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TRIPLE POINTS: FROM NON-BROWNIAN
FILTRATIONS TO HARMONIC MEASURES

B. TSIRELSON

Introduction

A smooth boundary is two-sided: U1 N @U, N U3 = () for any smoothly
bounded domains (connected open sets) Uy, Us, Us of R? or any manifold.
For piecewise smooth boundaries, dim(0U; N 0U; N 9U3) < d — 2. Triple
points are rare. For irregular domains the situation differs (the phenomenon
of Brouwer, see [L]). There is an infinite sequence of pairwise nonoverlap-
ping domains U,, C R® with equal boundaries: 0U; = 0Us = ... (in addi-
tion, U, may be of positive three-dimensional Lebesgue measure). Each
U, reminds one of the blood circulation system, branching from artery to
capillary vessels, while QU,, is the tissue supplied with blood. Each bound-
ary point is accessible from each domain by a continuous path of finite
length.

A boundary is conjectured to be two-sided for arbitrary domains under
the right definition for sides, pointed out by Bishop [Bi, Sect. 6] in terms of
the Martin boundary: its natural projection to the topological boundary
should be at most 2 to 1 almost everywhere w.r.t. the natural measure on
the Martin boundary.

An equivalent formulation without Martin boundaries can be given
(Bishop [Bi], Eremenko, Fuglede, Sodin [ErFuSo2]) in terms of harmonic
measures. Consider the idea for the “blood vessel-type” domains. A Brow-
nian particle starting from an interior point of such a domain U exits from
U through the wall of a vessel (but probably not through the tissue), which
is essential for boundary-value problems in U. The probability distribution
of the exit point is the well-known harmonic measure for U. The measure
depends on the starting point, but its type does not (the type of a measure
means the class of all equivalent measures, where equivalence is mutual ab-
solute continuity). Let us define the harmonic boundary of U as the above
measure type on U \ U. The intersection of several harmonic boundaries
may be defined as another measure type such that a measure is absolutely
continuous w.r.t. the intersection if and only if it is absolutely continuous
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w.r.t. each of the given harmonic boundaries. The intersection is said to
be empty if the only such measure is zero.

Considerable progress has been made recently, and is furthered in this
paper, to understand harmonic boundaries. In contrast to the topological
boundary U \ U, the harmonic boundary of a three-dimensional domain
is of Hausdorff dimension strictly less than 3 [Bo| but sometimes greater
than 2 [Wo]. For each d there is a finite Ny such that the intersection of
Ny + 1 harmonic boundaries is always empty; see [Bi], where the following
estimates are given: Ny < 10 for d > 4, and N3 < 4. See also [FriH],
[01,2] for related estimates. The equality Ny = 2 is conjectured for all d
([Bi, Sect. 6] and [ErFuSo2]) but proved only for d = 2 ([Bi], [ErFuSol]):
two-dimensional topology excludes the “blood vessels” phenomenon (not
to be confused with the “Wada lakes” mentioned in [Bi, p. 20]; these fail
to access their boundary points by continuous paths).

One of the two main results of the present paper (Theorem 7.4) states
that Ny = 2 for all d. Thus, “Problem a” of [ErFuSo2] is solved, and the
conjecture of Bishop [Bi] is proved. The intersection of three harmonic
boundaries is always empty. In this respect there is no distinction between
smoothly bounded domains and irregular domains! Anyway, triple points
are rare; a boundary is two-sided.

Probabilistic arguments are usual when dealing with harmonic mea-
sures. The phrase “We think about harmonic measure in terms of hitting
probability of Brownian motion” [Bo, p. 478] is equally applicable here,
but the following phrase is not: “It seems clear that all — or almost all —
the arguments involving Brownian motion in this paper can be translated
into the language of classical potential theory” [O1, p. 180]. The result
Ny = 2 will be proved by using Brownian motion not only as a suitable
language. Stochastic analysis is involved far beyond the customary strong
Markov property. This is a challenge: can the result Ny = 2 be achieved
by non-stochastic arguments?

The motif of triple points brings together the topic of classical analysis,
discussed above, and the following topic of stochastic analysis: diffusion
processes on graphs. A graph is treated here not as a discrete scheme but
as a one-dimensional topological space with branching points. In such a
space a harmonic boundary need not be two-sided, see [ErFuSol, Sect. 7,
“An example from axiomatic potential theory”]. A diffusion process on a
graph is a simple, natural, and useful idea, arising when considering the
movement of nutrients in the root system of a plant [FrDu], small random
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perturbations of Hamiltonian dynamical systems [Fre|, large-scale geometry
of discrete groups [V], and some other topics (see [BPY]). A canonical case,
well-known as Walsh’s Brownian motion (see [W], [BPY]) can be described
as a complex-valued continuous martingale Z(t) such that |Z(t)|?> —¢ is also
a martingale, and Z3(t) € [0,+o0) for all ¢+ € [0,+00). Its phase space
{z € C: 2% €[0,+00)} = {re™/3 . r € [0,400),k = 0,1,2} consists
of three rays connected at the triple point 0. The two-ray counterpart of
Z(t), a continuous real-valued martingale B(t) such that B2(t) — ¢ is a
martingale, is just the usual one-dimensional Brownian motion. Processes
|Z(t)| and |B(t)| are identically distributed; each is a so-called reflecting
Brownian motion. In fact, B(t) can be obtained from the reflecting Brow-
nian motion by assigning independent equiprobable random signs +1 to its
excursions, and Z(t) can be obtained similarly by assigning independent
equiprobable random phases 1, ¢27/3, ¢4™/3_ The simple description sug-
gests that the distinction between processes Z(t) and B(t) should not be
deeper than that between B(t) and |B(t)|, which is misleading: we cannot
assign the phases (or signs) in real time. (I apologise for the non-standard
terminology, formally introduced only after Def. 1.1 but, hopefully, it is
self-explanatory on the intuitive level.) It is well-known (see sect. 1) that
a real-time deterministic machine can produce a Brownian motion from a
reflecting Brownian motion (not by assigning signs, of course). Can it pro-
duce Walsh’s Brownian motion? This was an open problem [BPY, Problem
2]. One of the two main results of this paper (Theorem 4.14) solves the
problem: Z(t) cannot be produced in real time from a Brownian motion,
nor from a finite or countable collection of independent Brownian motions.

Consider the three rays as domains Uy, Us,Us in the one-dimensional
space {z € C: 2% € [0,4+00)}. The harmonic measure of Uy, is concentrated
at 0, thus the intersection of three harmonic boundaries is nonempty, which
is impossible in R?. Accordingly, the Brownian motion on R¢ cannot pro-
duce Walsh’s Brownian motion. The triple point is an essential singularity,
while an endpoint is not!

The result pertaining to stochastic analysis will be proved first. The
other result, pertaining to classical analysis, will follow. A brighter light is
shed on their relation by a recent result of M. Barlow, M. Emery, F. Knight,
S. Song and M. Yor [BEKSoY]: in some sense (see also the end of sect. 4), a
boundary is two-sided in the infinite-dimensional space of Brownian sample
paths, which implies the result for R?.

The author is grateful to M. Emery, A. Skorokhod, M. Smorodinsky,
M. Sodin, and M. Yor for helpful discussions.
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1 From Stochastic Calculus to Stochastic Topology

For time-challenged non-probabilists, I suggest a short presentation of
stochastic calculus [Me2] (containing no proofs) and Chapter 1 of [E] to
introduce the subject. Books for further reading are recommended therein
(see also Bass [Ba]). The book by Revuz and Yor [RY] will be referred to
frequently.

A filtration is an increasing family F = (F(t))sc[0,00) Of sub-o-fields
F(t) C F(oo) on a probability space (2, F(c0), P). (Traditionally, a prob-
ability space is denoted by (€2, F, P) and a filtration by (F¢):e[0,00), Which
becomes inconvenient when dealing with several filtrations Fi,...,F,.)
The triple (Q,F, P) = (2, (F(t))e[o,00), P) is called a filtered probability
space (or a stochastic basis). It is assumed that (2, F(c0), P) is standard,
that is, isomorphic mod0 to [0,1] with Lebesgue measure, or a smaller
(maybe empty) interval plus atoms; F(0) contains all sets of probability
0; F(t) = NesoF(t + €); and F(oo) is the least o-field containing all F(¢).
A random process is a map X : [0,00) X  — R whose restriction to each
[0, t] X £2 is jointly measurable w.r.t. the Borel o-field on [0, t] and the o-field
Fi on . (That is, only progressively measurable processes are considered,
see [RY, 1.4.7].) The assumptions of this paragraph are implicit through-
out the paper. The reader may restrict himself to filtrations satisfying the
“absolute continuity condition” (see the following two paragraphs). The
restriction can be relaxed, as noted after Def. 2.3.

Each filtration F determines the corresponding set Mo (F) of all local
martingales (assumed right-continuous, starting from 0) and is uniquely
determined by Mjo.(F); in fact, F is generated by a countable subset
of Mioe(F) (just take a basis (Xi) of Lo(2, F(c0), P) and let M(t) =
E(Xk|.7-" (t))). It can be shown by some tricks (see [Skl, Example 2 on
p. 168] for one of them) that any filtration is generated by a single martin-
gale, but we do not need it. Usually defined via stopping (see [Me2, p. 138];
[E, 1.5]; [RY, IV.1.5 and in addition, 1.7, 4.1, and V.1.24, 2.13]), Miec(F)
may be defined equivalently as the closure of the separable Hilbert space
of Lo-bounded martingales in a weaker topology, so-called ucp-topology,
metrizable (see [E, 1.3]) but not normed, corresponding to the convergence
in probability, uniformly on finite time intervals. (See also [E, 4.43].) We
restrict ourselves to filtrations F satisfying the following “continuity con-
dition”: each M € Mjo.(F) is continuous (almost surely). The filtra-
tion generated by a Brownian motion (the so-called Brownian filtration)
satisfies the continuity condition, as well as the filtration generated by a
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continuous Feller process (that is, a time-homogeneous sample-continuous
Markov process whose semigroup sends continuous functions into continu-
ous functions). Walsh’s Brownian motion is another example. We borrow
convenient notation from [E]: for any continuous processes X and Y,

XZ2Y means X —-Y € M.

Any M € My.(F) such that M?2(t) — t is also a local martingale, nec-
essarily is a Brownian motion (P. Lévy’s characterization theorem [RY,
IV.3.6]). Any M € My(F) determines its “quadratic variation” — an
increasing process (M, M) such that M? — (M, M) € Myye(F). (Infor-
mally, (M, M)(t) = fg(dM(s))Q.) The process (M, M) may be treated as
another time, then M turns into a Brownian motion (see [RY, V.1]). We
restrict ourselves to filtrations F satisfying the following “absolute conti-
nuity condition”: the above continuity condition is satisfied, and for any
M € Mjoc(F) the process (M, M) is absolutely continuous (that is, almost
all sample paths of (M, M) are absolutely continuous functions on [0, 0)).
The condition is satisfied by a filtration generated by a Brownian motion
or a Walsh Brownian motion.

Such notions as “Brownian motion” or “Walsh’s Brownian motion” are
subordinate to a given filtration. If a process is a Brownian motion then
its sample paths are distributed according to the Wiener measure, but the
converse does not hold. Let sample paths of a process X be distributed
according to the Wiener measure. Then, indeed, X is a Brownian motion
w.r.t. the filtration Fx generated by X; Fx(t) C F(t). Future increments
X (t+ At) — X(t) do not depend on the past Fx(t) of the process X, but
still may depend on the whole past F(t), which is forbidden for a Brownian
motion.

An isomorphism between two filtered probability spaces (4, F1,P;)
and (Qq,F2, P») or (abusing the language) between two filtrations Fi
and F; is, by definition, a mod 0 isomorphism between probability spaces
(1, Fi(oc0), P1) and (Qe9, Fo(c0), P») sending Fi(t) to Fa(t) for each ¢t. If
Fi is generated by a random process X and F3 is generated by a random
process Y, then an isomorphism between F; and F5 is what we call a re-
versible real-time transformation of X into Y. A famous example (Lévy,
Skorokhod)is a reversible real-time transformation of a Brownian motion
X (t) into a reflecting Brownian motion Y (¢), given by the formula

Y(6)=X(0) - inf X(s).
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The inverse transformation is far from being evident:

t
X(t) =Y (t) — lim —/ 1(y(s)<5) ds.
0

For a detailed discussion see [RY, VI.2]. The evident non-invertible trans-
formation Y (¢) = | X (¢)| is an example of an irreversible real-time transfor-
mation, as defined below. (Some interesting transformations of a Brownian
motion into itself are described in [Y2, Sect. 17.3].) The definition is chosen
such that the formula Y (¢) = X(t —1) fort > 1,Y(t) =0for 0 <t <1is
not a real-time transformation of a Brownian motion X into another pro-
cess Y. The reason is that Y is a martingale w.r.t. its own filtration Fy,
but not w.r.t. Fx: knowing X (¢) we can predict Y (¢ + 1) with certainty.
The following definition stipulates that, given the past of Y, knowledge of
the past of X gives no additional information about the future of Y. The
notion defined below (though not in the same words) may be found in [GS,
Sect. 7], [IWa, Chap.2, Def.7.1], [DFSmT, Def.6.1].

1.1 DEFINITION. A morphism from a filtered probability space (21, F1, P1)
to a filtered probability space (2, F2, P»), or (abusing the language) from
a filtration F; to a filtration F», is a measure preserving map 7 : 23 — (9
satisfying two conditions:

(1) = is measurable from (Q, Fi(t), P1) to (Qg, Fa(t), P») for any ¢,
(2) for any ¢t and any A € F

P (A‘fQ(t)) (rw) =P (T*I(A) ‘_7-'1 (t)) (w)
for almost all w € Q5.

Here P (-|-) means the conditional probability; we suppress probability
measures (P, P,, @ and others) whenever they are uniquely determined
by context; this time, P means P p, on the left-hand side but P p, on the
right-hand side.

Conditions (1), (2) are equivalent to the following: 7 induces an em-
bedding of Moc(F2) into Mioc(F1). That is, for any local martingale
M5 € Mjoc(F2) the following process M; belongs to Mo (F1): Mi(t,w) =
My (t, Tw).

So, the phrase “the process X can be transformed into the process Y
in real time” means that there is a morphism from Fx to Fy.

It is well-known that a one-dimensional Brownian motion cannot be
transformed in real time into a two-dimensional Brownian motion. For a
Brownian filtration, Fp, the space Mjo.(Fp) reminds one, in some sense, of
a one-dimensional manifold. Of course, Mjo.(Fp) is an infinite-dimensional
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linear space. However each M € Mioc(FB) can be written as the stochastic
integral M (t fo (s) of some Fp-adapted process H (see [RY,
V.3.4]). Informally, dM( ) H(t) dB(t) means that, for fixed ¢ and w the
differential dM belongs to the one-dimensional linear space {hdB : h € R}
as if it were the tangent space.

It may seem that stochastic analysis is inherently non-smooth (has no
natural smooth structure) since the very Brownian motion is not smooth.
However, smoothness in time is not the point. A Browman motlon is rather
an infinite collection of independent variables, and M (¢ fo
is a function of the variables. Any bounded Fp(oc0)- measurable functlon
[ is of the form f = M(o0) for some M € M. (Fp), therefore f =
o H ) for some H, the differential H(t) dB(t) being well-defined
almost everywhere. In this sense stochastic analysis is inherently smooth:
measurability implies differentiability. Why? Because f(w) = M (oo, w)
is a kind of boundary value of M (t,w). For a deeper discussion, see the
Malliavin calculus [M], [N].

The filtration Fp» generated by an n-dimensional Brownian motion
B"(t) is, in some sense, n- dimensional each M € Mjy(Fpr) can be
written as the stochastic integral M (¢ fo H™(s)dB"™(s) of some n-
dimensional Fgr-adapted process H™. The space Mloc(an) reminds one
of an n-dimensional manifold. Accordingly, Moc(Fpn+1) cannot be embed-
ded into Mo (Fpn), that is, B"t1(t) cannot be produced in real time from
B™(t). See [J, Chap. 4] for a definition and properties of the so-called in-
stant dimension of Mo (F). Instant dimension is defined there for so-called
stable subspaces of Mjoc(F), but we need it for the whole M,.(F) only.
Note that a single martingale can generate a filtration of instant dimen-
sion greater than 1; an example: M (¢ fo B (s) dBy(s) for independent
Brownian motions By, Bs, see [RY, V 4 13]. See also [Sk1, Example 2 on
p. 168] for infinite instant dimension (Skorokhod calls it “rank”).

Stochastic analysis investigates quantitative properties of random pro-
cesses. Their qualitative properties, insensitive to reversible real-time trans-
formations, are properties of filtrations, considered up to isomorphisms. A
theory of filtrations could be called stochastic topology! Its starting point
is the instant dimension, the only! known invariant whose meaning is ev-
ident (though its invariance is not so evident, which is similar to classical
topology).

A Brownian motion in a topological group G can be defined as a path-

! As far as discontinuous martingales are excluded.
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continuous time-homogeneous process X with independent increments on
the left, starting from the unit element of the group [Bax|. For G = R (im-
plying the additive group) these are of the form X (¢) = aB(t) + bt where
B is the standard Brownian motion and a,b are constants. For a finite-
dimensional Lie group G any such X generates a filtration isomorphic to
the Brownian filtration Fpn for some n € {0,1,...,dimG}. (See [Bax]
and references therein; an infinite-dimensional case is treated in [Bax].) In
fact, a naturally constructed invertible real-time transformation produces
X from a Brownian motion Y in the tangent space of G at its unit (the
linear space of the Lie algebra). The global topology of G is irrelevant,
since a sample path is continuous and insensitive to self-intersections. The
dimension n of the least linear subspace embracing Y exhausts the classi-
fication.

Waiving the group structure and the independence of increments we
turn to diffusion processes in manifolds, or in R*, which is the same for
stochastic topology due to its local nature. Two main approaches to dif-
fusion processes are used: martingale problems and stochastic differential
(or integral) equations. The latter is a technique for connecting a diffusion
process and a Brownian motion by an invertible real-time transformation.

Invertibility of a real-time transformation may seem to be a simple
matter. In terms of stochastic differentials, the transformation has its dif-
ferential, defined almost everywhere. The differential is a linear measure-
preserving map from one finite-dimensional linear space, equipped with a
Gaussian measure, into another. Clearly, such a map is invertible (mod 0) if
and only if the two Gaussian measures are of the same dimension. Remem-
bering that stochastic topology is smooth and local, we may expect that
a real-time transformation is invertible if and only if it does not reduce
the instant dimension. Strangely enough, it does not hold. Invertibility
can be violated by a delicate combination of two phenomena. The first,
an initial value problem for an ordinary differential equation? can have
more than one solution. The second, a partition of a probability space into
(a continuum of) measurable sets can be an immeasurable partition. As
a consequence, the theory of stochastic differential equations is forced to
distinguish a strong solution (also called solution-process) from a weak so-
lution (also called solution-measure). The latter is a morphism of Fx into
Fpr (never reducing the instant dimension), the former is an isomorphism

I mean a classical (not stochastic) differential equation whose right-hand side is
continuous but need not satisfy Lipschitz condition.
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(some examples may be found in [RY, Chap. IX, 1.19, 3.6, 3.17, 3.18]) pro-
vided, however, that the stochastic differential equation is non-degenerate.
Otherwise, a strong solution is a (non-invertible) morphism Fpr» — Fx,
while a weak solution is not a morphism at all.

Irreversibility of a given transformation does not mean that the two
filtrations are nonisomorphic: another transformation may be invertible.
The first example of a filtration of instant dimension 1 (identically), non-
isomorphic to Brownian filtration, is given by [DFSmT]. It is of the form
(Q, Fp, A\P), where (2, Fp, P) is the Brownian filtered probability space
and A is a density (that can be chosen such that both A and 1/X are
bounded [FT]). Unexpectedly, equivalent measures can lead to nonisomor-
phic filtered probability spaces. The density A depends on the remote past
in a complicated way, thus the measure change P — AP turns the Brownian
motion B into a highly non-Markovian process.

It is natural to ask about an invariant distinguishing the filtration of
[DFSmT] from Brownian filtration. In fact, [DFSmT] deals mostly with dis-
crete time filtrations; a sequence t,, | 0 is considered rather than ¢ € [0, 00),
and Vershik’s theory of decreasing sequences of measurable partitions [Ver]
is used. The relevant invariant takes on only two values (“standard” and
“non-standard”). Richer invariants exist [F]| but are somewhat bizarre.

Walsh’s Brownian motion was conjectured to give a natural example of
a non-Brownian filtration of instant dimension 1 (see [RY, the text after
Question 6 at the end of Chapter V]), in addition to the artificial example
of [DFSmT]. We will prove the conjecture by means of a new invariant
of filtrations (that is, of filtered probability spaces), taking on two values
(“cozy” and “not cozy”). The invariant is defined only for continuous-time
filtrations. See also [BEKSoY] for a new integer-valued invariant: splitting
multiplicity.

2 Joining Two Copies of a Filtration

A joining of two probability spaces (2, Fx(oc), Px), k = 1,2, is usually
defined as a probability distribution @ on (€21 X Qg, F1(00) ® F2(o0)) whose
marginals are P; and P, but we may also define it as consisting of another
probability space (€2, F(c0), P) and two measure preserving maps 7, : £} —
Q. Any such J = ((Q, F(c0), P), 1, m2) determines Q,

Qs(A) =P({@ € Q: (m (@), m(@)) € A})
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for A C Q1 x Qg, A € Fi(o0) ® Fa(o0). Any @ with given marginals
is Qs for some J. Though, QQ;;, = Qj, does not mean that J; and
Jo are isomorphic, but it does not matter. We need only the case
(€41, Fi(00), P1) = (2, Fa(o0), Po).

2.1 DEFINITION. (a) A self-joining over a probability space (2, F(c0), P)
is a triple J = ((, F(0), P), w1, m3) consisting of a probability space
(Q, F(c0), P) and two measure preserving maps 7, : {2 — Q.

(b) A self-joining over a filtered probability space (£2, F, P) or (abusing
the language) over a filtration F is a triple J = ((€, F, P), m, o) consist-
ing of a filtered probability space (€, F,P) and two morphisms 7 from
(Q,F,P) to (Q,F,P).

The following simple example is especially important. Consider filtra-
tions F = Fp and F = F g2 generated by one- and two-dimensional Brow-
nian motions B and B2 = (Bi, Bs), respectively. For a given number
p € [-1,+1] define 71, 79 by

B(t)om = Bi(t),  B(t)om = pBi(t) + V1 - p>Ba(t)
then B o and B o m are p-correlated copies of B. The self-joining will
be denoted by J(p). Below, “Var” means “variance” (the squared dis-
tance from the one-dimensional space of constants in Lg) and “Cov” means
“covariance” (the bilinear form corresponding to the quadratic form “vari-
ance”).

2.2 LEMMA. For the self-joining J(p), for any f,g € Lo(Fp(o0))

(a) |Cov(f om,gom)| < |plr/Var(f)y/Var(g) for p € [-1,+1];
(b) Cov(f om, fom) — Var(f) for p — +1.

Proof. Let f,,g, be the orthogonal projections of f and g on the n-th
Wiener chaos, then f = fo+ fi+..., Var(f) = || fill> + || f2]* + ..., and

E(fom |m 73( ) = (fo+pfi+p°f2+...)om, that is, E(f(pB1 () +
V19— BQ | B1 ) (f0+pf1+p2f2—|—. .. )(Bl()), see [Ma, Chapter 1,
Sect. 6] or[N, §1.4.1]. Tt follows that Cov(fom, goms) = Cov((fo+fi+...)o

1, (90 +pgL+p°g2+...)om) = Cov(fo+ fit+...,90+pg1+p°g2+...) =
PE(f191) + p*E(f292) + - .. which makes (a) and (b) evident. O

The correlation coefficient p can be randomized by a simple generaliza-
tion of the self-joining J(p): multiplying Q by [—1, +1] we construct a larger
(Q F, P) supporting both a two-dimensional Brownian motion B2 and an
F (0)-measurable random variable p independent of B2. Any probability
measure on [—1,+1] can be chosen as the distribution of p. The above for-
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mulas for 7y, w9 still work, but p is now randomized. The simplest interest-
ing case is this: p takes on two values 0 and +1 only, P(p =1) = p € (0,1),
P(p = 0) =1 —p. Clearly, Cov(f o m,g9 o m3) = pCov(f,g) for any
fyg € Lo(Fp(c0)). This means a positive minimal angle between the
subspaces LY(m; 1 F(00)) = LY(Q, n; ' F(00), P) and LY(m, ' F(c0)) of the
Hilbert space Ly(F(00)) = La(Q, F(c0), P); here LY means the subspace
of all zero-mean functions of Lo. The angle averages the correlation, since
the Lo-norm is of a global nature, in contrast with the quadratic variation
used in the following definition.

2.3 DEFINITION. Let J = ((Q,F,P),n1,m) be a self-joining over a
filtered probability space (Q,F,P). The maximal correlation ppax(J) of
the self-joining J is defined as the least number of [0,1] such that for any
X,Y € Mioc(F) the following process on (Q, F, P) is an increasing process:

(X1 =Y, X1 — Y2) — (1 — pmax) ({(X1, X1) + (Y2, Y3)) ;
here X1 = X om, Yo =Y om.

The filtration F is assumed to satisfy the continuity condition of sec-
tion 1, but F is not. Throughout the paper, the condition is assumed for
a filtration if and only if its notation does not contain a tilde (~), un-
less the reader prefers to assume the absolute continuity condition to hold
everywhere, which can be done with no essential harm.

For any f € Lo(F(o0)) the process X (t) = E(f|F;) (E(-|-) means the
conditional expectation) is a local martingale (in fact, an Ls-bounded mar-
tingale), f = X (00), and® Var(f) = E(X, X)(c0). Applying (2.3) to X,Y
obtained this way from f,g € Ly(F(o0)) we get

X1(t) ~Ya(t) =E(f1 —g2 | Fo);
Var(fi — g2) > (1 — pmax) (Var(f1) + Var(g2)) ;
2Cov(f1,92) < pmax(Var(f1) + Var(g2)) ;

Cov(f omi,gom) < pmax\/Var(f)\/Var(g) .

The cosine of the minimal angle does not exceed pmax(J), and can be
strictly smaller. In fact, pmax(J) is the cosine of the minimal angle between
so-called stable subspaces generated by Mjoc(F) o w1 and Mo (F) o mo; a
definition can be found in [J, Chap. 4] or [RY, IV.5.11], but we do not need
it. The notion of the quadratic covariation,

(X,)=4X, X)+3(7,Y)- L X -V, X - V),

3Tt is assumed that F(0) is trivial; otherwise L3(F(occ)) should be replaced with
Ly(F(o0)) © L2(F(0)).
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allows us to write the process (X1 — Yo, X1 — Y2) — (1 — pmax) ((X1, X1) +
(Y2,Y2)) in the form

Pmax ((X1, X1) + (Y2, Y2)) — 2(X1,Y2).

If (Q,F,P) satisfies the absolute continuity condition of sect. 1, then
(X1, X1) and (Y3, Y2) are absolutely continuous, which implies absolute con-
tinuity of <X1, YQ), since (Xl, Xl) + <Y2, Y2) :i:2<X1, Y2> = <X1 :I:YQ, X1 :IZYQ)
increases. Thus, pyax is the least number satisfying

pmax%(<XlaX1> + <Y27Y'2>) > 2%<X1,Yv2>

almost everywhere. Multiplying X; by ¢, Y3 by 1/¢, and minimizing in c,
we get

|4(X1,Y2)| < prnan/ 2 (X1, X0y & (¥2, ).
In general, the ratio
#(X.Y)

V&, X) /&Y, V)

is the instant correlation between X,Y. So, pmax(J) is the supremum over
all XY € Mio(F) of the essential supremum in ¢ and w of the instant
correlation between X o7y and Y o 7y (with an evident caveat about zero
denominator).*

For a filtration of instant dimension 1, the instant correlation p does
not depend on the choice of X,Y up to a sign, and pmax(J) is the essential
supremum of |p| over Q x [0,00). (For a larger instant dimension, an in-
stant maximal correlation may be defined such that pmax(J) is its essential
supremum.) In particular, pmax(J) = |p| for the self-joining J(p) (with a
constant p), and pmax(J) = 1 for the example with randomized p € {0, 1}.

2.4 DEFINITION. A filtered probability space (€2, F, P), or (abusing the
language) a filtration F, is called cozy, if there is a sequence (J,) of self-
joinings J, = ((Qn,ﬁn,lsn),wgn),wén)) over F such that

(a) pmax(Jn) <1 for each n,

(b) Cov(f 07r§n),f07r§n)) — Var(f) when n — oo for any f € Lo(F(c0)).

2.5 LEMMA. A filtration generated by a finite or countable collection of
independent Brownian motions is cozy.

4All that has been said can be generalized easily for a filtration satisfying the conti-
nuity condition rather than the absolute continuity condition.
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Proof. For a single Brownian motion, it follows from Lemma 2.2 that we
may choose p, < 1, p, — 1 and let J, = J(p,). A generalization for many
dimensions is straightforward. O

2.6 LEMMA. There is no morphism from a cozy filtration to a non-cozy
filtration.

Proof. Let Fi be a cozy filtration and 7 a morphism from F; to an-
other filtration F»; we have to prove that F, is also cozy. Any self-
joining J = ((Q, F, P),my,m3) over (Q, Fi, P;) induces a self-joining .J =
(2, F,P), o 7wy, o m3) over (Qo, Fa, Py). We have prax(7J) < pmax(J)
since Moe(F1) D Mioc(Fz)om. On the other hand, Cov(fo(mom), fo(mo
7)) = Cov((f om) omy, (f om) omy)) for any f € Lo(Fa(o0)). Therefore, a
sequence (J,) of self-joinings over Fi, satisfying conditions (a), (b) of Def-
inition 2.4, induces the sequence (7Jy,) of self-joinings over Fs, satisfying
the conditions. O

Remembering that a strong solution of a stochastic differential equa-
tion may be thought of as a morphism Fprn — Fx we conclude that the
strong solution generates a cozy filtration. It is especially interesting for
degenerate equations, that is, non-invertible morphisms.

The main result of the section follows immediately from Lemmas 2.5,
2.6.

2.7 Theorem. There is no morphism from a filtration generated by a
finite or countable collection of independent Brownian motions to a non-
cozy filtration.

It will be shown that Walsh’s Brownian motion generates a non-cozy
filtration, and therefore it cannot be produced in real time from a Brownian
motion of any dimension, finite or infinite!

3 Joining Two Copies of Walsh’s Brownian Motion

A continuous semimartingale may be defined as the sum of a continu-
ous local martingale and a continuous process of (locally) finite variation:
X(t)—X(0) = Mx(t)+Ax(t), Mx(0) =0, Ax(0) = 0. The martingale part
Mx and the compensator Ax are uniquely determined by X. Quadratic
variation for X may be introduced by (X,X) = (Mx,Mx). (See [RY,
IV.1.17-18].) If Ax increases, X is called a local submartingale; if Ax
decreases, X is called a local supermartingale. The set of all continuous
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semimartingales is a linear subset of the linear topological space of all con-
tinuous processes (equipped with the ucp-topology, as in sect. 1), but the
linear subset is not closed. In fact, it is dense (since continuous processes
of finite variation are dense). The maps X +— Mx and X — Ax are linear
but not continuous. The set (convex, not linear) of all continuous local
submartingales is closed. In fact, it is the closure of the set of all continu-
ous submartingales. Being restricted to the closed set, the maps X — Mx,
X — Ax are continuous. The same applies for supermartingales. However,
a process can be both a supermartingale and a local martingale without
being a martingale, even if it is positive and bounded in Ly! See [RY,
V.2.13].

Walsh’s Brownian motion Z(t) (see the Introduction) can be described
alternatively by three processes X;(t), Xo(t), X3(t) such that

Z(t) = X1(t) + 2™/ Xy (t) + ™3 X 3(t)

and X1, X5, X3 do not overlap in the following sense: no more than one
of them differs from zero at any given ¢ (and w). Each X belongs to the
following class (see also [RY, VI.4.4]); another example is |Z(t)| (the same
as |B(t)| for Brownian B).

3.1 DEFINITION. A process of class X is a continuous semimartingale X
of the form M + V where M is a local martingale and V is an increasing
process such that X(0) = 0, X(t) > 0, and f(f 1(x(s)>0) dV (s) = 0 for all
t € [0,00).

For any X € ¥, the increasing process V is half of the local time of X
at 0 (see [RY, VL.1)),

i t
V(t) = 3Li(X) = %Eig% | <o) d{X, X)(s) =/0 1(x(s)=0) dX () -

That is, X = JL(X) for X € %,. Tt follows that X — 1L(X) is a time-
changed Brownian motion, and (by Skorokhod’s lemma [RY, VI.2.1]) any
X € ¥, is a time-changed reflecting Brownian motion.

For any X1, Xo,X3 € B, the process Z(t) = X(t) + e2™/3Xy(t) +
e*™/3 X3(t) is a local martingale if and only if L;(X1) = Ly(X3) = Li(X3)
for all t. The reason is simple: Z 2 1(L(X) + e2™/3L(X,) + e*™/3L(X3)),
s0, Z € My if and only if L(X;) + €™/3L(X3) + e*™/3L(X3) = 0, that
is, L(X1) = L(X2) = L(X3).

Non-overlapping processes X1, X2, X3 € ¥, such that L(X;) =
L(X;) = L(X3) describe Walsh’s Brownian motion if and only if



1110 B. TSIRELSON GAFA

(X1, X1)(t) + (X2, X2)(t) + (X3,X3)(t) = t for all t. Otherwise they de-
scribe a time-changed Walsh’s Brownian motion or, equivalently, a complex-
valued continuous local martingale Z such that Z3(t) € [0,00) for all ¢
(a special case of so-called spider-martingales [Y2, Def. 17.2], [BEKSoY,
Sect. 2]; for the change of time see [Y2, Prop. 17.6]).

So, let a filtration F; be generated by Walsh’s Brownian motion Z =
X 4 e2™/3X, 4 ¢*™/3X5. Striving to prove that F; is not cozy (which
will be done in next sections) we consider a sequence (Jy,) of self-joinings
over Fy satisfying condition (b) of Definition 2.4: Cov(f o 7r§n), fo Wén)) —
Var(f) when n — oo for any f € Lo(F(c0)). The following result shows
that for large n processes Z o wgn) and Z o Wén) must have many common

zeros, which hints at a singular nature of the triple point 0 of the space
{z€C:2%€]0,+00)}.

3.2 LEMMA. Let (J,) be as above, and processes Rgn),Rén) be defined by
R,(cn) (t)=|Z(t)| o ﬂ,(cn). Then for any t € [0, 00)

¢
(n)
IE/O 1(R§n)¢0)dL(R2 )—0 forn— 0.

The lemma follows from the next lemma, see below. Of course, E = E 5
means integration w.r.t. P,

The natural measure on the set of zeros of the second copy Z o Wén) of
Z is dL(Rgn)). Most of these zeros are also zeros of the first copy Z o ﬂ%")
(for large n, with a high probability), and most zeros of the first copy are
also zeros of the second copy. That is strange! Usually, if two functions
are close, we may expect at the utmost that their zeros are close, but need
not coincide. Abundance of zeros is not an explanation, since Lemma 3.2
has no counterpart for the two-ray case, the Brownian motion B(t), nor for
the one-ray case, |B(t)|. Remember the self-joining J(p) over Fp with a
constant correlation coefficient p. It is easy to see that Bom; and Boms (as
well as | B|om; and |B|omy) have no common zeros for p # +£1. We observe
emergence of the distinction mentioned in the Introduction: a triple point
18 an essential singularity, while an endpoint is not.

The proof involves the following “geodesic” metric on the space {z €
C: 2% €[0,+00)}:

dist (T1627rk1i/3’,r2627rk2i/3) _ |7"1 - 7"2\ , when k.1 = ko,
|r1] + |r2|, otherwise.
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Given a self-joining J over F, we introduce the process D,
Dy(t) = dist (Z(t) o w1, Z(t) o m2) .

If a sequence (J,,) of self-joinings satisfies condition (b) of Definition 2.4,
then E(Dy, (¢))2 — 0 for n — oco. Indeed, Cov(f o ﬁgn),f o Wgn)) — Var(f)
implies E|f o wgn) —fo wé")\Q — 0 for any f € Ly(Fz(00)). Combining
f=ReZ(t) and f = Im Z(t) we have E|Z(t) o m\™ — Z(t) o r{™ |2 — 0. Tt
remains to note that dist (21, 22) < const - |21 — 29| for all 21,20 € {z € C:
23 € [0,+00)}.

Lemma 3.2 follows immediately from the next lemma showing that
E [ 1(r,20) dL(Ry) < 6EDy (t). Here Ry(t) = |Z(t)| o m.

3.3 LEMMA. For any self-joining J over Fz, the following process is a
submartingale:

I 1 [
X(t) =Dy(t) - 5/0 1(r,£0) dL(R2) — 6/0 1(ry0) dL(R1) -

Here is an intuitive explanation. For any ¢ and w one of the following
simple cases takes place within a small neighborhood of ¢:

Case 1: Ri(t) > 0 and Ry(t) > 0. Then X = Dj; + const. Take k,l €
{1,2,3} such that R;(t) = X(t) om and Ry(t) = X;(t) ome. If k =1
then Dj = |Xj o m; — X o mo| is a submartingale, since X o m; and
X; o mp are martingales. If £ # [ then Dy = Xy om + X;jomo is a
martingale.

Case 2: Ri(t) > 0but Ra(t) = 0. Then X = D;—(1/6)L(R2)+const. Take
k such that R;(t) = Xk (t) o w;. Assume that kK = 1 (other cases are
similar), then Dy = X; om; — (X7 — X2 — X3) omy = (a martingale) —
$(L(X1) — L(X3) — L(X3)) o ma = (a martingale) + §L(Ry).

Case 3: Ryi(t) = 0 and Ry(t) = 0. Infinitesimally, D; can only increase,
and X = Dj + const + (negligible term).

The idea is quite clear for cases 1, 2 but vague for 3. Also, assembling
the local descriptions needs justification. Instead, the proof given below
uses stochastic integration.

For any continuous function f of finite variation, fot Lis(s)=0) df (s) = 0.
Stochastic integration is more subtle: for a continuous semimartingale X,
the integral fg 1(x(s)=0) X (s) need not vanish. If X () > 0 for all Z, then
[RY, VI.1.7]

t
1
/0 L(x(s)=0) X (s) = 5Le(X) 2 0,
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therefore [RY, IV.2.10]

/H 8)1(x(s)=0) dX (s /H ) dL(

for any bounded predictable process H. The following general lemma will
be used in the proof of Lemma 3.3.

3.4 LEMMA. Let X1,..., X, be continuous semimartingalesand Hy, ..., H,
be predictable processes such that for all t

Hi(t) >0 for all k; Z Hy(t) =
ZHk ) Xk (t) = = max Xi(t) -
Then the following process is increasing:

A(t) mI?.XXk / Hk ka

Proof. Let Yy (t) = —X(t) —I—maxZX( ), then Yy (¢) > 0, >~ Hy(t)Yi(t)

0, and A(t) = maxy X(0)+ Y, fo Hy(s) dYy(s). However, Hy(t)Yy(t) =0,
therefore (see the formula before the lemma)

/ Hy(s)dYy(s / Hi,(8)1 (v, (s)=0) dYx(5) / Hy(s)dLs(Yy),
which evidently increases. O

Proof of Lemma 3.3. Define processes Y1,Y,Ys: YV = (2X;, — X7 — X —
X3)om — (2Xy — X1 — X9 — X3) o mo, then Dy(t) = maxg—123|Yi(t)| =
maxy—1,.6 Yi(t), where Yy = -Y;, Y5 = Y5, Y5 = —Y3. (In fact,
D;(t) = maxg=123Ys(t) = maxg—123(—Yx(t)), but all the six terms are
needed for the proof.) Introduce processes Hi, ..., Hg such that Hy(t) > 0,
k=16 Hk(t) =1,and 37, ¢ HyYy =Dy as follows:
if Ry <Ry =Xpom then Hp=1;
if R <Ry=X;om then Hjz, =1;
if Ri=Xpom =Ry=X,0me >0 then Hy=1/2and H3;; =1/2;
if Ri=Ry=0 then Hy=---=Hg=1/6.
Lemma 3.4 states that A = Dy, _, 4 [ Hy dYj is an increasing process.
We have

Yy, = %(2L<Xk) L(X1) = L(X3) — L(X3)) o my

~ 1(2L(Xy) - L(X1) — L(Xs) — L(X3)) o
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= —$L(Ry) + :L(Ry) for k=1,2,3;
Mioe> 3" [ = By A+ §LRS) — $E(R)
k=1
=D;—A+ %/(Hl + Hy + Hs — Hy — Hs — Hg) d(L(Ry) — L(Ry))
=D;— A+ %/ sgn (R1 — Ry) d(L(Ry) — L(Ry))

1 1

It remains to prove that the above process is a martingale (not only a local
martingale). The integrand is bounded: |Hy — H3 | < 1. The integrator is
the sum of two (correlated) Brownian motions: (2Xj — X1 — X, — X3,2X) —
X1 — Xo — X3)(t) = (X1, X1)(t) + (Xz, Xo)(t) + (X3, X3)(t) = ¢, since
<ch7Xl) ZOfOIk#l O

In fact, 2X; — X1 — X9 — X3 is a so-called skew Brownian motion with
parameter o = 1/3, see [W], [HSh], and [RY, X.2.24, XII.2.16].

The main result of this section, Lemma 3.2, follows from Lemma 3.3
proved above. So, common zeros cannot be rare for two copies of Walsh’s
Brownian motion Z, if the sequence (J,,) of self-joinings of F satisfies
condition (b) of Definition 2.4. This is a half of the way toward non-coziness
of Fz. The second half is this: common zeros are rare for two copies of Z, if
the self-joining J of F satisfies condition (a) of Definition 2.4: pmax(J) < 1.
This statement will be proved in the next section for reflecting Brownian
motion |B|, which is enough due to the following argument.

If Z(t) is Walsh’s Brownian motion, then |Z(t)| is (another model of)
reflecting Brownian motion, and there is a natural morphism 7 from Fy
to Fiz. Any self-joining J of Fz induces a self-joining 7J of Fz (see the
proof of Lemma 2.6), and pmax(7J) < pmax(J)-

4 Joining Two Copies of Reflecting Brownian Motion

An interesting geometric property of two-dimensional Brownian trajecto-
ries, well-known since 1985 [Bu], [Shi], [Ev], and reappearing as a by-
product of the main results of the section, is shown on Fig. 1(a). For a
given angle o € (0,7), an instant ¢ € (0,00) will be called an @-minimum,
if

|B2(s) — Ba(t)|sin$ < (Bi(s) — Bi(t)) cos &
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Fig. 1(a). An co-minimum of a two- Fig. 1(b). Soon after an a-mini-
dimensional Brownian motion, « = 7/3. mum, a = 7/3. The shown a-mini-

The shown a-minimum is the first one  mum is the last one before t = 1.
after t = 1.

for all s € [0,t]. Here (B, B2) is a two-dimensional Brownian motion. Each
w € Q determines the set (maybe empty) of a-minima. The question is:
are there a-minima? The answer is positive for o < 7/2 and negative for
a > 7/2 (“with probability 1”7 is implied, as usual); see Lemma 4.6 and the
paragraph after it.

There is one more by-product (see Lemma 4.12 and the paragraph af-
ter it), admitting a nice geometric reformulation presented below. I am
grateful to Marc Yor for the reformulation [Y1], and to Krzysztof Burdzy
for pointing out that the geometric statement follows easily from a result
of Evans [Ev, Th. 1(ii)]. Let e < 7/2. For each @-minimum ¢, each of the
two inequalities

+(Ba(s) — Ba(t)) sin g < (Bi(s) — Bi(t)) cos &
is violated for some s € (t,t + ¢), no matter how small ¢ > 0 is. After an
a-minimum, the trajectory cannot be sustained in a positive time within
one of the two half-planes shown on Fig. 1(b). The fact is evident (and still
holds for a = 0) for a predictable a-minimum (chosen in real time, without
anticipating the future), but the statement is much stronger: it holds for all
a-minima. Note that the statement ceases to hold at @ = 0. A 0-minimum
is a ¢ such that Bi(t) = min{B;(s) : s € [0,t]}. Take the last 0-minimum
before a given instant (say, 1), then 0 < By(s) — By(¢) for all s € (¢,t + ¢€)
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if € is small enough.

The two statements, presented by the above two paragraphs, will be
proved anew. Afterwards the proofs will be generalized, giving new results
(Lemmas 4.11, 4.12). Both statements can be reformulated in terms of
two correlated Brownian motions Bj(t) cos(a/2) £ Ba(t)sin(a/2). Their
instant correlation is constant: p = cosa. The same situation was faced
in section 2: the self-joining J(p) over a Brownian motion B produces two
p-correlated copies B o 7y and B o g of B. The process

R(t) = B(t) - inf B(s)

is a reflecting Brownian motion (as mentioned in sect. 1), and an -
minimum is an instant ¢ such that R;(¢) = Ro(t) = 0. Here Ry, = Romy, are
p-correlated reflected Brownian motions: (R, R2)(t) = pt. An @-minimum
is nothing but a common zero of R; and Ry.

There is a simpler example of correlated reflecting Brownian motions:
|B1| = |B| o w1 and |Bg| = |B| o mo. However, their instant correlation is
not a constant, it is sometimes (+p), sometimes (—p),

(1Bl [Bal)(t) = p/o sgn (B1(s)) sgn (Ba(s)) ds .

There are no common zeros for |B;| and |Bs| (irrespective of a € (0,)),
since a two-dimensional Brownian motion never returns to the origin. Our
digression is now finished, and we return to a more formal style.

A reflecting Brownian motion R(t) is considered on a filtered probabil-
ity space (2, F,P). That is, R is a process of class X, (see 3.1) whose
martingale part is a Brownian motion,

R=Mp+Vg, Mp€ My, (Mp,Mg)t)=t, Vg(t)=3iL(R).

The reader may restrict himself to the case F = Fg (that is, F is generated
by R), but it is not easier than the general case.
Let J = ((Q,F,P),n1,m) be a self-joining over (Q,F,P). We are
interested in common zeros for the processes Ry = Rom and Ry = Ro .
For any C2-smooth function f : [0,00) x [0,00) — R, the martingale
version of It6’s formula gives

(4.1) iy t
PO Ro) 2 5 [ AF(R(6) Ra(s))dst [ io (i) Ras))s)ds+

w3 ([ 10 R) dzr) + [ 2(ri(0.0) drr).
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where fi(z1,22) = (0/0zk)f(x1,%2), fri(z1,29) = (8%/0xk0m)) f (21, 22),
Af = fi1 + fo2, and p(s) is the instant correlation between R;(s) and
RQ(S)a

t
(Ry, Ro)(t) = /0 p(s) ds.

Note that |p(s)| < pmax(J)-

If the smoothness of f is violated at some points, the formula (4.1)
can be applied up to a stopping time provided that the process is stopped
before something ill-defined really enters the formula.

4.2 LEMMA. For any p € (0,1) there is a continuous function f : [0, 00) X
[0,00) — [0, 00) satisfying the following conditions:
(a) f(z,y) = f(y,) for all z,y > 0.
(b) f has continuous partial derivatives of first and second order on
(0,00) % (0, 00); the derivatives have continuous extensions to [0, 00) X

[0,00) \ {(0,0)}-
(c) For all (z,y) € (0,00) x (0,00)

02 02 0?
(W + a—y2 +2Pa$—ay) f(:c,y) =0.
(d) Forallz >0
0
9 |y=o+

(e) f(0,0) =0, and f(z,y) > 0 for (z,y) # (0,0).
(f) For any z,y,r >0

flra,ry) = r®20/C=0) f (g 0),
where a € (0,1) is defined by

(4.3) Cos % =p.
Proof. Take
(4.4) f(z,y) = Re (@720~ (z,y))
where
(4.5) Z(w,y) = (2 +y) sin = +i(x — y) cos
and, of course, ZP(z,y) means (Z(z,y))?. Note that
ma W 2-—a
7z <I_mM_T,
larg Z(z,y)| < 5 -~ =5 5>
| arg Z(2-20)/(2=0) (3 4))| < gu —a) < g
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It follows that f(z,y) > 0 for (z,y) # (0,0).

Being the real part of a holomorphic function of z = Z(z,y), the func-
tion f is harmonic in the coordinates u = Re Z(z,y) = (z + y) sin(wa/4)
and v = Im Z(z,y) = (z — y) cos(wa/4),

02 o? u v v
0—(W+W>f(ﬁ+wﬁ‘%)

(L, 1 3_2+3_2 Fz,y)
“\252 T 407 ) \ 922 T 92 ) |emr 1Y
v=ob— 2%
1 1 9?2
“(4—52‘@) 920y | @)

Y=

where C = cos(ma/4), S = sin(wa/4). It means that

8 o y g O
(@+@+2waxay)f(x’y):°'
p

It remains to check (d),

7(2-20)/(2=a) (5 oy — 2 — 2azfa/(2fa) (z,0) - 9
ot 2—a Y

_2-2a mT2—a —o/(2-a) m2—a
iy~ T exp 22 5 exp 22 5
2720 —af(2-a);,

2—a
the real part vanishes. O

4.6 LEMMA. Let the two copies Ry = R o w of the reflecting Brownian
motion R be p-correlated for some (constant, nonrandom) p € (0, 1), that
is, (R1, Ro)(t) = pt. Then (with probability 1) there is a (random) t > 0
such that Ry(t) = Ra(t) = 0.

Proof. Consider the process X (t) = f(Ri(t + 1),Ro(t + 1)) where f is
given by Lemma 4.2, and the stopping time S = min{¢ : X (¢) = 0} (it is
meant that S = +oo if no such ¢ exists). The stopped process X (t A S)
is a local martingale due to (4.1). In general, a trajectory of a continuous
local martingale has only two possible types of behavior for ¢ — oco; either
it tends to a limit, or it is unbounded both from above and from below (see
[E, 4.45]). Our process X (¢ A S) is bounded from below (by 0), therefore it
is bounded from above, which is impossible unless S < oc. O
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The main part of the by-product shown on Fig. 1(a) is now proved: o-
minima exist for any « < 7/2. In order to prove their absence for oo > 7/2
it suffices to consider the case @ = 7/2. Here, R; and Ry are independent.
Take f(z,y) = log(z? + v?), X(t) = f(Ri(to +t),Ra(to +t)), and S =
min{t : Ri(to +t) = Ra(to +t) = 0}, then X is a local martingale till S.
Its trajectory cannot tend to —oo, which means that S cannot be finite.

What happens near the critical point 7/2?7 Let 0 < 7/2 — a < 1,
then the correlation coefficient p = cos « is positive and small; (4.3) gives
(r/2)a = a. The value X(0) = f(R1(1),R2(1)) is typically close to 1,
since the exponent (2 — 2a)/(2 — a) of (4.4) is a small positive number.
Assume that X (0) = 1, then X can reach 0 earlier or later than 2, chances
being 50/50. However, f(z,y) = 2 means that x + y is a huge number,
about 2(2-@)/(2-26)  Thys, the time ¢ when X reaches 2 is typically huge:
1/logt <1 —a =< /2 — «a, and the same applies for the time of reaching
0. (Unlike percolation, there are no critical exponents at the critical point
a =7/2.) Fig. 1(a) uses an angle @ = /3 not close to /2, since otherwise
the simulation would delay the paper for an exponentially long time!

4.7 LEMMA. Let Ri,Ro,p be as in Lemma 4.6, and f be the function
defined by (4.3-4.5). Then the process X(t) = f(Ri1(t), Rz(t)) is a sub-
martingale.

Proof. For any € > 0 define

femy)=flateyte),  Xe(t)=fe(Ri(t), Ra(t))-
For ¢ - 0 we have f. — f uniformly, therefore X, — X uniformly. It
suffices to prove that each X; is a submartingale.
The function f. being C2-smooth, (4.1) and 4.2(c) give X, = V}_, where

(4.8)
Vi) = 5 [ (U910 Ra() du(R) + 5 [ (F)a(Ra(5).0) dEu(Ro).

In order to prove that Vy, increases, it suffices to check that (f.):(0,y) >0
and (f:)2(z,0) > 0 for all z,y > 0. We have

(f)a(z,0) = 8% Re ZC-2)/C~0) (5 ¢ gy 4 ¢)

y=0

2-2
=5 CjRe (Z_“/(Q_a)(x +e,6) - (—iexpiZt));
Z(z+e,e)=(z+2)sin "¢ +izcos ¢ =z - jexp(—iTE) + 2esin T2 ;
Z (gt ee) - exp(iT) = (Z(z +¢,¢) - exp(—iT2e - 2*—“))_a/@_a)

a
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= ((x . iexp(—i%) + 2esin %) . ( — iexp(i%))_“/@_‘l)

—a/(2—a)
= (x—2igsin%“exp(i%“)> ;
S0,

Folz +e,€) = (f.)2(z,0) =
4.9 9_9 o
(4.9) — 2_aaIm((Cﬂ—Q%Sinﬁ—“exp(i%@)) a/(2 a)),
which is positive, since

arg (= — 2iesin T exp(i%%)) € [ - T + Z2,0] .

So, the process Vy, increases. It remains to check that the local martin-
gale X, — V;. is a martingale. The gradient of f. is bounded, therefore
(Xe = V5., X —Vp)(t) < const -t with a constant depending on € and pmax
but not w nor t. O

It may seem strange that the limiting procedure € — 0 succeeds while
the estimation for the quadratic variation depends on . However, the
convergence X, — X is without doubt, irrespective of the estimation. The
process X belongs to the class X (see 3.1), X = M +V,V = lim,_,o V.,
M = lim,_,o(X; — V}.) in the ucp-topology. It is natural to define V; by
Vi = V. The process M is a martingale (not only a local martingale),
which follows from the fact that
(4.10) E sup |X(s)| < o0

s€[0,t]
by the Doob-Meyer decomposition theorem (see [Me2, the theorem in
Sect. 11]).

The above lemma, states, in fact, that the function —f is excessive for
the two-dimensional Markov process (R1, R2). However, we cannot restrict
ourselves to Markov processes; we have to consider (R;, R2) whose instant
correlation coefficient p(t,w) is a random process. Fortunately, the same
function fits.

4.11 LEMMA. Let Ry, Ry be two copies of the reflecting Brownian motion
such that their instant correlation coefficient p(t) = p(t,w) satisfies the
inequality

p(t) < pmax for all t, with probability 1
for a given number pn.x € (0,1). Let f be the function defined by
(4.4-4.5) with a such that cos(wa/2) = pmax. Then the process X (t) =
f(R1(t), R2(t)) is a submartingale.



1120 B. TSIRELSON GAFA

Proof. The same as the proof of Lemma 4.7, but one more term appears:

[ 606) = pma) i (s 51 o) s

In order to prove that the above process increases, it is enough to check
that fi2(z,y) <0 for all z,y € (0,00). We have

0 —2a)/(2—a
fr2(z,y) = BxByReZ(2 2a)/(2 )($ay)
d? d d
_Re [ (2-20)/(2-a) . 4. 4,
Re (1 st &2 2w )

~~

=1
:2_201‘(_201 ).ReZQ/(Za)(x,y)’

2—-a —a
which is negative, since
2 T Ta s
_ z < : <_ - _) -I, O
‘ 2-a® (x’y)‘_2—a 2 4/ 2

This time the process X does not belong to 3. It has a non-singular
drift [(p—pmax)f12 dt, and also a singular drift concentrated on the common
zeros of Ry, Ry. Subtracting both drifts, we get a martingale (see (4.10)).

The singular drift of X is the limit, for ¢ — 0, of V}, defined by (4.8-4.9).
It follows from (4.9) that

fa(z + €,€) > consty .79 (2-0)  for ¢ < consty - €

with two positive constants depending on a but not e. We have

t
%E /0 consty - E_a/(Q_a)l(Rl(s)SCODStQ-E) dLs(Ry) < EX,(t);
t t
E / L(R, (s)=0) dLs(Rg) = lim E / L(Ry (s)<consts-¢) ALs(R2)
0 e—0 0

= lim O(e%/>~%) = 0;

e—0
thus, the following result is proved.

4.12 LEMMA. Let R1, Ra, pmax be as in Lemma 4.11 Then

t
/(; 1(R1(5):0) dLS(RQ) = 0

The second by-product, shown on Fig. 1(b), can be deduced from the
lemma by using the so-called first order calculus [RY, VI.4]. The calculus
will be used intensively in section 6, while the by-products will not be used.
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So, common zeros are rare for two copies of the reflecting Brownian
motion whose instant correlation is bounded away from +1. It follows (see
the end of section 3) that common zeros are rare for two copies of Walsh’s
Brownian motion, if pmax(J) < 1.

4.13 Theorem. A filtration generated by Walsh’s Brownian motion is not
cozy.

Proof. Assume the contrary: there is a sequence (J,,) of self-joinings over
the filtration, satisfying conditions (a), (b) of Definition 2.4. By Lemma
3.2, condition (b) ensures that

t
E [ 1, . dL(RY f .
/0 (R§>¢o)d (Ry7) =0 forn— o0

By Lemma 4.12, condition (a) ensures that

i
(n)y _
Therefore,
t
E / dL(Rgn)) —0 forn — oo,
0

which is evidently impossible, because the integral is positive and does not
depend on n, since each Rg") is a reflecting Brownian motion. O

4.14 Theorem. There is no morphism from a filtration generated by a fi-
nite or countable collection of independent Brownian motions to a filtration
generated by Walsh’s Brownian motion.

Proof. Follows from Theorems 2.7 and 4.13. O

The above theorem appeared for the first time in my preprint “Walsh
process filtration is not Brownian”, August 1996 (mentioned in [Y2, Epi-
logue to Chapter 17]). Only a single one-dimensional Brownian motion
was considered, but the generalization for a finite or countable collection is
straightforward. The proof of Lemma 4.12 was very cumbersome. A much
simpler proof, found by Emery in November 1996 and presented in [EY],
exerted some influence on my second proof given here. Being much simpler
than my first proof, it is nonetheless more complicated than the proof of
[EY], but sheds some additional light on the singularity.

The following two sections contain some generalizations. Most of
them were found independently by Barlow, Emery, Knight, Song, and Yor
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[BEKSoY], their proofs being better than mine due to effective use of so-
called splitting multiplicity. This is an integer-valued invariant of a filtra-
tion, introduced in [BPY, Def. 4.2], where the problem, to find the splitting
multiplicity of the Brownian filtration [BPY, Problem 1], was left open.
See also [Y2, p. 108, “M. Barlow’s conjecture”]. The problem is solved in
[BEKSoY]: the multiplicity is equal to 2 (as expected), irrespective of the
dimension of the Brownian motion. In this sense, a boundary is two-sided
in the space of Brownian sample paths, or rather in the space 2 x [0, 00)
equipped with the optional o-field.

The results of section 5 will not be used further, while the main result of
section 6 (Theorem 6.1) is the clue to the application to harmonic measures
we pursue.

5 A Generalization: Change of Measure, or Drift

We have now two examples of non-Brownian (that is, not isomorphic to the
filtration Fp generated by the one-dimensional Brownian motion B) filtra-
tions of instant dimension 1 (identically). The first example [DFSmT)] is
of the form (2, Fp, Q) where (2, Fp, P) is the Brownian filtered probabil-
ity space and @ is an equivalent (that is, mutually absolutely continuous)
measure, () ~ P. The second example is generated by Walsh’s Brownian
motion.

The following question was asked me by A. Skorokhod in Summer 1996.
The first example was already known, the second example was only conjec-
tured. We both expected Walsh’s Brownian motion to be a counterexample,
and it really is, as follows from Theorem 5.2 below.

5.1 Question [Sk2]. Let (©2,F, P) be a filtered probability space of in-
stant dimension 1. Is there a probability measure @) equivalent to P such
that (22, F, Q) is Brownian?

5.2 Theorem. Let (2, Fz, P) be the filtered probability space generated
by Walsh’s Brownian motion Z, and () be a probability measure equivalent
to P. Then the filtered probability space (22, Fz, Q) is non-cozy.

This version of Theorem 4.13 is robust under measure changes. It will
follow from robust versions of Lemmas 3.2 and 4.12. Let us start with the
latter.

5.3 LEMMA. Let R be a reflecting Brownian motion on (Q,F,P), and
Q ~ P. Let J = ((Q,F,Q), 71, m2) be a self-joining over (2, F,Q) such
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that pmax(J) < 1. Then

t
/0 (R, (s)=0) dLs(R2) = 0
where R, = R o my,.

Proof. We assume F = Fgr without loss of generality. The measures P and
Q@ (or rather the corresponding filtered probability spaces) form a Girsanov
pair as defined in [RY, VIII.1.8]: the density (that is, the Radon-Nikodym
derivative) of @ w.r.t. P is of the form

exp (/OOO (1) dB(t) — %/Ooo 2(1) dt)

where @ is a process on (2, F,Q) and B(t) = R(t) — 3L;(R). The martin-
gale part B of R is a P-Brownian motion, that is, a Brownian motion on
(Q,F,P). The process ® emerges from the local martingale [ ®dB (de-
noted by L in [RY]) via the martingale representation theorem for B [RY,
V.3.4] and the equality Fr = Fp [RY, VI.2.2]. The process

¢
B(t)—/0 d(s)ds

is a @-martingale by Girsanov’s theorem [RY, VIII.1.7], thus the two pro-
cesses Bom, — ([ ®ds) omy, (k= 1,2) are Q-martingales. We want to get
a measure P equivalent to Q such that both 7 and 7y send P into P (in
addition to sending Q into @) by constructing ®,, P,y such that

exp(/éld(Bom)—l—/(i)Qd(BowQ) - %/(é%—{—é%—i—?p@lég)dS)

can serve as the density of Q w.r.t. P. Here the process p is the instant cor-
relation between Bom; and Bome. Processes B om, must be P-martingales.
Girsanov’s correction to B o 7, must be equal to [(® o my)ds. That is, we

need
/(@owk)ds: <Bom,/<i>1d(3om)+/<T>2d(BO7rz)> ;

{(I)Oﬂ'lzél_*_pé?a

D oy :p<i>1+<i>2.
The solution exists, since p # 1,

B, —

1_p2((I)07T1—p‘I’07T2),
~ 1
Dy = 1_p2(<I>o7r2—p‘1>o7r1).
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It is not clear whether or not the corresponding local martingale is a martin-
gale (see [RY, VIII.1.14-16] about such difficulties). For each n introduce
a stopping time S,, = min {t : |f<i>1 d(Bom)+ [ o, d(Bo7r2)‘ > n} and a
measure P, on f:gn such that the density of Q w.r.t. P, on .7:'5n is given by
the exponential formula written before. By stopping all the processes at S,
we get two processes Ry = R o7 on (Q,fsn, ﬁn) that are stopped reflect-
ing Brownian motions whose instant correlation does not exceed pmax(J).
(Definition 2.3 can be made explicitly invariant under measure changes by
replacing “martingales” with “semimartingales”; quadratic covariations are
invariant.) Lemma 4.12 gives

tASh
/O LR, (s)=0) dLs(R2) = 0

P,-almost sure, therefore, Q-almost sure. However, S,, — oo for n — 0o. O

5.4 NOTE. It was shown that any measure change on {2 can be lifted to
Q provided that pmax(J) < 1 (though, a localization by stopping times is
needed). The fact is true for any filtration, and the above proof can be
generalized from the instant dimension 1 to any instant dimension, finite
or infinite.

The next lemma is a robust version of Lemma 3.2. Convergence in
probability is stated rather than L-convergence, since the local time, being
P-integrable, need not be Q-integrable.

5.5 LEMMA. Let Z be Walsh’s Brownian motion on (2, F, P), and Q ~ P.
Let (J,) be a sequence of self-joinings J,, = ((Qn, Fr, Qn),wgn),wgn)) over
(Q, F, Q) satisfying condition (b) of Definition 2.4: Cov(f07r§"), f owé")) —
Var(f) when n — oo for any f € Lo(F(00)). Then for any t € [0, 00)

t
1, ), dL R™Y 50 in probability, for n — oo,
o (B17#0) 2

where R,(cn)(s) =|Z(s)| o ﬁ](c").

The proof will be given after two more lemmas. Assuming that
pmax(Jn) < 1 for each n, we can lift the equivalence Q@ ~ P to €, sim-
ilarly to the proof of Lemma 5.3, but it does not help, since the lifted
equivalence is not uniform in n. Another idea will be used: the singular
drift 1(r,-0)dL(Rz2) of the distance process D; (see Lemma 3.3) cannot
be killed by the regular Girsanov’s drift. The two drifts will be separated
by a random set on the time axis. The next lemma is a robust version of
Lemma 3.3.
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5.6 LEMMA. Let Z be Walsh’s Brownian motion on (2, F, P), and Q ~ P.
Then there is a process ® on (Q, F,Q) such that

(a) f(f ®2(s) ds < oo almost sure for any t,
(b) for any self-joining J over (2, F,Q), the following process is a sum of
a martingale and an increasing process:

t t
X(t)—I—/ |<I>1(s)|ds+/ |Da(s)| ds;
0 0
here X is as in Lemma 3.3, and ®; = ® o 7.

Proof. Similarly to the proof of Lemma 5.3, we write the density of Q@ w.r.t.

P in the form
exp (/OOO (1) dB(t) — %/Ooo B2(1) dt)

with some ® satisfying (a), and B(t) = R(t) — 3 L+(R), R(t) = |Z(t)|. The
martingale representation theorem for Z is used (Theorem 4.1 of [BPY]).
Similarly to the proof of Lemma 3.3, we introduce Yi,Ys,Y3 and
Hy,...,Hgs. Still, A= D, — Zk:l,...,6fHk dYy is an increasing process.
The process 2X, — X1 — X3 — X3+ ¢ L(R) is a Brownian motion on (Q, F, P).
Its Girsanov’s correction is [ ®p dt where p is its instant correlation with B.
Thus, its differential drift on (2, F, Q) is between +|®|, and its quadratic
variation is that of Brownian motion. Accordingly, the differential drift of
Yy + §L(R1) — §L(Ry) is between £(|®| o w1 + |®| o m3), and its quadratic
variation on any [s,t] does not exceed 4(¢t — s). Both assertions hold for
X — A, since X —A=30_ [(Hy — Hsx) d(Yi + LL(R1) — 1L(R,)) and
S i |Hg — Hyyp| < 1. Therefore, X — A+ [1(|®] o + |®| o m)ds is a
martingale plus an increasing process. O

5.7 LEMMA. Let Z, (Q,F,P), Q and ® be as in Lemma 5.6, J, and R\"
as in Lemma 5.5, and H be a locally finite variation process on (2, F, Q)
such that 0 < H(t) < 1 always. Then for any M € [0, c0)

. ]‘ t n n
hmsup]E(M/\ 6/0 Hé )1(R§n)¢0) dL(Rg ))>

n—0o0

< Q(IE /Ot H?(s) ds) v

t
+ limsupE (M /\/ Hén)(s)(\(bgn)(sﬂ + |@§n)(s)|) ds) ;
0

n—oo

here Hén) =Ho Wén) and @,(cn) =do W,(cn).
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Proof. Consider the processes
Dn(t) = dist (Z(t) o 7™, Z(t) 0 7)),

where dist is the “geodesic” metric introduced before Lemma 3.3. There,
it was noted that D, (t) — 0 in Lo, but now Z(¢) need not belong to Lo,
and we use a weaker statement: for any ¢ € [0, c0)

D, (t) — 0 in probability, for n — co.

The above pointwise convergence statement follows from the fact that
Xo 7'('5”) —Xo wgn) — 0 in probability, for any random variable X on
(Q,F,Q). Really, for X € Ly it follows from the Lo-convergence, the Lo
being dense in probability. A stronger statement holds: for any t € [0, 00)

m[%x] D, (s) — 0 in probability, for n — oo.
s€|0,t

The above locally uniform convergence statement follows from the pointwise
convergence due to equicontinuity:

P g, (max, 10n(r) = Da(s)] > )

<Py, (k 1.2 sl <6 dist (Z(r) o W’(cn)’ Z(s) o W’(“n)) > 6)

< 2]P>Q( max _dist (Z(r), Z(s)) > 5)

|r—s|<d
the latter does not depend on 7 and tends to 0 for § — 0 (meaning that
r,s € [0,1]).
For each n the process D, on (Q,, Fn,Qn) is a semimartingale, since
the following process is a local submartingale by Lemma 5.6:

D 1 t1 dL(R™) — 1 t1 dL(R™
w0 =G fy Lo D) =g [ L gy LB

t
+/ @g")(s)|ds+/ B0 ()] ds
0 0

t
In fact, (Dn)(t) — (Dp)(s) < 4(t — s) for 0 < s < t (see the proof of
Lemma 5.6). Stochastic integrals [ Hén) dD,, are well-defined, and for each
t € [0, 00)

t
/ H dD,, — 0 in probability, for n — 0o,
0

which follows from the locally uniform convergence D,, — 0 and the finite
variation property of H via integration by parts: for any C € (0,00),
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t € [0,00), and € > 0

hmsup]P’ (‘/ H(n dD,

n—oo

) < hisgplf” ((%(?Hén)) (I[I(l;:iﬁ(Dn> > s)

< IP’Q(VH > C) +1171LTLS£I)]P) (I[I(l)fiﬁ(Dn > E/C) ;

-0
the first expression does not depend on C, while the third expression tends
¢
to 0 for C — oo. Here V f(t) is the total variation of f on [0,¢], including
0

|£(0)| and |f(t)|- We have
t ¢
Dn(t) — l/ 1(R(n);£0) dL(Rg”)) _ l/ 1(R(”)¢0) dL(Rgn))

/|<1>"> |ds+/|<1><" )| ds = M, (t) + An(?)

for some martingale M, such that (M) (t)—(Mp)(s) < 4(t—s)for0 < s <t
and some increasing process A,. Therefore

L [ ) (n)
t t t
g/o HZ(")an—/O Hé")dMn-l-/O 7™M (18] + (85Y)) ds

t 2 t 9
E( / i dMn> —E / (EM)? d(M,)
0 0

<4E /t(Hén))st — 4R /t(H(s))st;

t 1/2
n gz(n—z/ H2d5> :
0

)—)0 for n — oo}

0
t
n) g]E‘ b0
0

t
IE(M/\ ‘/ " dD,
L

0
t
]E(M/\‘ HS
0

—0 in prob.
the statement of the lemma follows immediately. O
Proof of Lemma 5.5. Let H be a locally finite variation process on

(Q,F,Q) such that 0 < H(t) <1 always and H (t) = 1 whenever Z(t) = 0.
Then dL(|Z|) = HdL(|Z|), dL(R{™) = H™ dL(R{™), hence

t
li E(1A [ 1, o, dL R(”))
P ( /0 (R 0) AL(R )
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n—oo

t 1/2 t
< 12<E/ HQ(S)dS) +limSUPE<1/\6/ Hén)(|¢ag”)|+|(bén)\)ds>
0 0

by Lemma 5.7 (for M = 1/6). The left-hand side does not depend on H.
It suffices to make the right-hand side arbitrarily small by choosing H
appropriately.

We cannot take H(t) = 1(z(;)=0), since the process is of locally infinite

variation. However, a lot of well-known approximations can be used. In
particular (see [RY], Fig. 4 of VI.1), define for any § > 0

Hy(t) = 1if |Z(s)| < 4 for all s such that max{re[0,t]: Z(r) =0} < s <,
Hjs(t) = 0 otherwise,

then Hj is a locally finite variation process, Hs(t) = 1 whenever Z(t) = 0,
and Hy(t) = 0 whenever |Z(t)| > §. The monotone convergence of Hs to
1(z=0) for  — 0 implies

t
/ |Hs|*ds — 0 for § — 0 almost sure,
0

t
IE/ |Hs|?ds =0 for 6 —0.
0
It remains to show that

t
limsup E (1 A 6/ (Hy)S (198 + 185M)) ds) >0 for§—0.
n—oo 0

For any C € (0,00), k =1,2 and ¢ > 0

t
: . (n) ()
}%sgpﬂp@n(/o (Hs)y | @y, | ds > 8)

Lame g )
. n) |2
S%I_I)I(I)S%p (]P’Qn((/o Riped ds) >C)
L g) s €
+]P’Qn<(/0 ()5 ds> >5)>
. 1/2 t ) yz .
< i = .
_IP’Q((/O |D| ds) >C>+‘%1—I*%PQ((/0 |Hy| ds) > C’)’

=0

the first expression does not depend on C, while the third expression tends
to 0 for C — oo. So, [L(H;)V (18| +|85”])ds — 0 in probability,
uniformly in n, for § — 0. O
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Proof of Theorem 5.2. Assume the contrary: there is a sequence (J,) of
self-joinings over (2, F, @), satisfying conditions (a), (b) of Definition 2.4.
By Lemma 5.5, condition (b) ensures that

t
/ 1 (R™ 20) dL(Ré")) — 0 in probability, for n — oo
0 1

By Lemma 5.3, condition (a) ensures that

t
1 oy dL(RM™)=0.
/0 (rfr)=0) 4E(R27) =0
Therefore ;
/ dL(R{) = 0 in probability, for n — oo,
0

which is evidently impossible: the integral is always positive, and its dis-
tribution does not depend on 7, since the distribution of Rgn) w.r.t. @ is

the same as the distribution of R = |Z] w.r.t. Q. o

So, the triple point remains an essential singularity in the presence of a
non-singular drift.

6 Another Generalization: Asymmetric Triple Point

The process Z on three rays, considered in sections 3—4, is a symmet-
ric case of Walsh’s Brownian motion: its distribution is invariant un-
der permutations of the three rays. A nonsingular drift, introduced in
section b, is a peripheral break of symmetry. The central part of the
symmetry is the singular drift L(X;) + e>™/3L(Xy) + e*™/3L(X3) = 0,
which means L(X;) = L(X;) = L(X3) (remember the text after Defi-
nition 3.1). The change of measure, considered in section 5, left the lo-
cal times unchanged. Now we turn to the case of three non-overlapping
processes X1, X9, X3 of the class ¥, (defined by 3.1) that need not sat-
isfy the condition L(X;) = L(X2) = L(X3). That is, the process
Z(t) = X1(t) + e*™/3Xy(t) + e*™/3X5(t) is driftless when Z(t) # 0, but
may have a singular drift at the origin. The next theorem will be used in
the second part of the paper when proving that a boundary is two-sided. A
notation: for two positive measures pi, yo on [0,00) the measure pj A po is
the greatest u satisfying both u < py and g < po. The same for g1 Apa A ps.

6.1 Theorem. Let X, X5, X3 be non-overlapping processes of the class
Y4, defined on (2, F,P). If F is cozy then

dL(X1) AdL(X5) AdL(X3) = 0
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almost sure.

Informally: each time when the process Z(t) goes through the origin,
only two rays are active (or even only one). It should not be understood
literally, in a topological fashion: the third ray may be visited infinitely
often in any neighborhood of the instant, but its instantaneous activity
is negligible in the sense that dL;(Xy)/dLi(|Z]) = 0. Such k exists for
dL(|Z|)-almost any t.

Postpone the proof of Theorem 6.1 and start with a rather elemen-
tary case: c¢1L(X1) = coL(X2) = c3L(X3) for some positive numbers
c1,¢2,c3 (not depending on ¢,w). We may take c¢1 X1, coXs, c3 X3 as new
X1, X9, X3, which brings us back to L(X;) = L(X3) = L(X3), but the
equality (X1, X1)(t) + (X2, Xo)(t) + (X3, X3)(t) = ¢ is lost (thus, we get a
time-changed Walsh’s Brownian motion). Fortunately, the equality takes
almost no part in section 3, which leads to the following generalization of
Lemma 3.2.

6.2 LEMMA. Let Z be a complex-valued continuous local martingale such
that Z3(t) € [0,00) always, and Z(0) = 0. Let (J,) be a sequence of self-
Jjoinings over F satisfying condition (b) of Definition 2.4. Then for any
t € [0,00)

t
/ l(R(n)#O) dL(Rén)) — 0 in probability, for n — oo .
0 1

Proof. Tt suffices to prove the lemma for stopped processes Z(t A T),) for
some stopping times T, — oo (since the convergence in m is uniform in n).
Thus, we may assume that the processes Z, (Z, Z) and L(|Z|) are bounded
in ¢t and w. Then the arguments of section 3 need only trivial adaptation. O

The trick of substituting ¢; X1, c2 X2, c3X3 for X, X9, X3 is general-
ized from constants ci,co,c3 to processes Ci,Co,Cs by the next lemma.
Its hypothesis is fulfilled, in particular, by the Brownian filtration, which,
however, will be proved only after Lemmas 6.4—6.8.

6.3 LEMMA. Let (Q,F,P) be such that any complex-valued continuous
local martingale Z on (0, F, P), satisfying Z*(t) € [0,00) and Z(0) = 0,
is necessarily zero. Then any non-overlapping processes X1, X9, X3 of the
class ¥, defined on (2, F, P), satisty dL(X1)ANdL(X2) ANdL(X3) = 0 almost
surely.

Proof. Consider the densities (that is, Radon-Nikodym derivatives)
dL(Xy)

H, = ,
b dLan

Lan = L(X1) + L(X2) + L(X3) .
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For almost each w the density is defined for dL,;-almost all £. It is possible
to define Hy, for all ¢,w such that Hy is a predictable process, see [JShir,
Chap. 1, Prop. 3.13], and

L(Xk):/deLalla 0<H,<1, Hi+Hy+H3z=1.

The infimum of measures corresponds to the infimum of densities:
dL(X1) NdL(X9) NdL(X3) = (Hy AN Ho A H3) dLy; .

If it vanishes with probability 1, there is nothing to prove. Otherwise there
is € > 0 such that

L(HyAHoAH5>e) @Lan > 0

with a positive probability. Define predictable processes C?, C9, Cg by
1
0
Ck; = Fk ) 1(H1/\H2/\H326)7

then 0 < C,g < 1/e and

[ evarcn) = [ cfance) = [ c§arixs).

the integral being > 0 with a positive probability.

The measure d L,y is concentrated on the closed set {t : X1 (t) = Xa(t) =
X3(t) = 0} of common zeros. Indeed, if an open time interval (7, s) is free
of common zeros (for a given w), then one of Xy, say X7, is positive on
(r,s). Now, clearly, dL(X) vanishes on (r, s) for one reason, while dL(X3)
and dL(X3) vanish on (r, s) for another reason.

Given t (and w), consider the latest common zero g(t) before t,

g(t) = max{s € [0,%] : X1(s) = Xao(s) = X3(s) = 0} ;
Define processes Cq, Ca, C3 by
Ci(t) = CR(g(t));
they are predictable (see [RY, VI.4.1]), and still, 0 < Oy < 1/e and

[erar) = [ Grare) = [ crarox).

since C = C,? on the support of dL,.
We use the first order calculus, presented in [RY, VI.4], especially Propo-
sition 4.5 there: processes Cy Xy belong to ¥, and

L(CyXk) :/Ck dL(Xk) -



1132 B. TSIRELSON GAFA

Therefore the process
Z=01X1+ 627ri/302X2 + 647ri/3C3X3

is a local martingale satisfying Z3(t) € [0,00) and Z(0) = 0, but not
identically zero, which contradicts the hypothesis. O

In order to prove Theorem 6.1 it could be enough to generalize
Lemma 4.12 from two correlated copies of a reflecting Brownian motion to
two correlated copies of a process of the class ¥, that is, a time-changed
reflecting Brownian motion. However, it does not work, for two reasons.
First, section 4, unlike section 3, depends heavily on the constant diffusion
speed, (R, R)(t) = t, since the specific function f(z,y) of Lemma 4.2 satis-
fies the specific partial differential equation 4.2(c) with 8%/0x2 and 02 /0y?
appearing with equal coefficients. The second reason is that the set of zeros
of a process of ¥ may be of a positive Lebesgue measure, in which case
/ 1(x,-0) dL(X2) does not vanish even for independent copies X1, X» of the
process.

In fact, we do not really need the integral [ 1(x,_g)dL(X2) to vanish
(nor even to be small). Rather, we need the integral [ 1(x,.q) dL(X2) to be
non-small. The first-order calculus allows (see the next proof) transforming
it into the need for non-zero X; at the starting point of an excursion of Xs.
Of course, X; may vanish there, but then X5 does not vanish at the starting
point of an excursion of X; (which is equally good for us), or else X7, Xo
start their excursions simultaneously (which should not happen; we will
return to that point).

Formally, a starting point of an excursion of a process X (for a given w)
is an instant ¢ such that X (¢) = 0 but there is ¢ > 0 satisfying X (s) > 0
for all s € (t,t + ¢). Clearly, such points are a finite or countable set.

6.4 LEMMA. Let X be a process of the class ¥, satisfying sup (X )(t) < oo
for all t, defined on (2, F, P), and (J,,) be a sequence of self-joinings J, =

(U, Fry B, 7T§n), wén)) over (2, F, P) satisfying condition (b) of Definition
2.4. Consider X fn) =Xo 7'({”), Xén) =Xo 7'('5”), and assume that for any n

the two processes X f"), X én) have no common starting points of excursions.
Then for any t € [0, 00)

t
Llim inf ( /O L x50, arL(x{™) + /0 L x50, dL(XY”)) >EX(4).
Proof. Fix some n for a while. Define predictable processes C1,Cy by
C1(t) = L(xy>0)(91(2)), Ca(t) = 1(x,>0)(92(2)) »

t
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where X, = X,En), and gi(t) = max{s € [0,] : Xx(s) = 0}. The first-order
calculus states that CpXj belongs to X, and L(CxXy) = [ CrdL(Xy).
However, [C1dL(X1) = [1(x,50)dL(X1), since gi(t) = ¢ on the sup-
port of dL(Xl) SO, L(Cle) == fl(X2>0) dL(Xl) and L(CQXQ) =
J 1(x,>0) dL(X2). We claim that

Ci X1 VO Xy > X1 N Xy,

that is, max(C1(t)X1(t), Ca(t) X2(t)) > min(X;(t), Xo(t)) for all . In-
deed, assume X (t) A Xo(t) > 0 (otherwise the inequality is trivial), then
91(t) # g2(t). Assume that gi(t) < g2(t) (the other case being similar),
then Cs(t) = 1, therefore

Ci() X1(8) V Co(1) Xa(t) > Ca(t)X2(t) = Xa(t) > Xa(t) A Xa(2) -
The process Cp Xy, — %L(CkX k) is a martingale; we have

1 t t
iE(/o L(x,>0) dL(X2)+/0 L(x,>0) dL(X1)>

= %E(L(@(t)Xz(t)) + L(CL(t)X1(1)) = E(Ca(t)X2(t) + C1(t) X1(t))

> E(X1(t) A Xa(t)) -
Unfix n and note that E|X§n) (t) — Xén) (t)] = 0 for n — oc:

1. . ¢ (n) ! (n)
Ehnisz]E</0 1(X§n)>0)dL(X2 )—I—/0 1(X§n)>0)dL(X1 )
> liminfE (X" () A X{" (1)) = liminf EX™ (1) = EX(t). O
n n

A single difficulty remains: why do excursion starting points never co-
incide? Hypercontractivity helps us to overcome the difficulty.

6.5 LEMMA. Let a self-joining J = ((Q, F, P), w1, m) over (Q, F, P) satisfy
pmax(J) < 1. Let p,q be such that 1 <p < gandp—1= (g — 1)p2,..(J).
Let X € Ly(Q, F(0),P) andY € Ly(Q, F(c0), P), where ¢’ is defined by
%—k% =1. Let X1 = Xom and Yy = Yomy. Then X Y5 € Ll(fl,]:"(oo),ﬁ’),
and

X1 Yot < (I XTplY (| -

Proof. Ito’s formula is applied to d(Mll/p(t)NQI/q’ (t)), where M} = M o my,
Ny = Nomy, M(t) =E(|X|P|F;), N(t) = E(|]Y|?|F:), and the well-known
calculation (see [N, the proof of Theorem 1.4.1], see also [RY, V.3.19]) does
the job, since pmax majorizes the instant correlation of M; and No with no
mediation of Brownian motions and representation theorems. O
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6.6 LEMMA. Let a self-joining J = ((Q, F, P), w1, m) over (Q, F, P) satisfy
Pmax(J) < 1. Then

P (A N Ag) < (P (A))%/(IHpmax(T))
for any A € F(c0); here A; = 7, ' A, Ay = 7, "A.
Proof. Apply Lemma 6.5 for X =Y = 14, p = 1+ pnax(J), g = 1 +
1/pmax(J), then

-

1,
X[ Ylly = (P (A)#" 7,
1 1 1 max(J 2
— _I_ _/ . _I_ 1 p a ( ) _ .
b q 1+ pma.X(J) pmax( ) + 1 1 + pmax(J)
6.7 LEMMA. Let a self-joining J = ((Q, F, P), w1, m) over (Q, F, P) satisfy
Pmax(J) < 1, and X : Q — R be a random variable such that P(X =z) =0
for each © # 0. Then

O

P(X; =X, #0)=0,
WhereXlzXom, XQZXOT('Q.

Proof. Divide R\ {0} into subsets Ay satisfying P (X € Aj) < ¢, then

P(X) =X #0) <Y P(X1 €Ay, Xy € Ay)
k

< Z X c A 2/(1+Pmax(j)) < €1+Pm2ax(J)_1P (X ;é O) —0fore— 0.0

6.8 LEMMA. Let X be a process of the class ¥, and g(t) = max{s € [0,1] :
X(s) =0}. Then

whenever 0 < s < t.

Proof. Define a predictable process

C(t) = 1(g(t)=s) »
s being fixed; the first-order calculus states that C(¢)X(¢) belongs to
¥y and L(CX) = [CdL(X). However, g(t) = t and C(t) = 1=y
on the support of dL(X), therefore [CdL(X) = [1=5dLi(X) = 0.
So, L(CX) = 0, which means that CX is a local martingale. Also,
C(0)X(0) = 0 and C(¢)X(t) > 0. It follows that C(¢)X(t) = 0. It re-
mains to note that g(t) = s < ¢ implies C(t) X (t) = X(t) # 0. i
Proof of Theorem 6.1. Assume the contrary. By Lemma 6.3 there is a

complex-valued continuous local martingale on (€2, F, P), satisfying Z3(t) €
[0,00), Z(0) = 0, and not identically zero. On the other hand, there is
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a sequence (J,) of self-joinings over F satisfying conditions (a), (b) of
Definition 2.4. Lemma 6.2 gives

t
/ 1 (R™ 20) dL(Rén)) — 0 in probability, for n — oo.
0 1

The process R(t) = |Z(t)| belongs to ¥,. Consider g(t) = max{s € [0,] :
R(t) = 0}. Lemma 6.8 shows that P(g(t) = s) = 0 for all s € [0,1).
Lemma 6.7 ensures that

P (g(t) o™ = g(t) o md” #1t) = 0.

It means that two processes Rgn) = Ro 7r§n), Rgn) = Ro 71'%”) have no
common starting points of excursions.

Let T be a stopping time such that sup,(R, R)(T) < oco. Lemma 6.4,
applied to the stopped process R(t A T), gives

1 tAT (n) tAT (n)
§lm}szE</O 1(R§n)¢0),dL(R2 )+/0 1(Rgn)¢0)dL(R1 )) > ER(t/\T) .

On the other hand,
tAT -
1, L fi
/0 (R§>¢0)d (Ry’) =0 forn— oo

in probability, therefore in Li, since the sequence is uniformly integrable:
JINT < Lopr(BRYY), and Liar (RYY) is distributed like Liar(R), the lat-
ter being integrable. It follows that ER(tAT) = 0, so R(tAT) = 0. Taking
a sequence T,, — oo we conclude that |Z(t)| = R(t) = 0 identically. O

7 Application to Harmonic Measures

Consider the random process X (t) = f(B(t)), where f : R — R is a
smooth function and B an d-dimensional Brownian motion (starting at
the origin). Formally, 1 < d < oo, though dimensions d = 1,2 are of little
interest to us. Ito’s formula ensures that X is a continuous semimartingale,

and .
m 1
X()2 Ax(), where Ax(t)= / (AS)(B(s)) ds
0
(see [Me2, item 14]). Clearly, X is a local martingale if and only if Af = 0,
that is, f is harmonic (see [Ba, II.1.5-7]). Also, X is a local submartingale
if and only if Af > 0, that is, f is subharmonic (see [Ba, 11.6.8]). We

observe a correspondence between (one half of) the Laplacian A, acting on
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smooth functions, and the operation X — Ax of taking the drift (that is,
the finite variation part) of a semimartingale.®

If a sequence (fx) of smooth functions converges to some continuous
function f uniformly on bounded domains, then the corresponding pro-
cesses Xg(t) = fr(B(t)) converge to X(t) = f(B(t)) in the ucp-topology.
Therefore, if fi, are subharmonic, then X is a local submartingale, and

t
Ax(t)

— lim = [ (Af)(B(s))ds.
k—00 2 0
The functions A fi need not converge in the space of functions, but converge
in the space of Schwartz distributions (generalized functions): for any test
function ¢, smooth and compactly supported,

/goAfkda: = /kagodm — /fA(pdx def /<pAfda: for k — co.
However, %A frdz = py is a (positive) measure for each k, thus the conver-
gence of Schwartz distributions is just the weak convergence of measures:
Wi — W, where y = %A f in the sense of Schwartz distributions. In general,
i and y are o-finite, they may blow up near infinity, but for any bounded
domain U, within U the measures are finite and the weak convergence
holds.

So, some measures y correspond to some drifts A (u being known as
the Revuz measure of A); informally,

dt  dz 2 dz

which cannot be understood literally: neither du/dz nor dA(t)/dt can be
evaluated at a point. For d = 1 the situation is simple: any y is the Revuz
measure for some A (see [RY, X.2.10]), and a measure concentrated at a
single point z corresponds to the local time of B at x. For d > 1 a single
point is never visited by a Brownian trajectory, it is a polar set. A set
V C R? is called polar, if

B(t)¢V forall ¢t>0

almost surely ([Ba, 11.5.12], [RY, V.2.6]). Any measure p is a sum of a
measure fpolar that lives on a polar set and another measure fipon-polar that
does not charge any polar set.

O _ i) teve @), e, a0} [ (Lo0)) o
0

®The semimartingale X is of the special form f(B(-)), and its drift Ax, being of
the special form [ g(B(-))ds, is a so-called continuous additive functional of Brownian
motion (see [RY, X]). The martingale part of X is a so-called additive local martingale,
see [RY, X.2.25(2)].
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Ito’s formula for Brownian motion can be generalized for non-smooth
functions f on R? [Ve], [Br], [Mel]. It holds for any f such that the Schwartz
distribution %A f is a signed measure, finite on bounded domains. Even if
f is not continuous, still f(B(t)) is a continuous semimartingale, provided
that f is properly “upgraded” from a function defined almost everywhere
to a function defined up to a polar set. If %Af = p # 0 then X is not
a martingale, but ppolar and pnon-polar act by different mechanisms. If
= ppolar 7 0 then X is a local martingale, but not a martingale. If
W = Hnon-polar 7 0 then X is a sum of a martingale and a locally finite
variation process A,. The latter depends on p rather than f, since if
Afy = Afs then fi — fo is harmonic, and f1(B) = fo(B). So, A =0;
Ay = Altnon—polar; and

(7.1) FB®) = Au(t),  p=3Af.

We need only a special case: f is locally bounded, and p = %A fisa
finite positive compactly supported measure. The local boundedness of f
implies ¢ = pnon-polar (see [Br, Prop. 3.2(1,2)]). For such a measure p, if
p # 0 then A, # 0. Moreover, for any finite number n of such measures
K1y---yHn
(7.2) piA-App #0 implies dA, A---ANdA,, #0,

since 1 A - -+ Ay, does not charge any polar set.

Consider a domain (a connected open set) U C R%, bounded and con-
taining the origin. The harmonic measure ugy of U is defined [Ba, II1.2.5]
as the distribution of the exit point B(Ty) of the Brownian motion from
U; here Ty = min{t € [0,00) : B(t) ¢ U}. The Newtonian potential fyy of
MU 18

Hpolar

fol@) = [ K(a —y) s (dy) = BK (o~ (1)
where the kernel [Ba, Chap. II, formulas (3.1) and (3.24)]°

Cd ~ T(d/2-1)
—‘$|d—2 ford > 2, cd = a2
K(z) = llogi ford=2,

™ |z
—|z| ford=1
is chosen such that

—1AK =0y, therefore —iAfy = py

5There, however, (27r)d/ % is written, mistakenly, instead of 27?2,
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(here dg is the unit atom at 0), see [Ba, I1.3.3]. The function fy is harmonic
on RE\ QU. If x € R\ (U U OU) then fy(r) = K(z). Indeed, the
function K (z — ) is harmonic on U and continuous on U U U, therefore
K(z — B(t ANTy)) is a martingale.

The difference between K and fy is called the Green function gy of U,

gu(0,z) = K (z) —EK (z — B(Ty)) ,

see [Ba, II, formula (3.16)]. The function gy (0,-) is nonnegative (in fact,
strictly positive) and continuous on U \ {0}, has a pole at 0, vanishes on
R?\ (U U QU), and

389u(0,-) = 3AK — 3Afy = —8o + po -

The function gy (0,-) is continuous at all regular points of U, see [Ba,
I1.1.9 and 12]. See also [Ba, I1.5.17] for an example of an irregular point
(the Lebesgue thorn). Fortunately, irregular points are a polar set [Ba,
I1.5.5], which means that gy (0, B(t)) is a continuous process; no “upgrade”
is needed for gy (0,-). Of course, there is nothing special in the point 0. For
any bounded domain U C R? and any z € U

(7.3) gu(z, B(t)) = Ay, (1) ;

here py, is the exit point distribution for a Brownian motion starting
from z. Clearly, the process gy(z, B(t)) belongs to the class ¥ defined
in 3.1.

7.4 Theorem. Let Uy, Us,Us be pairwise non-intersecting bounded con-
nected open sets in R? (1 < d < o0), z € Uy, and py = py, z, be the
corresponding harmonic measures (k =1,2,3). Then

p1Ape Aps=0.

Proof. Introduce a d-dimensional Brownian motion B and three random
processes

Xk (t) = gr(xk, B(t)), k=1,2,3,

where g; is the Green function for Ug. These X;,Xs, X3 are non-
overlapping processes of the class ¥, and (7.3) gives Xy = Ay, , which
can be written in terms of local times: L(X}) = 2A4,,. Theorem 6.1 (com-
bined with Lemma 2.5) states that dL(X;) A dL(X3) A dL(X3) = 0, that
is, dA,, NdA,, NdA,, =0 almost sure. It remains to use (7.2). o
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Appendix. A Reformulation in Terms of a Measure in a
Linear Space

The Wiener measure W = WI0, 1] on the space Cy[0,1] of all continuous
functions on [0, 1], vanishing at 0, is the probability distribution for a one-
dimensional Brownian motion B(t) considered for ¢ € [0,1]. In some sense,
wi0,1] = WI0, 3] ® W[0, 5]. Namely:
f<—> (gah), fGC()[O,l], gah ECO[Oa %],
g(t) =f(t) and h(t)=f(3+t)—f(3) forte]0,1];

g fort e [O, l],
1) = {g(%) +h(t—1) forte [%,i};
f:a(gah)a g:ﬂ(f)a h:’)’(f),
B)
(Col0, 11, W[0,1]) o (C[0,3],W[0,3]) x (C[0, 3], W[0,3]),

the latter being a measure preserving one-to-one correspondence. For a
fixed g, the map h — «(g,h) sends W[O, %] into a measure W,[0,1] on
Co[0, 1] concentrated on functions f such that f|o1/9) = g. Clearly, Wy[0,1]
is the conditional distribution of B under the condition B‘[O,l /2 = 9
In principle, the conditional distribution is defined for almost all g, but
the above canonical construction defines it naturally for all g. Similarly,
W,[0,1] is defined for g € Cyl0, to], to € [0,1].

The canonical choice of conditional measures makes all martingales con-
tinuous. That is, for any X € L;(Cy[0,1],WI[0,1]) we consider

M(t, f) :/defg,

where ft = f‘[O,t] is the restriction of f to [0,t], and it appears that M(-, f)
is a continuous function on [0, 1] for W-almost all f. It is the most straight-
forward definition of a Brownian martingale for the non-probabilist. You
see, M(t) = E(X|B}). Similarly, a complex-valued random variable X
produces a complex-valued Brownian martingale M.

It follows from Theorem 6.1 that a complex-valued Brownian martingale
M such that M3(t) € [0,00) for all t and M (0) = 0, must vanish identically.
In other words: if X € L1(Cy|0, 1], W]0,1]) satisfies the conditions

3
(/Xde) € [0,00) for almost all g € Cy[0,%o] and all ¢y € [0,1],

/dezo,
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then X = 0. The statement is strong enough, it implies the negative answer
to Problem 2 of [BPY], even if we restrict ourselves to X € L, rather than
X € L.

Consider two linear spaces X,) in duality: X is the space of all real-
valued bounded Borel functions on Cy[0,1], while ) is the space of all
Borel measures on Cy[0, 1] (finite positive measures and their differences).
Each pair (¢, f) of t € [0,1] and f € Cy[0, 1] determines an element Wfé of
Y. Choose t and f at random, independently, according to the Lebesgue
measure and Wiener measure respectively, then W, t is a random element
of Y, and (X, W 0) is measurable in (¢, f) for any X ‘e X. Denote by u the
probability distribution of W; iz That is, u is the image of mes x W (“mes”
being the Lebesgue measure on [0,1]) under the map (¢, f) — Wit

We can reformulate the statement in terms of X', ), i only, as follows:

If X1, X9 € X satisfy the conditions

((X1,Y) +i(X5,Y))” € [0,00) for p-almost all Y € Y,

/(Xk,Y) du(Y) =0 fork=1,2,

then X7 =0 and X9 = 0.

It seems to be a simple geometric property of a measure in a linear
space. Strangely enough, it appears to be a problem already for a single,
canonical .
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