Publications

 


  1. 1.Homogenization of edge-dislocations as a weak limit of de-Rham currents,
    R. Kupferman and E. Eloami [KO19.pdf]

  2. 2.Limits of distributed dislocations in geometric and constitutive paradigms,
    M. Epstein, R. Kupferman and C. Maor,
    [EKM.pdf]
    https://arxiv.org/abs/1902.02410

  3. 3.A geometric perspective on the Piola identity in Riemannian settings,
    R. Kupferman and A. Shachar,
    J. Geom. Mech. 11 (2019) 59-76  [KS19.pdf]
    https://arxiv.org/abs/1805.12365

  4. 4.Bending energy of buckled edge dislocation,
    R. Kupferman,
    Phys. Rev. E 96 (2017) 063002 [Kup17.pdf].

  5. 5.Variational convergence of discrete geometrically-incompatible elastic models,
    R. Kupferman and C. Maor,
    Calc. Variations and PDEs 57 (2018) 39 [KM17.pdf]
    http://arxiv.org/abs/1704.07963

  6. 6.Stress theory for classical fields,
    R. Kupferman, E. Olami and R. Segev,
    Math. Mech. Solids (in press) [KOS18.pdf]
    https://arxiv.org/abs/1705.03093

  7. 7.Asymptotic rigidity of Riemannian manifolds,
    R. Kupferman, C. Maor and A. Shachar,
    Arch. Rat. Mech. Anal. (in press) [KMS17.pdf]
    https://arxiv.org/abs/1701.08892

  8. 8.Continuum dynamics on manifolds: applications to non-Euclidean elasticity,
    R. Kupferman, E. Olami and R. Segev,
    J. Elasticity 128 (2017) 61-84  [KOS17.pdf]

  9. 9.On strain measures and the geodesic distance to SO(n) in the general linear group,
    R. Kupferman and A. Shachar,
    J. Geom. Mech. 8 (2016) 437-460 [KS16.pdf].

  10. 10.Limits of elastic models of converging Riemannian manifolds,
    R. Kupferman and C. Maor,
    Calc. Variations and PDEs 55 (2016) 1-22 [KM16.pdf].
    http://arxiv.org/abs/1511.02405


  1. 11.Elastic interactions between two-dimensional geometric defects,
    M. Moshe, E. Sharon and R. Kupferman,
    Phys. Rev. E 92 (2015) 062403 [MKS15.pdf]
    https://arxiv.org/abs/1510.03718

  2. 12.Non-metricity in the continuum limit of randomly-distributed point defects,
    R. Kupferman, C. Maor and R. Rosenthal,
    Israel J. Math. (in press) [KMR15.pdf].
    http://arxiv.org/abs/1508.02003


  1. 13.Geometry and mechanics of two-dimensional defects in amorphous materials,
    M. Moshe, I. Levin, H. Aharoni, R. Kupferman and E. Sharon,
    Proc. Nat. Acad. Sci. USA 112 (2015) 10873-10878 [MLAKS15.pdf].

  2. 14.Riemannian surfaces with torsion as homogenization limits of locally-Euclidean surfaces with dislocation-type singularities,
    R. Kupferman and C. Maor,
    Proc. Roy. Soc. Edin. 146A (2016) 741-768 [KM16.pdf].
    http://arxiv.org/abs/1410.2909

  3. 15.The emergence of torsion in the continuum limit of distributed dislocations,
    R. Kupferman and C. Maor,
    J. Geom. Mech. 7 (2015) 361-387 [KM15.pdf].
    http://arxiv.org/abs/1410.2906

  4. 16.Geometry of thin nematic elastomers,
    H. Aharoni, E. Sharon and R. Kupferman,
    Phys. Rev.. Lett. 113 (2014) 257801 [ASK14.pdf].

  5. 17.Metric description of defects in amorphous materials,
    R. Kupferman, M. Moshe and J.P. Solomon,
    Arch. Rat. Mech. Anal. 216 (2015) 1009-1047 [KMS14.pdf]

  6. 18.A Riemannian approach to the membrane limit in non-Euclidean elasticity,
    R. Kupferman and C. Maor,
    Comm. Contemp. Math. 16 (2014) 1350052 [KM13.pdf]
    http://arxiv.org/abs/1410.2671

  7. 19.Pattern selection and multiscale behavior in metrically-discontinuous non-Euclidean plates,
    M. Moshe, E. Sharon and R. Kupferman,
    Nonlinearity 26 (2013) 3247-3258 [MSK13.pdf]

  8. 20.The metric description of elasticity in residually stressed soft materials,
    E. Efrati, E. Sharon and R. Kupferman,
    Soft Matter 9 (2013) 8187-8197 [ESK13.pdf]

  9. 21.Emergence of spontaneous twist and curvature in non-Euclidean rods: application to Stork's Bill cells,
    H. Aharoni, Y. Abraham, R. Elbaum, E. Sharon and R. Kupferman,
    Phys. Rev. Lett. 108 (2012) 238106 [AAESK12.pdf].

  10. 22.A Riemannian approach to reduced plate, shell, and rod theories,
    R. Kupferman and J.P. Solomon,
    J. Func. Anal. 266 (2014) 2989-3039. [KS14.pdf]


  1. 23.No justified complaints: on fair sharing of multiple resources,
    D. Dolev, D.G. Feitelson, J.Y. Halpern, R. Kupferman and N. Linial,
    Innovations in Theoretical Computer Science 2012 [DFHKL12.pdf].

  2. 24.Geometry and mechanics of chiral pod opening,
    S. Armon, E. Efrati, E. Sharon and R. Kupferman,
    Science 333 (2011)  1726-1730 [AESK11.pdf].

  3. 25.Hyperbolic non-Euclidean elastic strips and  minimal surfaces,
    E. Efrati, E. Sharon and R. Kupferman,
    Phys. Rev. E 83 (2011) 046602 [ESK11.pdf].

  4. 26.Dimensional reduction of the master equation for stochastic chemical networks: the reduced-multiplane method,
    B. Barzel, O. Biham, R. Kupferman, A. Lipshtat, and A. Zait,
    Phys. Rev. E 82 (2010) 021117. [BBKLZ10.pdf]

  5. 27.Mean-field variational approximation for continuous-time Bayesian networks,
    I. Cohn, T. El-Hay, N. Friedman and R. Kupferman,
    J. Machine Learning Research 11, (2010) 2745-2783. [CEFK10.pdf]

  6. 28.Continuous-time belief propagation,
    T. El-Hay, I. Cohn, N. Friedman and R. Kupferman,
    27th International Conference on Machine Learning, 2010 [ECNK10.pdf]

  7. 29.Incompatible elasticity and the immersion of non-flat Riemannian manifolds in Euclidean space,
    R. Kupferman and Y. Shamai,
    Israel J. Math. 190 (2012) 135-156. [KS12.pdf]

  8. 30.Mean-square approximation of a non-flat Riemannian manifold by a flat one: two-dimensional case,
    R. Kupferman and Y. Shamai,
    Preprint [KS09.pdf]

  9. 31.Mean-field variational approximation for continuous-time Bayesian networks,
    I. Cohn, T. El-Hay,  N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2009. [CEFK09.pdf]

  10. 32.Non-Euclidean plates and shells,
    E. Efrati, E. Sharon and R. Kupferman,
    Preprint [ESK09b.pdf]

  11. 33.Buckling transition and boundary layer in non-Euclidean plates ,
    E. Efrati, E. Sharon and R. Kupferman,
    Phys. Rev E 80 (2009) 016602. [ESK09.pdf]

  12. 34.Numerical stability of the method of Brownian configuration fields,
    C. Mangoubi, M.A. Hulsen, and R. Kupferman,
    J. Non-Newton. Fluid Mech. 157 (2009) 188-196. [MHK09.pdf]

  13. 35.Elastic theory of unconstrained non-Euclidean plates ,
    E. Efrati, E. Sharon, and R. Kupferman,
    J. Mech. Phys. Solids 57 (2009) 762-775.  [ESK08.pdf]

  14. 36.Spatially correlated noise and variance minimization in stochastic simulations,
    R. Kupferman and Y. Shamai,
    J. Non-Newton. Fluid Mech. 157 (2009) 92-100. [KS08b.pdf]

  15. 37.Gibbs sampling in factorized continuous-time Markov processes,
    T. El-Hay, N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2008. [EFK08.pdf]

  16. 38. Long-time limit for a class of quadratic infinite-dimensional dynamical systems inspired by models of viscoelastic fluids,
    G. Katriel, R. Kupferman, and E.S. Titi,
    J. Diff. Eq. 245 (2008) 2771-2784. [KKT08.pdf]

  17. 39. Optimal choices of correlation operators in Brownian simulation methods,
    R. Kupferman and Y. Shamai,
    SIAM Multiscale Modeling and Simulation 7 (2008) 321. [KS08.pdf]

  18. 40.A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime,
    R. Kupferman, C. Mangoubi, and E.S. Titi,
    Comm. Math. Sci. 6 (2008) 235-256. [KMT08.pdf]

  19. 41. Analysis of the multiplane method for efficient simulation of reaction networks,
    B. Barzel, O. Biham, and R. Kupferman,
    Phys. Rev. E 76 (2007) 026703. [BBK07b.pdf]

  20. 42. Analysis of the multiplane method for stochastic simulations of reaction networks with fluctuations,
    B. Barzel, O. Biham, and R. Kupferman,
    SIAM Multiscale Modeling and Simulation 6 (2007) 963-982. [BBK07a.pdf]

  21. 43. Global stability of equilibrium manifolds, and "peaking" behavior in quadratic differential systems related to viscoelastic models,
    R. Fattal, O.H. Hald, G. Katriel, and R. Kupferman,
    J. Non-Newton. Fluid Mech. 144 (2007) 30-41. [FHKK07.pdf]

  22. 44. Dimension reduction in singularly-perturbed continuous-time Bayesian networks,
    N. Friedman and R. Kupferman,
    Uncertainty in Artificial Intelligence 2006. [FK06.pdf]

  23. 45. Continuous time Markov networks,
    T. El-Hay, N. Friedman, D. Koller and R. Kupferman,
    Uncertainty in Artificial Intelligence 2006. [EFKK06.pdf]

  24. 46. Strong convergence of projective integration schemes for singularly perturbed stochastic differential systems,
    D. Givon, I.G. Kevrekidis and R. Kupferman,
    Comm. Math. Sci. 4 (2006) 707-729. [GKK06.pdf]

  25. 47. Prediction from partial data, renormalization and averaging,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    J. Sci. Comp. 28 (2006) 245-261. [CHK06.pdf]

  26. 48. On the linear stability of plane Couette flow for an Oldroyd-B fluid and its numerical approximation,
    R. Kupferman,
    J. Non-Newton. Fluid Mech. 127 (2005) 169-190. [Kup05.pdf]

  27. 49. Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms,
    M.A. Hulsen, R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 127 (2005) 27-39. [HFK05.pdf]

  28. 50. Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation,
    R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 126 (2005) 23-37. [FK05.pdf]

  29. 51. Constitutive laws for the matrix-logarithm of the conformation tensor,
    R. Fattal and R. Kupferman,
    J. Non-Newton. Fluid Mech. 123 (2004) 281-285. [FK04.pdf]

  30. 52. Ito versus Stratonovich white noise limits for systems with inertia and colored multiplicative noise,
    R. Kupferman, G.A. Pavliotis and A.M. Stuart,
    Phys. Rev. E 70 (2004). [KPS04.pdf]

  31. 53. White noise limits for discrete dynamical systems driven by fast deterministic dynamics,
    D. Givon and R. Kupferman,
    Physica A 335 (2004) 385--412. [GK04.pdf]

  32. 54. Fractional kinetics in Kac-Zwanzig heat bath models,
    R. Kupferman,
    J. Stat. Phys. 114 (2004) 291-326. [Kup04.pdf]

  33. 55. Extracting macroscopic dynamics: model problems & algorithms,
    D. Givon, R. Kupferman and A.M Stuart,
    Nonlinearity 17 (2004) R55-R127. [GKS04.pdf]

  34. 56. Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism,
    D. Givon, O.H. Hald and R. Kupferman,
    Israel J. Math. 199 (2004) 279-316. [GHK03.pdf]

  35. 57. Fitting SDE models to nonlinear Kac-Zwanzig heat bath models,
    R. Kupferman and A.M. Stuart,
    Physica D 199 (2004) 279-316. [KS04.pdf]

  36. 58.  Long term behaviour of large mechanical systems with random initial data [Errata]
    R. Kupferman, A.M. Stuart, J.R. Terry, and P.F. Tupper,
    Stochastics and Dynamics 2 (2002) 533-562. [KSTT02err.pdf]

  37. 59. Optimal prediction with memory,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    Physica D 166 (2002) 239-257. [CHK02.pdf]

  38. 60.  Asymptotic and numerical analyses for mechanical models of heat baths,
    O.H. Hald and R. Kupferman,
    J. Stat. Phys. 106 (2002) 1121-1184. [HK02.pdf]

  39. 61. A central-difference scheme for a pure stream function formulation of incompressible viscous flow,
    R. Kupferman,
    SIAM J. Sci. Comp. 23 (2001) 1-18. [Kup01.pdf]

  40. 62. Convergence of optimal prediction for nonlinear Hamiltonian systems,
    O.H. Hald and R. Kupferman,
    SIAM J. Num. Anal. 39 (2001) 983-1000. [HK01.pdf]

  41. 63. Optimal Prediction and the Mori-Zwanzig Representation of Irreversible Processes,
    A.J. Chorin, O.H. Hald and R. Kupferman,
    Proc. Nat. Acad. Sci USA 97 (2000) 2968-2973. [CHK00.pdf]

  42. 64. Optimal Prediction for Hamiltonian Partial Differential Equations,
    A.J. Chorin, R. Kupferman and D. Levy,
    J. Comp. Phys. 162 (2000) 267-297. [CKL00.pdf]

  43. 65. Emergence of Structure in a Model of Liquid Crystalline Polymers with Elastic Coupling,
    R. Kupferman, M.N. Kawaguchi and M.M. Denn,
    J. Non-Newton. Fluid Mech. 91 (2000) 255-271. [KKD00.pdf]

  44. 66. On the Prediction of Large-Scale Dynamics using Unresolved Computations,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    AMS Contemporary Mathematics 53 (1999) 53-75. [CKK99.pdf]

  45. 67. Simulation of the Evolution of Concentrated Shear Layers in a Maxwell Fluid with a Fast High-Resolution Finite-Difference Scheme,
    R. Kupferman and M.M. Denn,
    J. Non-newton. Fluid Mech. 84 (1999) 275-287. [KD99.pdf]

  46. 68. Unresolved Computation and Optimal Prediction,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    Comm. Pure Appl. Math. 52 (1999) 1231--1254. [CKK98b.pdf]

  47. 69.  Optimal Prediction of Underresolved Dynamics,
    A.J. Chorin , A.P. Kast and R. Kupferman,
    Proc. Nat. Acad. Sci. USA 95 (1998) 4094-4098. [CKK98.pdf]


  1. 70.  Simulation of Viscoelastic Fluids: Couette-Taylor Flow,
    R. Kupferman,
    J. Comp. Phys. 147 (1998) 22-59. [Kup98.pdf]

  2. 71. A Numerical Study of the Kosterlitz-Thouless Transition in a Two-Dimensional Coulomb or Vortex Gas,
    R. Kupferman and A.J. Chorin,
    SIAM J. Appl. Math. 59 (1999) 1843--1866. [KC99.pdf]

  3. 72. A Numerical Study of the Axisymmetric Couette-Taylor Problem Using a Fast High-Resolution Second-Order Central Scheme,
    R. Kupferman,
    SIAM J. Sci. Comp. 20 (1998) 858--877. [Kup98b.pdf]

  4. 73.  A Fast High-Resolution Second-Order Central Scheme for Incompressible Flow,
    R. Kupferman and E. Tadmor,
    Proc. Nat. Acad. Sci. USA 94 (1997) 4848-4852. [KT97.pdf]

  5. 74. Spirals in Excitable Media: II. The Meandering Transition in the Free Boundary Limit,
    D.A. Kessler and R. Kupferman,
    Physica D 105 (1997) 207-225. [KK97.pdf]

  6. 75. Intracellular Calcium Waves: Analytical Estimates of Wave Characteristics,
    R. Kupferman, P.P. Mitra, P.C. Hohenberg and S.S.-H. Wang,
    Biophys. J. 72 (1997) 2430-2444. [KMHW97.pdf]

  7. 76. Spirals in Excitable Media: The Free-Boundary Limit with Diffusion,
    D.A. Kessler and R. Kupferman,
    Physica D 97 (1996) 509-516. [KK96.pdf]

  8. 77. Concentric Decomposition During Rapid Compact Growth,
    M. Zukerman, R. Kupferman, O. Shochet and E. Ben-Jacob,
    Physica D 90 (1996) 293-305. [ZKSB96.pdf]

  9. 78.  Tilted arrays of dendrites,
    R. Kupferman and D.A. Kessler,
    Phys. Rev. E 51 (1995) R20-R23. [KK95.pdf]

  10. 79. Coexistence of Symmetric and Parity-Broken Dendrites in a Channel,
    R. Kupferman, D.A. Kessler and E. Ben-Jacob,
    Physica A 213 (1995) 451. [KKB95.pdf]

  11. 80. Numerical Study of Morphology Diagram in the Large Undercooling Limit Using a Phase-Field Model,
    R. Kupferman, O. Shochet and E. Ben-Jacob,
    Phys. Rev. E 50 (1994) 1005-1008. [KSB94.pdf]

  12. 81. Complexity in Diffusive Patterning,
    R. Kupferman, O. Shochet and E. Ben-Jacob,
    in `` Patterns in Nature: Fascination of their Origin and Simulation '' which is a part of the series ``Facetten'' by the Vieweg-Verlag.

  13. 82. Origination of Propagating Normal Domains in Large Composite Superconductors,
    V.S. Kovner, R. Kupferman and R.G. Mints,
    IEEE Trans. Appl. Superconductivity 3 (1993) 289-292.

  14. 83. Initiation of Traveling Normal Domains in Large Composite Superconductors,
    V.S. Kovner, R. Kupferman and R.G. Mints,
    J. Appl. Phys. 73 (1993) 3087-3091.

  15. 84. Properties of the Morphologies Envelope in a Diffusion Limited Growth,
    O. Shochet, R. Kupferman and E. Ben-Jacob,
    in Growth Patterns in Physical Sciences and Biology , E. Louis, L. M. Sander, P. Meakin and J. M. Garcia-Ruiz Eds., (Plenum 1993).

  16. 85. Phase-Field Model: Boundary Layer, Selected Velocity and Stability Spectrum,
    R. Kupferman, O. Shochet, E. Ben-Jacob and Z. Schuss,
    Phys. Rev. B 46 (1992) 16045-16057. [KSBS92.pdf]

  17. 86. Normal Zone in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    Cryogenics 32 (1992) 485-489.

  18. 87. WKB Study of Fluctuations and Activation in Non-Equilibrium Dissipative Steady States,
    R. Kupferman, M. Kaiser, Z. Schuss and E. Ben-Jacob,
    Phys. Rev. A 45 (1992) 745-756. [KKSB92.pdf]

  19. 88.  Propagating Normal Domains in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    J. Appl. Phys. 70 (1991) 7484-7491.

  20. 89.  Normal Zone Soliton in Large Composite Superconductors,
    R. Kupferman, R.G. Mints and E. Ben-Jacob,
    Adv. Cryog. Eng. 38B (1991) 509-515.