Publications
Publications
1.Homogenization of edge-dislocations as a weak limit of de-Rham currents,
R. Kupferman and E. Eloami [KO19.pdf]
2.Limits of distributed dislocations in geometric and constitutive paradigms,
M. Epstein, R. Kupferman and C. Maor,
[EKM.pdf]
https://arxiv.org/abs/1902.02410
3.A geometric perspective on the Piola identity in Riemannian settings,
R. Kupferman and A. Shachar,
J. Geom. Mech. 11 (2019) 59-76 [KS19.pdf]
https://arxiv.org/abs/1805.12365
4.Bending energy of buckled edge dislocation,
R. Kupferman,
Phys. Rev. E 96 (2017) 063002 [Kup17.pdf].
5.Variational convergence of discrete geometrically-incompatible elastic models,
R. Kupferman and C. Maor,
Calc. Variations and PDEs 57 (2018) 39 [KM17.pdf]
http://arxiv.org/abs/1704.07963
6.Stress theory for classical fields,
R. Kupferman, E. Olami and R. Segev,
Math. Mech. Solids (in press) [KOS18.pdf]
https://arxiv.org/abs/1705.03093
7.Asymptotic rigidity of Riemannian manifolds,
R. Kupferman, C. Maor and A. Shachar,
Arch. Rat. Mech. Anal. (in press) [KMS17.pdf]
https://arxiv.org/abs/1701.08892
8.Continuum dynamics on manifolds: applications to non-Euclidean elasticity,
R. Kupferman, E. Olami and R. Segev,
J. Elasticity 128 (2017) 61-84 [KOS17.pdf]
9.On strain measures and the geodesic distance to SO(n) in the general linear group,
R. Kupferman and A. Shachar,
J. Geom. Mech. 8 (2016) 437-460 [KS16.pdf].
10.Limits of elastic models of converging Riemannian manifolds,
R. Kupferman and C. Maor,
Calc. Variations and PDEs 55 (2016) 1-22 [KM16.pdf].
http://arxiv.org/abs/1511.02405
11.Elastic interactions between two-dimensional geometric defects,
M. Moshe, E. Sharon and R. Kupferman,
Phys. Rev. E 92 (2015) 062403 [MKS15.pdf]
https://arxiv.org/abs/1510.03718
12.Non-metricity in the continuum limit of randomly-distributed point defects,
R. Kupferman, C. Maor and R. Rosenthal,
Israel J. Math. (in press) [KMR15.pdf].
http://arxiv.org/abs/1508.02003
13.Geometry and mechanics of two-dimensional defects in amorphous materials,
M. Moshe, I. Levin, H. Aharoni, R. Kupferman and E. Sharon,
Proc. Nat. Acad. Sci. USA 112 (2015) 10873-10878 [MLAKS15.pdf].
14.Riemannian surfaces with torsion as homogenization limits of locally-Euclidean surfaces with dislocation-type singularities,
R. Kupferman and C. Maor,
Proc. Roy. Soc. Edin. 146A (2016) 741-768 [KM16.pdf].
http://arxiv.org/abs/1410.2909
15.The emergence of torsion in the continuum limit of distributed dislocations,
R. Kupferman and C. Maor,
J. Geom. Mech. 7 (2015) 361-387 [KM15.pdf].
http://arxiv.org/abs/1410.2906
16.Geometry of thin nematic elastomers,
H. Aharoni, E. Sharon and R. Kupferman,
Phys. Rev.. Lett. 113 (2014) 257801 [ASK14.pdf].
17.Metric description of defects in amorphous materials,
R. Kupferman, M. Moshe and J.P. Solomon,
Arch. Rat. Mech. Anal. 216 (2015) 1009-1047 [KMS14.pdf]
18.A Riemannian approach to the membrane limit in non-Euclidean elasticity,
R. Kupferman and C. Maor,
Comm. Contemp. Math. 16 (2014) 1350052 [KM13.pdf]
http://arxiv.org/abs/1410.2671
19.Pattern selection and multiscale behavior in metrically-discontinuous non-Euclidean plates,
M. Moshe, E. Sharon and R. Kupferman,
Nonlinearity 26 (2013) 3247-3258 [MSK13.pdf]
20.The metric description of elasticity in residually stressed soft materials,
E. Efrati, E. Sharon and R. Kupferman,
Soft Matter 9 (2013) 8187-8197 [ESK13.pdf]
21.Emergence of spontaneous twist and curvature in non-Euclidean rods: application to Stork's Bill cells,
H. Aharoni, Y. Abraham, R. Elbaum, E. Sharon and R. Kupferman,
Phys. Rev. Lett. 108 (2012) 238106 [AAESK12.pdf].
22.A Riemannian approach to reduced plate, shell, and rod theories,
R. Kupferman and J.P. Solomon,
J. Func. Anal. 266 (2014) 2989-3039. [KS14.pdf]
23.No justified complaints: on fair sharing of multiple resources,
D. Dolev, D.G. Feitelson, J.Y. Halpern, R. Kupferman and N. Linial,
Innovations in Theoretical Computer Science 2012 [DFHKL12.pdf].
24.Geometry and mechanics of chiral pod opening,
S. Armon, E. Efrati, E. Sharon and R. Kupferman,
Science 333 (2011) 1726-1730 [AESK11.pdf].
25.Hyperbolic non-Euclidean elastic strips and minimal surfaces,
E. Efrati, E. Sharon and R. Kupferman,
Phys. Rev. E 83 (2011) 046602 [ESK11.pdf].
26.Dimensional reduction of the master equation for stochastic chemical networks: the reduced-multiplane method,
B. Barzel, O. Biham, R. Kupferman, A. Lipshtat, and A. Zait,
Phys. Rev. E 82 (2010) 021117. [BBKLZ10.pdf]
27.Mean-field variational approximation for continuous-time Bayesian networks,
I. Cohn, T. El-Hay, N. Friedman and R. Kupferman,
J. Machine Learning Research 11, (2010) 2745-2783. [CEFK10.pdf]
28.Continuous-time belief propagation,
T. El-Hay, I. Cohn, N. Friedman and R. Kupferman,
27th International Conference on Machine Learning, 2010 [ECNK10.pdf]
29.Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space,
R. Kupferman and Y. Shamai,
Israel J. Math. 190 (2012) 135-156. [KS12.pdf]
30.Mean-square approximation of a non-flat Riemannian manifold by a flat one: two-dimensional case,
R. Kupferman and Y. Shamai,
Preprint [KS09.pdf]
31.Mean-field variational approximation for continuous-time Bayesian networks,
I. Cohn, T. El-Hay, N. Friedman and R. Kupferman,
Uncertainty in Artificial Intelligence 2009. [CEFK09.pdf]
32.Non-Euclidean plates and shells,
E. Efrati, E. Sharon and R. Kupferman,
Preprint [ESK09b.pdf]
33.Buckling transition and boundary layer in non-Euclidean plates ,
E. Efrati, E. Sharon and R. Kupferman,
Phys. Rev E 80 (2009) 016602. [ESK09.pdf]
34.Numerical stability of the method of Brownian configuration fields,
C. Mangoubi, M.A. Hulsen, and R. Kupferman,
J. Non-Newton. Fluid Mech. 157 (2009) 188-196. [MHK09.pdf]
35.Elastic theory of unconstrained non-Euclidean plates ,
E. Efrati, E. Sharon, and R. Kupferman,
J. Mech. Phys. Solids 57 (2009) 762-775. [ESK08.pdf]
36.Spatially correlated noise and variance minimization in stochastic simulations,
R. Kupferman and Y. Shamai,
J. Non-Newton. Fluid Mech. 157 (2009) 92-100. [KS08b.pdf]
37.Gibbs sampling in factorized continuous-time Markov processes,
T. El-Hay, N. Friedman and R. Kupferman,
Uncertainty in Artificial Intelligence 2008. [EFK08.pdf]
38. Long-time limit for a class of quadratic infinite-dimensional dynamical systems inspired by models of viscoelastic fluids,
G. Katriel, R. Kupferman, and E.S. Titi,
J. Diff. Eq. 245 (2008) 2771-2784. [KKT08.pdf]
39. Optimal choices of correlation operators in Brownian simulation methods,
R. Kupferman and Y. Shamai,
SIAM Multiscale Modeling and Simulation 7 (2008) 321. [KS08.pdf]
40.A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime,
R. Kupferman, C. Mangoubi, and E.S. Titi,
Comm. Math. Sci. 6 (2008) 235-256. [KMT08.pdf]
41. Analysis of the multiplane method for efficient simulation of reaction networks,
B. Barzel, O. Biham, and R. Kupferman,
Phys. Rev. E 76 (2007) 026703. [BBK07b.pdf]
42. Analysis of the multiplane method for stochastic simulations of reaction networks with fluctuations,
B. Barzel, O. Biham, and R. Kupferman,
SIAM Multiscale Modeling and Simulation 6 (2007) 963-982. [BBK07a.pdf]
43. Global stability of equilibrium manifolds, and "peaking" behavior in quadratic differential systems related to viscoelastic models,
R. Fattal, O.H. Hald, G. Katriel, and R. Kupferman,
J. Non-Newton. Fluid Mech. 144 (2007) 30-41. [FHKK07.pdf]
44. Dimension reduction in singularly-perturbed continuous-time Bayesian networks,
N. Friedman and R. Kupferman,
Uncertainty in Artificial Intelligence 2006. [FK06.pdf]
45. Continuous time Markov networks,
T. El-Hay, N. Friedman, D. Koller and R. Kupferman,
Uncertainty in Artificial Intelligence 2006. [EFKK06.pdf]
46. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems,
D. Givon, I.G. Kevrekidis and R. Kupferman,
Comm. Math. Sci. 4 (2006) 707-729. [GKK06.pdf]
47. Prediction from partial data, renormalization and averaging,
A.J. Chorin, O.H. Hald and R. Kupferman,
J. Sci. Comp. 28 (2006) 245-261. [CHK06.pdf]
48. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation,
R. Kupferman,
J. Non-Newton. Fluid Mech. 127 (2005) 169-190. [Kup05.pdf]
49. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms,
M.A. Hulsen, R. Fattal and R. Kupferman,
J. Non-Newton. Fluid Mech. 127 (2005) 27-39. [HFK05.pdf]
50. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation,
R. Fattal and R. Kupferman,
J. Non-Newton. Fluid Mech. 126 (2005) 23-37. [FK05.pdf]
51. Constitutive laws for the matrix-logarithm of the conformation tensor,
R. Fattal and R. Kupferman,
J. Non-Newton. Fluid Mech. 123 (2004) 281-285. [FK04.pdf]
52. Ito versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise,
R. Kupferman, G.A. Pavliotis and A.M. Stuart,
Phys. Rev. E 70 (2004). [KPS04.pdf]
53. White noise limits for discrete dynamical systems driven by fast deterministic dynamics,
D. Givon and R. Kupferman,
Physica A 335 (2004) 385--412. [GK04.pdf]
54. Fractional kinetics in Kac-Zwanzig heat bath models,
R. Kupferman,
J. Stat. Phys. 114 (2004) 291-326. [Kup04.pdf]
55. Extracting macroscopic dynamics: model problems & algorithms,
D. Givon, R. Kupferman and A.M Stuart,
Nonlinearity 17 (2004) R55-R127. [GKS04.pdf]
56. Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism,
D. Givon, O.H. Hald and R. Kupferman,
Israel J. Math. 199 (2004) 279-316. [GHK03.pdf]
57. Fitting SDE models to nonlinear Kac-Zwanzig heat bath models,
R. Kupferman and A.M. Stuart,
Physica D 199 (2004) 279-316. [KS04.pdf]
58. Long term behaviour of large mechanical systems with random initial data [Errata]
R. Kupferman, A.M. Stuart, J.R. Terry, and P.F. Tupper,
Stochastics and Dynamics 2 (2002) 533-562. [KSTT02err.pdf]
59. Optimal prediction with memory,
A.J. Chorin, O.H. Hald and R. Kupferman,
Physica D 166 (2002) 239-257. [CHK02.pdf]
60. Asymptotic and numerical analyses for mechanical models of heat baths,
O.H. Hald and R. Kupferman,
J. Stat. Phys. 106 (2002) 1121-1184. [HK02.pdf]
61. A central-difference scheme for a pure stream function formulation of incompressible viscous flow,
R. Kupferman,
SIAM J. Sci. Comp. 23 (2001) 1-18. [Kup01.pdf]
62. Convergence of optimal prediction for nonlinear Hamiltonian systems,
O.H. Hald and R. Kupferman,
SIAM J. Num. Anal. 39 (2001) 983-1000. [HK01.pdf]
63. Optimal Prediction and the Mori-Zwanzig Representation of Irreversible Processes,
A.J. Chorin, O.H. Hald and R. Kupferman,
Proc. Nat. Acad. Sci USA 97 (2000) 2968-2973. [CHK00.pdf]
64. Optimal Prediction for Hamiltonian Partial Differential Equations,
A.J. Chorin, R. Kupferman and D. Levy,
J. Comp. Phys. 162 (2000) 267-297. [CKL00.pdf]
65. Emergence of Structure in a Model of Liquid Crystalline Polymers with Elastic Coupling,
R. Kupferman, M.N. Kawaguchi and M.M. Denn,
J. Non-Newton. Fluid Mech. 91 (2000) 255-271. [KKD00.pdf]
66. On the Prediction of Large-Scale Dynamics using Unresolved Computations,
A.J. Chorin , A.P. Kast and R. Kupferman,
AMS Contemporary Mathematics 53 (1999) 53-75. [CKK99.pdf]
67. Simulation of the Evolution of Concentrated Shear Layers in a Maxwell Fluid with a Fast High-Resolution Finite-Difference Scheme,
R. Kupferman and M.M. Denn,
J. Non-newton. Fluid Mech. 84 (1999) 275-287. [KD99.pdf]
68. Unresolved Computation and Optimal Prediction,
A.J. Chorin , A.P. Kast and R. Kupferman,
Comm. Pure Appl. Math. 52 (1999) 1231--1254. [CKK98b.pdf]
69. Optimal Prediction of Underresolved Dynamics,
A.J. Chorin , A.P. Kast and R. Kupferman,
Proc. Nat. Acad. Sci. USA 95 (1998) 4094-4098. [CKK98.pdf]
70. Simulation of Viscoelastic Fluids: Couette-Taylor Flow,
R. Kupferman,
J. Comp. Phys. 147 (1998) 22-59. [Kup98.pdf]
71. A Numerical Study of the Kosterlitz-Thouless Transition in a Two-Dimensional Coulomb or Vortex Gas,
R. Kupferman and A.J. Chorin,
SIAM J. Appl. Math. 59 (1999) 1843--1866. [KC99.pdf]
72. A Numerical Study of the Axisymmetric Couette-Taylor Problem Using a Fast High-Resolution Second-Order Central Scheme,
R. Kupferman,
SIAM J. Sci. Comp. 20 (1998) 858--877. [Kup98b.pdf]
73. A Fast High-Resolution Second-Order Central Scheme for Incompressible Flow,
R. Kupferman and E. Tadmor,
Proc. Nat. Acad. Sci. USA 94 (1997) 4848-4852. [KT97.pdf]
74. Spirals in Excitable Media: II. The Meandering Transition in the Free Boundary Limit,
D.A. Kessler and R. Kupferman,
Physica D 105 (1997) 207-225. [KK97.pdf]
75. Intracellular Calcium Waves: Analytical Estimates of Wave Characteristics,
R. Kupferman, P.P. Mitra, P.C. Hohenberg and S.S.-H. Wang,
Biophys. J. 72 (1997) 2430-2444. [KMHW97.pdf]
76. Spirals in Excitable Media: The Free-Boundary Limit with Diffusion,
D.A. Kessler and R. Kupferman,
Physica D 97 (1996) 509-516. [KK96.pdf]
77. Concentric Decomposition During Rapid Compact Growth,
M. Zukerman, R. Kupferman, O. Shochet and E. Ben-Jacob,
Physica D 90 (1996) 293-305. [ZKSB96.pdf]
78. Tilted arrays of dendrites,
R. Kupferman and D.A. Kessler,
Phys. Rev. E 51 (1995) R20-R23. [KK95.pdf]
79. Coexistence of Symmetric and Parity-Broken Dendrites in a Channel,
R. Kupferman, D.A. Kessler and E. Ben-Jacob,
Physica A 213 (1995) 451. [KKB95.pdf]
80. Numerical Study of Morphology Diagram in the Large Undercooling Limit Using a Phase-Field Model,
R. Kupferman, O. Shochet and E. Ben-Jacob,
Phys. Rev. E 50 (1994) 1005-1008. [KSB94.pdf]
81. Complexity in Diffusive Patterning,
R. Kupferman, O. Shochet and E. Ben-Jacob,
in `` Patterns in Nature: Fascination of their Origin and Simulation '' which is a part of the series ``Facetten'' by the Vieweg-Verlag.
82. Origination of Propagating Normal Domains in Large Composite Superconductors,
V.S. Kovner, R. Kupferman and R.G. Mints,
IEEE Trans. Appl. Superconductivity 3 (1993) 289-292.
83. Initiation of Traveling Normal Domains in Large Composite Superconductors,
V.S. Kovner, R. Kupferman and R.G. Mints,
J. Appl. Phys. 73 (1993) 3087-3091.
84. Properties of the Morphologies Envelope in a Diffusion Limited Growth,
O. Shochet, R. Kupferman and E. Ben-Jacob,
in Growth Patterns in Physical Sciences and Biology , E. Louis, L. M. Sander, P. Meakin and J. M. Garcia-Ruiz Eds., (Plenum 1993).
85. Phase-Field Model: Boundary Layer, Selected Velocity and Stability Spectrum,
R. Kupferman, O. Shochet, E. Ben-Jacob and Z. Schuss,
Phys. Rev. B 46 (1992) 16045-16057. [KSBS92.pdf]
86. Normal Zone in Large Composite Superconductors,
R. Kupferman, R.G. Mints and E. Ben-Jacob,
Cryogenics 32 (1992) 485-489.
87. WKB Study of Fluctuations and Activation in Non-Equilibrium Dissipative Steady States,
R. Kupferman, M. Kaiser, Z. Schuss and E. Ben-Jacob,
Phys. Rev. A 45 (1992) 745-756. [KKSB92.pdf]
88. Propagating Normal Domains in Large Composite Superconductors,
R. Kupferman, R.G. Mints and E. Ben-Jacob,
J. Appl. Phys. 70 (1991) 7484-7491.
89. Normal Zone Soliton in Large Composite Superconductors,
R. Kupferman, R.G. Mints and E. Ben-Jacob,
Adv. Cryog. Eng. 38B (1991) 509-515.