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QUANTUM ANALOGUES OF THE BELL INEQUALITIES. THE CASE OF

TWO SPATIALLY SEPARATED DOMAINS
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One investigates inequalities for the probabilities and mathematical expectations
which follow from the postulates of the local quantum theory. It turns out that
the relation between the quantum and the classical correlation matrices is ex-—

- pressed in terms of Grothendieck's known constant. It-is also shown that the

extremal quantum correlations characterize the Clifford algebra (i.e., canonical

anticommutative relations).

The Bell inequalities are inequalities for probabilities that are valid in any local
deterministic theory with hidden parameters (briefly and not entirely exactly, these theories
will be said to be classical), but need not be true in quantum theory; see, for example, the
surveys {l-4], and also [5, pp. 190-193], and [6]. The domain of the probability distribu-
tions, admissible in the classical theories, lends itself to a mathematical description [7]
and this description is model-independent, i.e., it is not connected with any concrete physi-
cal mechanisms. On the other hand, for the probability distributions, admissible in the
quantum theory, one considers usually only certain special cases; moreover, in the mentioned
paper [7] one has expressed scepticism regarding the possibility of a model-independent ap-
proach to quantum probabilities. However, such an approach is possible (it has been communi-
cm Ei/!;:’l‘le‘egu‘_'tg)é:e in [ })Jor a very general situation, alloying many domains in space—time,

¢ ofogicatly ovdev demains. The case of two spaktiafly sepaxated 5
both in spatially separatedYdomains is considered in more detail in this paper; one proves

certain theorems, regarding this case, which have been communicated in [9]. Then we carry

out a comparison of the quantum case with the classical one; here, unexpectedly, there arises
the Grothendieck constant, known from the geometry of Banach spaces. It turns out that the
quantum correlations exceed the classical ones at most 182 times. In the last section we

present some preliminary results for the case of three spatially separated domains.

1. Some Facts about Clifford Algebras

This auxiliary section prepares the technical means, used in the subsequent sections.

By a Clifford algebra C(n) we mean a C*-algebra, generated by the Hermitian genera-
tors X4”‘W X,, and by the relations X% =1 . XKX£+X1XK=O for Ik,b=4,.. 1 k#d . set-
ting X (x) = X X for x::(xh.,.,xw)eRw. we achieve an explicit kO(H,) -invariance:
X%x}:[x[?ﬂ for xe R. It is known that for Qé%icvun, the CX -atgebra C@t) is isomorphic
to the C* ~algebra of matrices of order 2™ , while for N odd, to the direct sum of
two matrix algebras, each of order Qﬂii (see, for example, [10], Subsection 17.3). Conse-

quently, for even n , (C(n) has, within the accuracy of a unitary equivalence, a unique
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irreducible representation (in the space of dimension 2% ), while for odd n , two non-
n-t
equivalent irreducible representations (in the space of dimension 2z ).
We consider the tensor product C(K’L) ® C(h,) of two Clifford algebras. We are inte-

rested in the following Hermitian element of the algebra C(ﬁ—)® C(l‘b):
i .
A:;TL(X1®X1+ "'+X\'L®Xr\,).

This can be given another definition, possessing an explicit (O(m)—invariance, namely, A is

the mean of X(OC) ®X(0C) over all unit vectors X, We need the spectrum of the operator
ﬁ(A) in the irreducible representation T of the algebra Cmj® C(n). (For W even

there is one such representation, while for "W odd there are four.)
LEMMA 1.1. For I+ even, the spectrum of the operator ‘J'T/(A) consists of the numbers

K
4——2% with multiplicities (., , k=04,...,b. Tor n odd, in two of the four irreduc-

v
ible representations, the spectrum of the operator %(A) consists of the numbers {-4 %

with multiplicities Cr\/ U\’:O. 1,... !L‘Q_‘i and, in the other two representations, of the‘
numbers =1 +4 _:(f with multiplicities C:;K (k=0,1,..., &%1) .

Proof. TFirst we consider the joint spectrum of a collection of n commuting operators ‘
TV(X4®X4),..., T (Xy® Xn,). Each point of this joint spectrum has the form @=(94,...,9,1;)-
6K=i“l since (X¢® XK)"L—‘:/ﬂ . First we assume that W 1is even and we prove that
each such point € belongs in fact to the spectrum and has multiplicity 1. We make use of
the fact that the group kO(w) x O (H/) acts by automorphisms on the algebra C(VL)®C(W)'

In the space of the representations we have only a projective action of this group but even

this is sufficient for our purpose. We take only the subgroup 1§ X @(W) and in it only the .

commutative subgroup of transformations of the form 1 xT “where 'T=(LLG»%(T4,“.\(FW) is
a diagonal matrix, T, == 1. Such a transformation maps XK®XK into ‘tK Xk ® X
and, correspondingly, (94,_..’0,1) into (T 94,...,'3”9”). From this it is clear that all the

points @ have the same multiplicity. This multiplicity is equal to 1 since the number "
of points is equal to the dimension of the space of representations. It remains to note that
the spectrum of the operator A consists of points of the form, ﬁ% (G4+.”*'9n).

The case of an odd W 1is considered in a similar manner, except that instead of the
group ()(n) one applies SQJ(W) in connection with which one imposes on 9  the condi-
tion T4_,_Tﬂ :‘1’ and the set of 2" points Q is decomposed Into two sets of Zn_4
points each in accordance with the two values of the product 94.-.9n==i1 > now we take
into account that the space of the representation has dimension 2%—1. The remaining de-
tails are left to the reader.

In the sequel we shall be interested only in one point of the spectrum: the unity. We
can see that it belongs in fact to the spectrum and its multiplicity is equal to 1. -

LEMMA 1.2. Assume that 90 is an irreducible representation of the algebra C(n)® C(n)
and let  be such that ﬁ(A)\{/=Ur). I\{)]='1 . A being as above. Then

I (X(X)® X ()P, 9 > =<x,y>,
EXxyeol)y v> =0,
R (1®X(Y)y,v>=0
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for all x.gean .

Proof. We know that the mean of {95 (X (x)® X () Y.YD over all unit vectors X is
equal to (‘E(A)\P,\U> =1 ; taking into account that {(T(X(X)® X(m)\)\P, Y> ¢4 for all
such X we obtain that '

CAX@RX@NY, 9> =1

for all unit vectors X . In order to obtain from here the relation

o (X (@)@ X () Y,y =x,y>

one.has to show only that

. <X ()@ X (Y)Y, 9> =T (XY ® X (x)) g, ),
in fact, the symmetric bilinear form is uniquely determined by its quadratic form. We note
that the operator A is invariant under the automorphism of the algebra C'(n)@ C(n) , which
takes X(:L) ®1 into ﬂ‘X)X (ac) and conversely. For W even, to this automorphism there
corresponds a unitary operator in the space of the representations; taking into account that
the equality ‘JT;(A)W:&P determines the vector ¥ within the accuracy of a scalar factor,
we obtain the required symmetry of the bilinear form. We leave to the reader the case of odd
b ; we only note that for n=hbm+i the above mentioned automorphism is suitable, while
for n,=4—m+3 one has to apply the automorphism which takes X(x)® 1 into""ﬂ®x("x’)
and conversely. It remains to show that {9 (X (’J:)® 'ﬂ)@,\d) = 0. But this can be
easily obtained from the SO{n) -invariance.

LEMMA 1.3. Assume that the representation G of the algebra C(n)®C(n) is such that
there exists a cyclic (in an other terminology: totalizing) vector Y with the property
5T/(A)\P=LP. Then the representation 9 is either irreducible, or it is a sum of two non-
equivalent irreducible representations (of course, the second case is possible only for .odd
wo).

Proof. The existence of irreducible subrepresentations does not cause any doubt in view
of the finite-dimensionality of the algebra. One has to.prove only that the representation
.  cannot contain two equivalent irreducible subrepresentations. We assume that the oppo-
site: U is equivalent to the sum T @ T @ Ty and 9y is irreducible; then correspond-
ingly \-P=\-V1@)\‘.|J4 @ W, , in Ffact the property ‘J\lq(A)\p{:km determines the vector \Y
within the accuracy of a scalar factor. But the space of vectors of the form ¥@ }\3@‘
(with fixed A and arbitrary § Y ) is invariant relative to ﬁ1®ﬁ1$ Tl% , this con-

tradicts the cyclicity of the vector \P .

) i s lati M .
2. Quantum Realizability of Correlation Matrices agee

An maxp matrix C with real elements is said to be a quantum realizpd correlation
matrix if it satlsfies the first (or the second) conditions of the subsequent ‘theorem. For
the set of all quantum realized correlation mxpy matrices we introduce the notation
Cov (m,rb). The fourth (or the fifth) condition of the subsequent theorem yields a
simpler geometric description of such matrices.

THEOREM 2.1. For any mMxn matrix C={CK3} with real elements, the following five

statements are equivalent:
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(1) There exists a C¥ -algebra Ol with identity, Hermitian elements A{)"">Am’ Biyesy
By e O and a state f on O such that for any K .zﬂrAK Bp= B{;AKB we have:

-1 <A1 1<y < 1,
T (AeBy) =cy

(2) There exist Hermitian operators A LA B B and a density matrix W in
R Rl (AR P »Yn y

the Hilbert space H of finite or countable dimensionkdit#t, such that for any Kyf/, one has
AK.BL?'BZAK; the spectrum of each of the operators AK ' BL lies on [-1,*‘4_'] ;

Tk»(Ah:BL-M[> =(:KL .

2
(3) The same as (2) and, in addition, A ’ﬂ B; T?,(A W) 0, T BIW) for -

all k,£ > and H:H4®H2, AK=A(|?® ﬂ(z) » By 'ﬂ(“@ Bu) where A( (7') some
1®

b

are the identity operators; and all the

1 A1) AL 2 @) )
anticommutators A(K)4 A(:()L + A(K)z AK4 B(f,) Bln,+ 514 E) are scalar operators (i.e., multi-

operators in H1 ’ Hz respectively) ﬂ“)

ples of the identity operator) and the spaces H . H4 v Ha are finite-dimensional, more-

over

) M for even MU,
2‘?,0%2 dim H,y £ { m+1  for odd m,

2 dog, dim Hy < i v foreven W,

n+1 for odd n.
(4) In the Euclidean space of dimension m+n , there exist unit vectors X, ..., Xy,
oY such that <9°K,‘j/(l> =C,yg for all K., £ .
(5) In the Euclidean space of dimension m,i,n,(m,n/) , there exist vectors OC,,"__
%4’"'%”’ such that [IDKI\<1 ’ l\jz/! <1 and <1X'/K,kj/g/>=(‘/|<f, for all k . A4 .
Proof. Clearly, (3) =>(2) =>(1). We show that (1) =>(5). The algebra Ol can be con-
sidered as a real linear space with inner product <X7Y>=R€‘S‘(Y*X) for X,Ye O (the cor-

- Ly

responding quadratic form may be degenerate but that does not change the facts); then we have

(AK,AK>\<’1 . <B(/,5g,> N and &B{o =Cyg for all kK+£ . Thus, all the require-
. exce
ments of part (5) are satisfied pmds P x4 the dimension of the space has to be at most

mfwb(m,,n) . This can be easily achieved by the orthogonal projection of the vectors K
onto the subspace generated by the vectors 3{/ , or in the other way around.

We show that (5)==(4). One has to make the vectors to be unit vectors. For this, it
is sufficient that instead of Xy and \j(, one should take T/K-}-(I:': and ‘j(/*'lﬁé re-
spectively, where SI:I: and 'j are chosen to be orthogonal to each other and to the vectors
Lg » Yg , then \T’K+xK,leHj£,> <xK>LJL\7 Ckf, , and for a proper choice of the lengths of
the vectors X+ Yp we obtain [:r,K+1',:<] |lj£+‘j(,|—— Of course, this construction
may require one to go into a space of larger dimension; but afterwards one can restrict oneself
to the space generated by the vectors X » ng ; this dimension does not exceed WM+M .

Thus (3) =>(2) =>(1) =>(5)==>(4). 1t remains to prove that (4) =>(3). Consider the

RMH We consider the Clifford algebra C (m+n). According

vectors Tk, Yg from
to what has been proved in Sec. 1, there exists a state { on the algebra C(m+n)®C(m+w)

such that
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F(X@e X(y))=<{x,y>,
f(Xy® 1) =0

f(1®X(y)
for all X,Y 6Rm+m . Setting AK:—_)((QLK\(X):{I .B,’;:/ﬂ@)((ﬂt\). we obtain ‘f(AK B&):CK!;.
f(AKyg O.f(SL)z:O . The operators X(:LK) generate in  C(m+n) a subalgebra, iso-
morphic to C(n@l) with some m’$m ; similarly, X(%L)GCQ¢© < C(m+n) nisn . We
restrict the state § from the algebra (}(h1+rb\@)‘c,(n¢+na to the algebra (:(HJ)G)C(nG.
We take a faithful representation of the algebra C(Hmw into the space H4 whose dimen-
sion is equal to 2 %% for even HJ and to Zu%f! for odd WJ ; we represent similarly
Cn/) into Hg ; the tensor product gives a faithful representation of C(}nﬂQDC(nQ
into H=H4QOH2. The state j— on C(m’)@C(n’) is realized by a density matrix in H
A1l the requirements of part (3) hold.

The proved Theorem 2.1 recduces the question of the quantum realizability ofva correla-
tion matrix to the simpler question of the existence of finite-dimensional vectors, but does
not give an explicit solution for this problem. For the simplest case when HL =2 and
n=2 an explicit solution is given by the following theorem.

THEOREM 2.2. A 2x2 matrix ¢ with real elements is a quantum realized correlation
matrix if and only if ICKQI £1 for all k , 4 and if at least one of the following two

inequalities holds:

(41 24 10<CMC C Cza«%fz1 QZCQZ)S
1 2\ 4

‘”LF(KZ,;%) ~—z—§ow—2& Cet >

0 < chwc,04& (nmcKa) %c )+2ﬂca

The proof is elementary (in fact, one has four vectors in the plane) but cumbersome;
we shall not give it. The same refers to the following theorem, giving the explicit solu-

tion of the dual problem.
THEOREM 2.3. Assume that there is a given 2%2 matrix W with real elements, and let

M =sup Z:_’,'; ¥t ©

where the supremum is taken over all quantum realized 2x2 correlation matrices C .
Then

1) if il >0, then M= 3, ;

S K)L X‘K{/ 7 ! w.L I K\K,?/l

’

(2) if K[,-‘!} \S‘Kf/ <0 and (M«LVbl XKE ])( g% IK\K(/\-)QZ , then

=5 IVl =2 min [P s
(3) if [)1& Y, <0 and mewkz‘ (szd )2,  chen

M=J(§ﬁp+(gélml>(§6‘;§‘) |
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3. Representation of Extremal Correlations

As one can easily see, the set Coz(m,ry) of all quantum realized Mxn. correlation
matrices, introduced in the previous section, is a closed, bounded, centrally symmetric, con-
vex body in the space of MXN matrices. We consider the set EX Co'l(m/,m) of all extre—‘
mal (in other terminology: extreme) points of the set (Coz (WDJH/) H by a known general
theorem, from the geometry of convex sets (see, at least [10]), Con (m,n) is the closed
convex hull of the set Ex Cot (rm,n).

Let C be an mxtl matrix. By a C -system of vectors we mean any collection of vee-

tors il'q,...,&/m’)%“...,ljn/ lying in some Euclidean space and satisfying the conditions
okl €1 4 19eléd vy =Cor for a1 k.4
Clearly, a C-system of vectors exists if and only if C€Co’6(m/, n . By the rank

of a C-system of vectors we mean the dimension of the linear hull of the vectors ix,h...’&‘,m)

Far e

LEMMA 3.1. Let C & Eac,Co'z,(m)n,). Then all <-systems of vectors are isometric to
each other and all have the following properties:

W) || =4 Jlygl =1 for a1l K .4 .

(2) The linear hull of the vectors och...,oom coincides with the linear hull of the

vectors \éhu.) Yy -

(3) For any quadratic form Q defined on the linear hull of the vectors LOTENIN

’

Ly Y4>++- Yy, » from the inequalities

Qxy) =0,..., Ax,,)=0, Q(y,)=0,--, A(y,) =0
there follows that Q =  identically.

(4) The rank 2 of any C -system of vectors satisfies the inequalities

(2 A and't/\(—%'{" ff—+2(m+n).

Proof. (a). For any ( -system of vectors the property (1) holds. Indeed, assume, for

example, [x4] < 1> then for sufficiently small vectors A% we obtain [x4+Ax§\<1 and
|$1——A’\1‘,, <1, Defining the matrix AC by the equalities
<Ax > for K =1,
b 0 otherwise ,

we obtain C-ACe Co‘z,(m,,m‘) and C+A0cCe Co’c(m,,n,) which for AC# 0 contradicts the

assumption that € 1is an extremal point.

(b) For any ¢-system of vectors, every vector Ye lies in the subspace spanned by the
vectors Xy, Ly, Indeed, otherwise, replacing Yy by its projection onto the mentior}\ed
subspace, we would obtain a (C-system of vectors, contradicting what has been proved at part
(a). In the same way, every vector X lies in the subspace spanned ’by the vectors ‘jw_ .

(c) All (C-systems of vectors are isometric to each other. Indeed, let TD;,...,&):W,
lé’{,. cey \j:‘, be a C -system and assume that $Z7~..)$;:/, 94//, RN %,r/u ij alslo a C;/ ~system.
We consider theirl d;rect ”(ozrthogonai) sum: ,mK=;‘,Iii<x{< @ ’1'4,</ ) \Eh’, 2,7—2_}(%1, ® "ij/ )”. We
have | oo [t =4 (| |* + |2 [7) |l =J?Z("ibc!2+,|%lz)- (X, Yy = T Yy + <3°K:‘3L>)"

from where is clear that 'I/h...’mm,téh...)b(w is again a (~-system. According to what has
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been proved at part (b), each vector %(} is a linear combination of the vectors (l‘,K H g/(/ =
Zl; CLK& JLK. We have \Ii'f,(‘jf[,@ %Z) = \f‘_i; ard’, x;@éé‘. CI,KE(X):, whence ljl:ZK: a,sz': and
" "
LJ/f%““K@ T . Thenl , .

; <%L’%L4>=<ZK:O“K03CK7 Ye,) = ZK:®K60K91 >
similarly, <Yy, 45 ) =220 Cp 5 thus, o ud>=Cy, ypy. - for a1l &y Ay In che

4 R vy L’%Z, Yoo Yeq 1 .

same wg};/one p;oves that <2(/K’COK1§=<:I‘/K)xK1) for all K, Kq. Finally, <xK,LAL>:
CK£=<‘T’K b) '7}(/) .

(d) We show part (3). We assume the opposite: there exists a form Q , not identically
zeré and vanishing at XL » Yy . On the subspace generated by these vectors, we consider
a new metric |[:|4 . defined by the equality \Z\,la' Z‘Z[2+5Q(i) i & is chosen to be
small so that the right-hand side be positive definite. We have ‘Ockl4=1 . |_l;n|4=1 . We
define a matrix AC in terms of the symmetric bilinear form, corresponding to the quadratic
form Q :(AC)K5=Q(\T’K) %(,) , then <xK)\j(/>1=(C+€AQ>Kc. We can see that C + £ Ac¢
/GCOZ (m,n) for all small €& , both positive and 11egative.. For 4C%# 0 , this contra-
dicts the assumption that C 1is an extremal point.

(e) Part (4) follows from part (3), already proved. Indeed, the space of quadratic forms
on an ' -dimensional space has dimension -13:'2,(7,-&- 4) ; part (3) shows that any of these
forms is uniquely defined by a collection of MW+ of its values; thus, %'L(’i+1)\<m+w ,
whence % < --/|2-+\/-;+-+2(m+m). The inequalities 2&m,2<n are obvious from the
previously proved part (2). The lemma is proved.

Assume that C is an mxn matrix with real elements. By an operator representation
of the C -correlations we mean any collection (H,W, Ah---)Am,Buanw\' consisting of a
Hilbert space H of finite or countable dimension, a density matrix W in H , and the
Hermitian operators Ay... Am, By,-sBy  in H , which satisfy the conditions:

the spectrum of each of the operators AK , By lies on [-1 )1-1], AKBL::BLAK'T%(AKBL
W):C,d - for all Kk, L .

Clearly, an operator representation of the C -correlations exists if and only if
ce Coz (m,n) .

We define in the obvious manner the unitary equivalence of two such representations (for
this wecgé“uire that not only AK ’ B,{, should "coincide," but also W ).

Ir the density matrix W ois one-dimensional, then such a representation is said to be
pure.

If in H there exists a projection P >  commuting with all AK ’ E),(, and such
that PWP=W , then one can define in an obvious manner a subrepresentation of the given
representation. If, however, there is no such P (other than the identity, of course), then
the representation is said to be nondegenerate. Clearly, every operator representation of the
C -correlations contains a unique nondegenerate subrepresentation.

An operator representation of the C -correlations is said to be factorial if the von

Neumann algebra, generated by the operators A{, "‘)Am,Bu--- By, is factorial.
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Having two operator representations of the C -correlations

(O OEND) W @O ) )
(Ll ,WJ )A4 3”‘)AYW) B4)"‘~;BYL 5 L= 412’
and given positive coefficients oy, oy such that J1+%im=4- we can construct the

direct sum of the given representations:
(
H=H'®o HY | W=«Ww" @4, W
() @) (4 (2)
A :A ®AK 5 E’/ﬁ—- E)/c .
In addition, instead of 0) W{ ®) onc can take any density matrix W in H= H,® H
such that pU)-W PU) d-\\/()@ 0 Pa WP&)=O@0L2W(1) (here p“) , P(Q') are the projections

onto Hﬂ@ 0.0e H% , respectively); any representation obtained in this manner will be

@)

called a pseudodirect sum of the two given representations.

The operator representation of the (-correlations is said to be Clifford if all the
anticommutators A AK:AKZAMB!lB *BEZB& are scalar (i.e., multiples of the identity
operator).

As shown by Theorem 2.1, Clifford representations exist for all C & Coz(m,n)

THEOREM 3.1. Let Ce Exﬁozonvna . Then any nondegenerate operator representation
of the c-correlations is Clifford.

THEOREM 3.2. Let Cs& Ex,&m@@n) and assume that the rank of any (-system of vectors
is an even number. Then:

(1) All the pure, nondegenerate operator representations of C-correlations are uni-
tarily equivalent.

(2) Any non-pure, nondegenerate operator representation of (C~-correlations decomposes
into the direct sum of a finite or countable family of pure nondegenerate representations.

THEOREM 3.3. Let CEE:JCCO'{/(M,W) and assume that the rank of any (C -system of vec-
tors is an odd number. Then:

(1) There exists exactly two unitarily nonequivalent, pure, factorial, nondegenerate
operator representations of € -correlations.

(2) Any non-pure, factorial, nondegenerate operator representation of C -correlations
decomposes into a direct sum of a finite or a countable number of unitarily equivalent to
each other, pure, factorial, nondegenerate representations.

(3) Any nonfactorial, nondegenerate operator representation of C -correlations de-
composes into a pseudodirect sum of two factorial, nondegenerate representations.

Proof of Theorem 3.1. The algebra of operator in H can be considered as a real

linear space with inner product {X,Y):RerL(Y*'XWV). Moreover, one has to take into _
account that the equality (X X)=0 means only XW=0 and not necessarily X=0

We have
<AK7AK>\<1 ’ <B{)B/t>\<4 ) <AKyBL> =CK{ ’

thus, we have obtained a C-system of vectors. By virtue of Lemma 3.1, all such systems
. . . . (2
are isometric. Let x1,“,mmv,gqvu,gnb be a C -system of vectors, lying in R® , where

% is the rank of any C-system. From the mentioned lemma we know that every vector XKk
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is a linear combination of vectors Yy Xy :%a/wlj& ) In view of the isometry we obtain
from here AKW=%}0,KLB£'W' : Taking into account the nondegeneracy of the representation,

we can see that the closed linear hull of the vectors of the form B'Lr"Bf,vM[\P ( ¥ runs
through 0,4,. . 5’(’4>-‘~{&9 run through Hhioons g runs through H ) coincides with
the space H . Indeed, it is invariant not only relative to all BJ{, but also rela-
tive to all AK . In fact, AKB&4*“B{,VWLPZBM“'BL,AKWLP:%a‘k£B£4"'B.ng,{’\,‘WV—\V .
We can see now that for the operators X , commuting with 34,...,5,1,, the equality <X)X>
=0 for XW=0 ) implies X=0 ; in fact ‘XB,Z("BﬂyWW -—-624-“51,9)(1'\/—‘4) =0 . ' The
same holds also for the operators which commute with A4,\..‘,Am:
From the above mentioned lemma we also know that ’CLK\ =1 'y in view of the isometry
we obtain from here Re T"L(A*;( A'KW)J, i.e., TT/((/]]_A!%)W ):O ; taking into account
that 'l]“Ai}O, we conclude that (ﬂ—Ai) W=0. But ﬂ* Ai commutes with B,h‘..\Bn,;

. 2
thus, Ai:'ﬂ for all Kk . Similarly, 8&:’ for a11 4 . Then we have

(At oo Be) (A Tl Be) W =0,
i.e., (ﬂ*(%@K£5(/)Q)W-=O . whence (%&KEBQZ’/:ZH for all K .

Finally, we make use of part (3) of iLhe above mentioned lemma. It shows that any
quadratic form on [R'L is uniquely determined by its values at the points xh..‘)'xm,%,m,\jw,
This holds for quadratic forms with real values; but then this is automatically true also
for forms with values in any linear space, in particular, for forms with operator values.

We define a quadratic form @ on the space R* , having operator values, by the following

equality

2
Q (S gy yp)=(ZpeBy) foramy Prooe B

This is well defined since for those @y for which ZPLLEJ_{,/—_—O, we have 2. S{,LBL\V=O
and, therefore, ZF’LBL:O . The form Q has the properties

Q) =y =1,
U (@) =Q (2o m)=(>§%m)z= 1

thus, at the points Xy,.. Ty, Yy,.o, Yy, it coincides with the florm Q4(Z)___lzl‘l.ﬂ . In
) 2

this case, these forms coincide identically: (Z‘PL Bbj:‘Zh%\ - for any B,y Bu -

From here, B%BL,“-& 851&64:2<%L47%1«z> 4 . Similarly, we obtain AK1AK2+ AKQAK'{:

2 <IK45:LK2,> ' /ﬂ :

Proof of Theorem 3.2. Irom the given proof of Theorem 3.1 we can sce how one con-

structs a Clifford representation: one selects a C -system of vectors  Xy,.. Xy, Y.Yy in the
space Rrb , where ' is the rank of such a system, one constructs the tensor product
CRI®C() of two Clifford algebras, one considers some representation JU of the algebra
C(v)®C (%), and one introduces the operators AK:%‘L(X(xK)®/ﬂ), B,L:ﬁ(jl@) X(Ldf)) . The density
matrix W defines on the algebra C()®C((?) a state § such that f(X(xQ@ X(ljb)\)chg =
(%K,lzn) and, consequently, f(X(:r,) (X)X(#)) = (1,\}} for all X, ye Rz. From this
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it is clear that f(A):1 , where the element A of the algebra C(Y)®C(x) 1is defined in
Sec. 1.

We prove part (1). The one-dimensional density matrix \Af corresponds to some uniguse.
vector lP€l4 . The nondegeneracy of the given representation means that Y is a cycle
vector for the representation 9L of the algebra Cly)y®@Cle). Applying Lemma 1.3, we con-
clude that the representaticn OU is irreducible. Thus, it is uniquely defined within the
accuracy of a unitary equivalence. It remains to take into account that the equality
<MA§5\P>==4 determines uniquely the vector ¥ within the accuracy of a scalar factor.

We prove part (2). The representation 9U of the factor ((t)® C (%) has automatically
(within the accuracy of a unitary equivalence) the form 5L(10::634@4)8)ﬂ , where §E4 is
an irreducible representation in the space 'H{. 1 is the identity opérator in HQ , and
H=H4® H‘). . The density matrix W has the property T‘L((TM(A)QE ﬂ)W) =1 . We know
(Lemma 1.1) that the eigenvalue 1 of the operator fﬁ1(A) has multiplicity 1. From this
there follows that 1V¥Wﬂ($'M@’. where WV} is a one-dimensional density matrix in H1
corresponding to the one-dimensional eigenspace for T11(A) , and ‘Vfé is some density
matrix in Ha, . We have W,v:Xn:ava@)n where Cbn) 0, %@f{ , -W;,H/ are one-
dimensional density matrices, corresponding to orthogonal one-dimensional subspaces l41’n .
We obtain the desired decomposition: H=%(H4® Hgv,n,) .

The proof of Theorem 3.3 differs little from the proof of Theorem 3.2; we leave it to

the reader.

4. Comparison with the Classical Case

The classical case can be characterized by the fact that all the operators Ahju)Anb,
B4r-‘,6n, commute. Instead of the commuting operators and density matrices one can con-
sider random variables. Thus, we are interested in matrices C of dimension mxn repre-
sented in the following form:

C.K'{/ = EAK B,(/,
where | is the mathematical expectation, A4w“'vAn®»64r~kav are random variables with
]AK|$J and IBL‘$4 with probability 1 for all k , £ . It is easy to see that the
set of such matrices is a convex polyhedron; its vertices are matrices of rank 1: CK3=(LK£L ,
where all ay .4y are equal to +1.

Proceeding in the vein of the previous section, we introduce for this polyhedron the
notation C0Z4(ngb) in connection with the fact that its extreme points correspond to the
systems of vectors of rank 1. Of course, COZ{(hmﬂL)C:Ca%Qnyq- The noncoincidence of these
sets is a fundamental fact; exactly this is responsible for the existence of the scientific
orientation connected with Bell's inequalities.

In Bell's pioneering investigations one has indicated a point of COZC%Q) and a hyper-
plane separating this point from C01K23§. In subsequent investigations one has gradually
outlined the set C(o%((2,2) ; its complete explicit description has appeared in [7] and [8].
Apparently, the investigation of the set (ot (R,2) , as well as that of Cox(m,n) | has

begun in the author's paper [9].
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It is natural to ask how much larger is Co*(,(m,,n,) than Co%. (", ny. Some attempt to
approach this question can be noticed in [7], where to each of tl.e Bell inequalities one
associates a numerical characteristic ' , showing how stronyty it is violated in the
quantum theory; however, the latter is presented only by a spin correlation experiment ac-
cording to Bohm's scheme. We propose to pose this problem in the following manner: which is

‘the smallest number K(wy,vt,) having the property that

Cov (m,n) < K (m,n) - Cory(m, n)
i.e., such that (1/K(m)|¢))c belongs to Cozy(m,n) for any matrix C from Cot(m,n)-
It is”easy to see that K(m,n) is an increasing function of m » n there arises‘ the

question whether the limit K= /dim K(wm, n)y is finite or not.
W, n—»co

As long as the set Coz (m)n,) is determined in terms of C¥ -algebras or in terms of
operators in a Hilbert space, the question of the constant K from a mathematical point of
view is rather special. But Theorem 2.1 shows that the set Cot(n,n) can be determined in a
significantly simpler manner in terms of vectors in a Euclidean space. Then it becomes clear
that the constant K. is nothing else but Grothendieck's well known constant Ke , linvest-
gated by mathematicians from 1956 up to now!

Regarding the problem of the Grothendieck constant, we refer the reader to {11]. It is
proved there that

K(; 0£M(4*\T.-_5~1782/
The constant KG(k) , considered there, differs from the above introduced K(m,w). For
given m, n , we select 7 in such a manner that for any Ce& Ex Cot (m) n) the rank of
the C -system of vectors does not exceed T i then K(m]%’l)\< KQ () - As shown in Sec.

3, % can be chosen so that T&m,» % L1

.
7 £ —i?_ +\/% +2(m+n) .

For small 7 , in [11] one has obtained: K(;@') =V2'; KQ(3)< 16547 3 K&(Q)é‘ﬂ/z . We

. note that

V2 & K(2,2) € K(2,n) éKQ(z)=«T ,

from where K (2,%):\/5: for all n »2. In this sense one can assert that the quantum
' realized correlation matrix -1\/—- <1 _1) , well known among specialists in the Bell in-
qualities, is tlmal (by ifs nonclass1cal character) not_only mon the 2x2 matrices
(_%.}_gsijzgetlem o{P a.gg of quantum sysiems méﬁu.ences the weatiza covtel, matrices)
t also among the ,‘Z matrices.¥ We define the set (oey (hyn as the c osed convex

hull of the set of all Wwixn matrices C of the form CK(,:(:LI\',W)' where ¢y, \ﬂg] are

unit vectors of the Vv -dimensional Buclidean space. In other words, Co’év(m.)w) consists of
matrices C of the form C,&:E <AK,BL>’ where AK » By are random vectors with values
. in the Y -dimensional Euclidean space and ‘\AK‘ &, 16”64 with probability 1. We have
‘ Co’zv(m,n)c_ KQ(\))-CUL4(m)m . If to the condition (1) of Theorem 2.1 one adjoins the re-
quirement that the linear span of the observables Ab“wAm should have dimension at most
y , then the corresponding correlations matrices are in Covy(myn) ; this is clear from

the proof of the mentioned theorem. In correlation experiments, related with the Bell in-
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equalities, for the obser-ables one applied frequently the projections of the spin onto cer-
tain directions and one mak: s use of particles spin 1/2. The linear span of these observables
is not greater than three-dii.onsional (in fact all of them are represented by Hermitian 2x2
matrices with zero trace). The correlation matrices obtained in this way belong to COZa(HLﬂQ
consequently, they exceed the classical ones at most KG(3)< 1,547 times. TIf, however, as

it is frequently done, we restrict ourselves to the projections of the spin onto directions
lying in one selected plane, or one considers experiments with polarization photons and the
observables are taken so that each of them is equal to —1 in some state with plane polariza-
tion and to +1 in another such state, then in a similar manner we obtain two~-dimensional
span of the observables, the set Coza(whnj and the constant KQ:(Q)=VT.

In conclusion, we rewrite in our notations the explicit description of the sets Coz1(Qﬂ)
and £BC (2,2) obtained in [7, 8]. For this, we use the notation A&BC(mn) for the
set of those collections (agé)c)‘ consisting of an wWi-vector G, an N -vector % , and
an Mxn -matrix C which can be represented in the form ®K=E AK’ ,@£=E5 ,

CKC =F Ah{Bﬁr } as before, the random variables A‘(, BL are subjected to the con-
ditions IAKI < 'IBLi <1.

The set jEBC1(2,2) is defined by the system eight double inequalities

-1 + {(»KM%‘I $Chp € 1= |@K—£L,,

,CM +C4Q+CQ1+sz"2CKﬁ| S22
where K=1,2 ;,8..—_4,2, .
The set C014(Q,2) can be defined by the single inequality
|[Cay+CratCay+ Oyl + €y +01,= Cpm Ca +|C11_C42+021 ~Cpa| + |Cy = Cra=Cag tCaa] € 4 -
One can get rid of the absolute value symbols and obtain 16 linear inequalities; from them

eight inequalities are trivial and the other eight are known as the Bell/CH, CHSH, etc. in-

equalities (CHSH stands for Clauser, Horne, Shimony, Holt.)

5. The Case of Three Domains

To three spatially separated domains there correspond three collections of observables

Ay AL B B Ch C and all the commutators [A. Bg] /[Bg,Cm] + [CwmiAx]  vanish.
1) YAy Of 1Opy Ve, ) 9 H Ky )

- A% & -
In every state § we define Eﬂﬂi correlations ¥ QAKEw)v f(BLCnQ, {(CHLAKL generating
three matrices, and triple correlations § (AKEQLCwn) generating a trivalent tensor.

Here we shall consider only dual correlations. Clearly, each of the three correlation
matrices must be quantum realized in the sense of the definition given before for the case
of two domains; this, of course, is a necessary but not sufficient condition for the jo{ht
quantum realization of a triple Wemaims{of correlation matrices.

It turns out that for three domains the situation is entirely different from the case
of two domains. Vectors in the Fuclidean space arc not suitable anymore and the quadratic
operator inequalities do not work; in a series of cases the quantum boundaries coincide un-
expectedly with the classical ones. The fact is that the presence of a quantum correlation

between two objects restricts their possible correlations with any other objects; and if two
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‘objects are connected by a '"full" correlation, then each of them emerges, with respect to

any third object, as the classical one; in fact its state is "somehow known," i.e., in some
sense it is subjected to measurement; and the measurement acts in a destructive manner on the
quantumcoelations. What has been said is an attempt to comment on the precise statements,
formulated below. Their proof will be published later.

: Thus, in some (¥ -algebra there are given Hermitian elements A4 , AQ’, By 62 , C4 ’
Gy 0 and A:S’ﬂv 6/354' C:;s'ﬂ. [Ak‘,B,(,.]:-O , [BL)CM‘J:O ’ [CHL)A}J=O for l\‘)-ﬁ,l‘rb =1,2 . We

‘introduce the notation

Ke (A,B) =A, Bycos +A162 Sbn{—A254 Su + A, B, cos 93

"y is an arbitrary parameter, running through [O,Z‘ﬂ], In a similar manner one defines
K;{»(‘B,C) and Ky(CA) . Taking into account the results of Sec. 2, it is easy to see

that the quantum bounds for K (A, B8) are equal to *2 , i.e.,=2-4 SK‘{;(A’B)SQ-'ﬂ
and the constants —2 and +2 are sharp. The classical bounds for K?(A,B) are
+ 2max([cos 9], [sing] ).

Proposition 5.1. For any «f , the quantum bounds for the observable

coincides with its classical bounds.

Remark. The mentioned classical bounds are easily computed; the upper and lower bounds

are equal, respectively, to the largest and the smallest of the three numbers
—2005\4‘24‘/’*31”‘{; Goosqs —'—QCosgf—ll-sLnA{)
Proposition 5.2. Under an appropriate choice of the C*-algebra Ol and observables

A4 , A,“, By » By Oy +Cpe0t |, we have: for any 46[0,2‘-%] there exists a linear func-

tional { on -6l satisfying the conditions

tM=1,
$ (@At agAg+8,ByebyByrc,CivCyCurd A)) 3 0

for any (LK , KL , C d and such that

§(Kg (AB)+Ky(B,0) + Ky (C,A)) =6 max (cos (4 + %—ﬁ% cos o, cos (g - QT‘TL))

Remark. We see that for some < , the indicated value violates the boundaries mentioned
in Proposition 5.1 (and in the remark following it); this is connected with the fact that the

. functional ¥ is not a state. Thus, in the case of three domains, as opposed to the Qa's,e of
‘two domains, one cannot obtain sharp inequalities by using the positivity of the squares of

. only those observables which are linear combinations of the observables AK , Be Cpp » We
also note that the inner product of the unit vectors in the Euclidean space allow us to reach
the boundary mentioned in Proposition 5.2; thus, they may violate the quantum boundaries,

' which again differs from the case of two domains.

Proposition 5.3. For any state { we have the inequality

(55 (BeC) +(44 (K, (A,m))l <

' for any £,m.
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Remark. If f(k;ﬁﬁ U&B» attains its maximal value, equal to 2, then necessarily
5_(6;;0,%) =0 -

The author is grateful to A. M. Vershik for formulating the problem of the quantum
analogues of Bell's inequalities and to L. A. Khalfin for formulating the problem of the

representations of extremal quantum correlations.
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