+L−1e−w

�(K + L) × �(K + L)
�(K)�(L)vK−1(1 − v)L−1.
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This means that

V ∼ Beta (K, L) and W ∼ Gamma (K + L,1) .
Moreover, they are independent. ▲▲▲
Example: We now develop a general formula for the pdf of ratios. Let X,Y be
random variables, not necessarily independent, and set

V = X and W = X�Y.
The inverse transformation is

X = V and Y = V�W.
The Jacobian is

�J(v,w)� = �1 1�w
0 −v�w2� = � v

w2 � .
Thus,

fV,W(v,w) = fX,Y �v, v
w
� � v

w2 � ,
and the uni-variate distribution of W is given by

fW(w) = � fX,Y �v, v
w
� � v

w2 � dv.

▲▲▲
. Exercise 6.2 Find the distribution of X�Y when X,Y ∼ Exp (1) are indepen-
dent.

Example: Let X ∼ U (0,1) and let Y be any (continuous) random variable inde-
pendent of X. Define

W = X + Y mod 1.

What is the distribution of W?
Clearly, W assumes value in [0,1]. We need to express the set {W ≤ c} in terms
of X,Y . If we decompose Y = N + Z, where Z = Y mod 1, then

{W ≤ c} = {Z ≤ c} ∩ {0 ≤ X ≤ c − Z}
∪ {Z ≤ c} ∩ {1 − Z ≤ X ≤ 1}
∪ {Z > c} ∩ {1 − Z ≤ X ≤ 1 − (Z − c)}
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It follows that

P(W ≤ c) = ∞�
n=−∞�

1

0
fY(n + y) [c Iz≤c + c Iz>c] dz = c,

i.e., no matter what Y is, W ∼U (0,1). ▲▲▲

6.9 Conditional distributions and conditional densi-
ties

Remember that in the case of discrete random variables we defined

pX �Y(x�y) = P(X = x �Y = y) = pX,Y(x, y)
pY(y) .

Since the pdf is, in a sense, the continuous counterpart of the point distribution,
the following definition seems most appropriate:

Definition 6.6 The conditional probability density function (cpdf) of X given Y
is

fX �Y(x�y) = fX,Y(x, y)
fY(y) .

The question is what is the meaning is this conditional density? First, we note that
viewed as a function of x, with y fixed, it is a density, as it is non-negative, and

�
R

fX �Y(x�y)dx = ∫R fX,Y(x, y)dx
fY(y) = 1.

Thus, it seems natural to speculate that the integral of the cpdf over a set A is the
probability that X ∈ A given that Y = y,

�
A

fX �Y(x�y)dx ?= P(X ∈ A �Y = y).
The problem is that the right hand side is not defined, since the condition (Y = y)
has probability zero!
A heuristic way to resolve the problem is the following (for a rigorous way we
need again measure theory): construct a sequence of sets Bn ⊂ R, such that Bn →
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{y} and each of the Bn has finite measure (for example, Bn = (y − 1�n, y + 1�n)),
and define

P(X ∈ A �Y = y) = lim
n→∞P(X ∈ A �Y ∈ Bn).

Now, the right-hand side is well-defined, provided the limit exists. Thus,

P(X ∈ A �Y = y) = lim
n→∞

P(X ∈ A,Y ∈ Bn)
P(Y ∈ Bn)

= lim
n→∞
∫A ∫Bn

fX,Y(x,u)dudx

∫Bn
fY(u)du

= �
A

lim
n→∞
∫Bn

fX,Y(x,u)du

∫Bn
fY(u)du

dx

= �
A

fX,Y(x, y)
fY(y) dx,

where we have used something analogous to l’Hopital’s rule in taking the limit.
This is precisely the identity we wanted to obtain.
What is the cpdf good for? We have the identity

fX,Y(x, y) = fX �Y(x�y) fY(y).
In many cases, it is more natural to define models in terms of conditional densities,
and our formalism tells us how to convert this data into joint distributions.

Example: Let the joint pdf of X,Y be given by

fX,Y(x, y) =
�������

1
y e−x�ye−y x, y ≥ 0
0 otherwise

.

What is the cpdf of X given Y , and what is the probability that X(!) > 1 given
that Y = y?
For x, y ≥ 0 the cpdf is

fX �Y(x�y) =
1
y e−x�ye−y

∫ ∞0 1
y e−x�ye−y dx

= 1
y

e−x�y,

and
P(X > 1 �Y = y) = � ∞

1
fX �Y(x�y)dx = 1

y �
∞

1
e−x�y dx = e−1�y.

▲▲▲
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6.10 Expectation

Recall our definition of the expectation for discrete probability spaces,

E[X] = �
!∈⌦

X(!) p(!),
where p(!) is the point probability in ⌦, i.e., p(!) = P({!}). We saw that an
equivalent definition was

E[X] = �
x∈S x

x pX(x).
In a more general context, the first expression is the integral of the function X(!)
over the probability space (⌦,F ,P), whereas the second equation is the integral
of the identity function X(x) = x over the probability space (S x,FX,PX). We now
want to generalize these definitions for uncountable spaces.
The definition of the expectation in the general case relies unfortunately on inte-
gration theory, which is part of measure theory. The expectation of X is defined
as

E[X] = �
⌦

X(!)P(d!),
but this is not supposed to make much sense to us. On the other hand, the equiva-
lent definition,

E[X] = �
R

x PX(dx),
does make sense if we identify PX(dx) with fX(x)dx. That is, our definition of
the expectation for continuous random variables is

E[X] = �
R

x fX(x)dx.

Example: For X ∼U (a,b),
E[X] = 1

b − a �
b

a
x dx = a + b

2
.

▲▲▲
Example: For X ∼ Exp (�),

E[X] = � ∞
0

x�e−�x dx = 1
�
.

▲▲▲
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Example: For X ∼ N (µ,�2),
E[X] = 1√

2⇡�2 �R x e−(x−µ)2�2�2
dx = µ.

▲▲▲

Lemma 6.1 Let Y be a continuous random variable with pdf fY(y). Then

E[Y] = � ∞
0
[1 − FY(y) − FY(−y)] dy.

Proof : Note that the lemma states that

E[Y] = � ∞
0
[P(Y > y) − P(Y ≤ −y)] dy.

We start with the first expression

� ∞
0

P(Y > y)dy = � ∞
0
� ∞

y
fY(u)dudy

= � ∞
0
� u

0
fY(u)dydu

= � ∞
0

u fY(u)du,

where the passage from the first to the second line involves a change in the order of
integration, with the corresponding change in the limits of integration. Similarly,

� ∞
0

P(Y ≤ −y)dy = � ∞
0
� −y

−∞ fY(u)dudy

= � 0

−∞�
−u

0
fY(u)dydu

= −� 0

−∞ u fY(u)du.

Subtracting the two expressions we get the desired result. n
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Theorem 6.3 (The unconscious statistician) Let X be a continuous random vari-
able and let g ∶ R→ R. Then,

E[g(X)] = �
R

g(x) fX(x)dx.

Proof : In principle, we could write the pdf of g(X) and follow the definition of
its expected value. The fact that g does not necessarily have a unique inverse
complicates the task. Thus, we use instead the previous lemma,

E[g(X)] = � ∞
0

P(g(X) > y)dy −� ∞
0

P(g(X) ≤ −y)dy

= � ∞
0
�

g(x)>y
fX(x)dxdy −� ∞

0
�

g(x)≤−y
fX(x)dxdy.

We now exchange the order of integration. Note that for the first integral,

{0 < y <∞,g(x) > y} can be written as {x ∈ R,0 < y < g(x)}
whereas for the second integral,

{0 < y <∞,g(x) < −y} can be written as {x ∈ R,0 < y < −g(x)}
Thus,

E[g(X)] = �
R
� max(0,g(x))

0
fX(x)dydx −�

R
� max(0,−g(x))

0
fX(x)dydx

= �
R
[max(0,g(x)) −max(0,−g(x))] fX(x)dx

= �
R

g(x) fX(x)dx.

n

Example: What is the variance of X ∼ N (µ,�2)?
Var[X] = 1√

2⇡�2 �R(x − µ)2e−(x−µ)2�2�2
dx

= �3√
2⇡�2 �R u2e−u2�2 du = �2.

▲▲▲
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. Exercise 6.3 Let X ∼ N (0,�2). Calculate the moments E[Xk] (hint: consider
separately the cases of odd and even k’s).

The law of the unconscious statistician is readily generalized to multiple random
variables, for example,

E[g(X,Y)] =�
R2

g(x, y) fX,Y(x, y)dxdy.

. Exercise 6.4 Show that if X and Y are independent continuous random vari-
ables, then for every two functions f ,g,

E[ f (X)g(Y)] = E[ f (X)]E[g(Y)].

6.11 The moment generating function

As for discrete variables the moment generating function is defined as

MX(t) = E[etX] = �
R

etx fX(x)dx,

that is, it is the Laplace transform of the pdf. Without providing a proof, we
state that the transformation fX � MX is invertible (it is one-to-one), although the
formula for the inverse is complicated and relies on complex analysis.

Comment: A number of other generating functions are commonly defined: first
the characteristic function,

'X(t) = E[eıtX] = �
R

eıtx fX(x)dx,

which unlike the moment generating function is always well defined for every t.
Since its use relies on complex analysis we do not use it in this course. Another
used generating function is the probability generating function

gX(t) = E[tX] =�
x

tx pX(x).
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Example: What is the moment generating function of X ∼ N (µ,�2)?
MX(t) = 1√

2⇡�2 �R etxe−(x−µ)2�2�2
dx

= 1√
2⇡�2 �R exp �− x2 − 2µx + µ2 − 2�2tx

2�2 � dx

= 1√
2⇡�2

e−µ2�2�2
e(µ+�2t)2�2�2 �

R
exp �−(x − µ −�2t)2

2�2 � dx

= exp �µt + �2

2
t2� .

From this we readily obtain, say, the first two moments,

E[X] = M′X(0) = (µ +�2t)eµt+ 1
2�

2t2 �
t=0
= µ,

and
E[X2] = M′′X(0) = �(µ +�2t)2 +�2� eµt+ 1

2�
2t2 �

t=0
= �2 + µ2,

as expected. ▲▲▲
Example: Recall the Gamma-distribution whose pdf is

fX(x) = �r

�(r) xr−1e−�x.

To calculate its moments it is best to use the moment generating function,

MX(t) = �r

�(r) �
∞

0
etxxr−1e−�x dx = �r

(� − t)r ,
defined only for t < �. We can then calculate the moment, e.g.,

E[X] = M′X(0) = �r r(� − t)−(r+1)�t=0 = r
�
,

and
E[X2] = M′′X(0) = �r r(r + 1)(� − t)−(r+2)�t=0 = r(r + 1)

�2 ,

from which we conclude that

Var[X] = r
�2 .
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▲▲▲
From the above discussion it follows that the moment generating function embod-
ies the same information as the pdf. A nice property of the moment generating
function is that it converts convolutions into products. Specifically,

Proposition 6.4 Let fX and fY be probability densities functions and let f = fX∗ fY

be their convolution. If MX, MY and M are the moment generating functions
associated with fX, fY and f , respectively, then M = MX MY.

Proof : By definition,

M(t) = �
R

etx f (x)dx = �
R

etx�
R

fX(y) fY(x − y)dy dx

= �
R
�
R

ety fX(y)et(x−y) fY(x − y)dy d(x − y)
= �

R
ety fX(y)dy�

R
etu fY(u)du = MX(t)MY(t).

n

Example: Here is an application of the above proposition. Let X ∼ N (µ1,�2
1)

and Y ∼ N (µ2,�2
2) be independent variables. We have already calculated their

moment generating function,

MX(t) = exp �µ1t + �2
1

2
t2�

MY(t) = exp �µ2t + �2
2

2
t2� .

By the above proposition, the generating function of their sum is the product of
the generating functions,

MX+Y(t) = exp �(µ1 + µ2)t + �2
1 +�2

2

2
t2� ,

from which we conclude at once that

X + Y ∼ N �µ1 + µ2,�
2
1 +�2

2� ,
i.e., sums of independent normal variables are normal. ▲▲▲
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Example: Consider now the sum of n independent exponential random variables
Xi ∼ Exp (�). Since Exp (�) ∼ Gamma (1,�) we know that

MXi(t) = �

� − t
.

The pdf of the sum of n independent random variables,

Y = n�
i=1

Xi

is the n-fold convolution of their pdfs, and its generating function is the product
of their generating functions,

MY(t) = n�
i=1

MXi(t) = �n

(� − t)n ,
which we identify as the generating function of the Gamma (n,�) distribution.
Thus the Gamma distribution with parameters (n,�) characterizes the sum of n
independent exponential variables with parameter �. ▲▲▲
. Exercise 6.5 What is the distribution of X1 + X2 where X1 ∼ Gamma (r1,�)
and X2 ∼ Gamma (r2,�) are independent?

Example: A family of distributions that have an important role in statistics are the
�2
⌫ distributions with ⌫ = 1,2 . . . . A random variable Y has the �2

⌫-distribution if it
is distributed like

Y ∼ X2
1 + X2

2 + ⋅ ⋅ ⋅ + X2
⌫ ,

where Xi ∼ N (0,1) are independent.
The distribution of X2

1 is obtained by the change of variable formula,

fX2
1
(x) = fX1(√x) + fX1(−√x)

2
√

x
= 2

1√
2⇡

e−x�2
2
√

x
= 1√

2⇡x
e−x�2.

The moment generating function is

MX2
1
(t) = � ∞

0
etx 1√

2⇡x
e−x�2 dx = 2√

2⇡ �
∞

0
e− 1

2 (1−2t)y2
dy = (1 − 2t)−1�2,

and by the addition rule, the moment generating function of the �2
⌫-distribution is

MY(t) = (1 − 2t)−⌫�2 = (1�2)⌫�2(1�2 − t)⌫�2 .
We identify this moment generating function as that of Gamma (⌫�2,1�2). ▲▲▲
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6.12 Other distributions

We conclude this section with two distributions that have major roles in statistics.
Except for the additional exercise in the change of variable formula, the goal is to
know the definition of these very useful distributions.

Definition 6.7 Let X ∼ �2
r and Y ∼ �2

s be independent. A random variable that
has the same distribution as

W = X�r
Y�s

is said to have the Fischer Fr,s distribution.

Since, by the previous section

fX�r(x) = (r�2)r (rx)r�2−1e− 1
2 rx

�( r
2) r

fY�s(y) = (s�2)s (sy)s�2−1e− 1
2 sy

�( s
2) s,

it follows from the distribution of ratios formula that

fW(w) = � ∞
0

�1
2�r�2 (rv)r�2−1e− 1

2 rv

�( r
2) r

�1
2�s�2 (sv�w2)s�2−1e− 1

2 sv�w2

�( s
2) s

v
w2 dv

= 1
�( r

2)�( s
2)
(1

2r)r�2(1
2 s)s�2

ws � ∞
0

vr�2+s�2−1e− 1
2 v(r+s�w2) dv.

Changing variables we get

fW(w) = 1
�( r

2)�( s
2)
(1

2r)r�2(1
2 s)s�2

ws �1
2
(r + s�w2)�−(r�2+s�2)� ∞

0
⇠r�2+s�2−1e−⇠ d⇠

= �( r
2 + s

2)
�( r

2)�( s
2)
(1

2r)r�2(1
2 s)s�2

ws �1
2
(r + s�w2)�−(r�2+s�2)

= �( r
2 + s

2)
�( r

2)�( s
2)

rr�2ss�2
ws(r + s�w2) 1

2 (r+s) .

Definition 6.8 Let X ∼ N (0,1) and Y ∼ �2
⌫ be independent. A random variable

that has the same distribution as

W = X�
Y�⌫
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is said to have the Student’s t⌫ distribution.

. Exercise 6.6 Find the pdf of the Student’s t⌫ distribution.


