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In the second part [2] of our series of articles we formulated four theorems withou;
proofs. Their proofs are given here, in this third part, along with the necessary lemmal,i
the theorems are not stated here, nor are the definitions. We continue to use the objcmi
and notation introduced in the first part [1]: E, v, E,, (0, x), [|0]], 7o, Yo.00 £, (6, %), V“
Ci(V), Cy(V, 0), as well as B(6, r), and those introduced in [2]: 4, (V) and 7y, and
those appearing in the statements of Theorems 1-4: F,, K(#) and the p-correh!cd
random elements. As in [2], the set V is assumed to be convex and such that!
C(V)<+00, and consequently C,(V)=0. Recall that : ik

(1) M (V)= MA(V),
as well as

@  A(VNBO,N)St(VOBO,1) forr=1, 8eV:

TR R T P i Sy

am i il A

see [2, formulas (4) and (1)]. A significant role will be played by the following funcno
on E:

#(x) = sup log £(6, x)~SUP «6, x)~3[l6[1*;

eV ‘
as Theorem 1 in [1] shows, the function ¢ is well defined and finite y,-a.c. for any '3
According to formula (5) in [2],

yv(dx)
y(dx) 3
Finally, by definition, a,=max (q, 0); accordingly, (a~b)% is equal to (a-b)? for
azband to 0 for a=b.

Let us begin with the finite-dimensional case. We assume that E=R", y=1v", lhe

metric is Euclidean, and 0(x) is the closest point in V to x. Let us point out some
useful inequalities:

3) =exp ¢(x).

4) B (5(x) -6, x— 5(:())2 0

for any xeR", e V; |

(5) (6(x) = 6(y), x= )2 |6(x) - 8|
for any x, ye R"; and if O€ V, then

(6) (6(x), x)z | 6(x)|?

for any x€R" Inequality (4) is geometrically obvious: the hyperplane passing
through 8(x) perpendicular to the segment joining 0(x) with x separates V from x

* Received by the editors June 18, 1984.



MAXIMUM LIKELIHOOD ESTIMATION. 111 471

U by, b AR 2

Incquahty (6) is obtained from (4) for 6=0. Ineguahty (5) is derived as follows: for
i 0= 0(y) we find from (4) that (o(x) o(y) x—0(x))= 0; we switch the places of x
‘ and y, add the resulting inequality to the original one

(6(y)—8(x), y— 0(y))+(6(x) - 8(y), x— 6(x)) =0;
(6(x)=8(y), x—6(x)-y+6(y))z0;

md obtain (5).

Remark 1. Inequalities (4), (5) and (6) remain valid in the infinite-dimensional
case (for almost all x and y) if Ve GC.

We shall study the function ¢ in the finite-dimensional case. We have

#(x)=4sup (<~ Ix - o[])
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= HlxI* = 4lx ~ ()%

Thls function is convex on R" and continuously differentiable; it is not hard to calculate
us differential:

R Ll SR LIRS
—
]
—

De(x, h)=(8(x), h).

Now let us suppose that V is a convex solid with a C*-smooth boundary aV. Then
the principal curvatures «,(6), - - -, k,~,(8) of the surface 3V are defined at each point
; 9€3V; their order of enumeration is of no consequence for us. In this case also ¢ will
i be Ch-smooth: @(x+h)=@(x)+ De(x, h)+iD%*e(x, h)+o(||h|); D’cp(x h) is a
‘quadratic form (in h); let us consider its characteristic values A,(x), - - -, A,(x). For
x€R"\V one of them is equal to zero since the form is singular in the dxrectlon of
the vector x — 0(x) we shall assume that A,(x) =0. The other characteristic values are
-associated with the principal curvatures:

(9) M)+ [|x = 8(x) |k (6(x))) =1.

Clearly, 0 < A;(x) = 1. Of course for x e V\aV the expression x;(8(x)) becomes mean-
ingless; in this case, A,(x)=1for i=1,---,n It is clear from (8) that the A,(x) are
also the eigenvalues of the differential of the mapping 0 at x. The following lemma
links these numbers to the thicknesses.

LEMMA 1. For any z € (—00, +00),

tirn e Rt Lot Gl d

o e 1) T PO EE ‘N

W IR RN LTI 303 0 Mt oI B W5 MI-RESE 2o

j I1 (1+2zr(x))yv(dx)= T %Jlk(V)(HZ)"-
R" i=1 k=0

Proof. The one-to-one mapping x - (8(x), [|x — 8(x)])) of the set R"\ V onto 3V x
: (0,+00) has Jacobian A,(x)--- A,_,(x). Hence taking (3) and (9) into account we
? obtain the following change-of-variables formula (¥ is any function on 8V x (0, +0),
. for which the indicated integrals exist):

‘ I Y(B(x), |~ 60y (dx)
- R™\V

=(2w)™"? J r\v(e, t) exp (—1%/2) "ﬁl (1+ tx;(0)) d1S(do);

3v Jo

and S(d0) is the arca element on aV. Let us apply this formula to the integral given
E. in the hypotheses of the lemma, after first reducing it to the necessary form with the
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aid of formula (9):

I I (1+zxi(x)m(dx)=jv(1+z)"w(dx)

" el
J‘ n-1 z ) d
| I (o remacpeac) v
=(1+2)"(2m)""* meas, V+(2m)™"* Lv J:o :r:l: (l +1—+Zz‘m)

2\ n-1
. exp (-‘—) I (1+ 1c(0)) diS(do).

The first term is equal to (n)ML(V)(1+2)" (see [3, 3.5.2]). Using the elemcnlary
symmetric functions of the principal curvatures j
;

0,(0)= x i, (0) -+ - %, (8),

isij<--<i,sn—1 !

we transform the second term as follows:

Q)™ I J'w "nl (14 tx,(0) + z) exp (—1%/2) dtS(d6) g
vV JO i=1 4?}
=Q2n) "2 I Jw "Zl (1+2) " %o, _,_x(8) exp (—13/2) diS(d6) :%

av Jo k=0

=(27)" "2 ..i. (1+z)“(I a,_k_,(O)S(dB))

k=0

(Jm 1" '""*exp (—1%/2) dt)

=@m)? "i' (1 +z)*2‘"-*-2’/2r(

B[ oiorsam.

A formula linking the surface integral of o,_,_, with the kth transverse measure u.
known (e.g., see [4, formula 21, p. 142]), which in our notation becomes .

n—k
2 ) Lv On-x-1(0)S(d0).

M (V) =2""“’“1r-"’2k!r(
We now have

L 1 (1+20,(x)) yv (dx)

i=1

=-—1-Jl,,(V)(l+z)"
n!

k422 __n/2
kIT((n—k)/2)

+(2m) "2 kg) 1+ z)"2<"-*~2)/2r(" ; k) M (V)

L
=k§°7c—!,ll,‘(V)(1+z)".

Remark 2. If the surface 9V is piecewise C2-smooth, then the second derivatives !
of ¢ and their characteristic numbers A,(x) are piecewise continuous. It is not hard :
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to show by an approximation that Lemma 1 is preserved for this case. Further, if one
takes a polyhedron as V, then all the A;(x) become zeros and ones, and our Lemma

“1yields Lemma 1 in [2].

~ LemMA 2. Forany 0V, 0>0 and z> -1,

j' 1+ (dx) sexp (l}i«.( V)).

Proof. We can assume that 8 =0 and o = 1; the general case can be reduced to

 this one via a shift and a dilation. Applying Lemma 1 and inequality (1) we obtain

i=1

[ [t @+ sconrtans [ 1 a+scnman
= T V42t
_oﬁ((HzM,(V))"

S exp((1+2)44,(V),

1s required.
The following two lemmas estimate the distance of the maximum likelihood

~ estimate (MLE) from the true value of the parameter. The space E can again be both
" finite-dimensional and infinite-dimensional.

LemMA 3. Let V< E, be a convex GB-compact set, 8 € V and o> 0. Then, for any

- a€f0,1],

[ exp (22220 - 17 ) v ) zex0 (210,

‘. Proof. We can assume that =0 and o = 1. The general case can be reduced to
' this one via a shift and a dilation. Also, we can assume that V is finite-dimensional;
for the general case can be reduced to this one by an approximation from the inside
" inview of Remark 3 in [1]. We apply inequality (6), formula (3) and Corollary 1 in [2]:

i 2
[ ero (22=2yi0r?) vt = [ exp (addenl- L1017 piae)

A

r n az "
exp (a(o(x), x)—;llo(x)"z) y(dx)

.

IA

1
exp sup ((o, x)—gllvll’) ¥(dx)
J beaV

~

= 'YGV(dx):.‘YaV(E)

Zexp (M (aV))=exp (a M, (V)).
CoroLLARY 1. Under the hypotheses of Lemma 3,

Yoo{x€ E: ||5(x)— blzrj=e™

. Jor any positive r and u such that

VZu=rfo—M,(V)/r.
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Proof. For any a€(0, 1] we have
Yoolxe€ E: |6(x)- 6]z )

serp (~2252077) [ exp (225 21500) - o1 et

202

Sexp (_a(;:za) r2+§ﬂ,( V)).

We assume that #,( V) = or® (otherwise there is nothing to prove). The minimum wi ‘
respect to a is attained for a =1—4(,( V)/(or?); substituting this a, we obtain on the] i

right-hand side
( l(r Jl.(V))z)
expl —={————=} }.
2\o r

Remark 3. For nonconvex V the correspondmg weaker estimate is derived fron®
different considerations in [1, Thm. 2(b)]; in the notation used here this estimate taku !

on the form
e (r «“_(_V_))
. Vau= R(V, 8) (20 r )

LEMMA 4. Let V< E, be a closed convex set, 0 V, >0, A, (VN B(6,1))= C,v
+00. Then, for all r=max (o C,;, Vo (),

Yoo{x€E: ||5(x)—0|| =r}=9exp (—1(—{——.6‘2—) )

2\o min(r1)

Proof. First step. Let 0<ro<r,<---, r,»+0, and r, = 1; applying Corollary I
to the sets V,,,= VN B(4, r,,,) and notmg that My(Vps1) = 1,4, C; according to (‘)
(it is here that the fact that r,= 1 is essential), we obtain H

Yo.o{x€ E: "é‘(x)_ollg"o}§ 20 Yoo{x€ E: r.-éllé(X)—ﬂllérnﬂ}

= T Yoolxe E: J6(x, Vo) - 0l 21}

o 2 ’
=3 exp(—%(ﬁ—-——r"“cz) ) §

n=0 a T'n +
bl

At the second step we shall prove that for any r,= (C,+2)0 one can choose r,, rp, * ,(
such that ro,<r,<r,<:--,r,-»+00 and : g
[

Lo (<3(3-229) ) moe (-3(2-<)) "
"Z':oexp( 2(0’ | A =9exp 2\o c))

Let us convince ourselves that this implies the assertion of the lemma. For r= (C2+2)¢
there is nothing to prove, for then

r_ G ’)>
9exp( 2(0 min(r,l))+ Z9exp(-2)>1.

For rzmax (1, (C,+2)o) we put ro=r and obtain the desired at once. There remainsi
only the case (C,+2)o=r=1. It will become clear at the second step that r, = f(r.),f,?
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where fis a continuous function on [(C,+2) 0, +0). If f(ro) 2 l forall e [(Cy+2)0, 1],
. then we again put ro=r and obtain

2
Yoo{x€E: ||5(x)—0|| Zr}=9exp (—%(ﬁ—c,) )

2
=9exp (—l(-{'—g\) )
2\c r /.,
)

. There remains the case where there exists an r'€ [(C;+2)0, 1], such that f (r=1for
all e[r, 1], f(r)=1, and re[(C,+2)o, r']. In this case we put ro=r' and derive

from the inequality

© 1 oA ’ 2
oo (A=) w2
n=0 g Ty + 2\o

R RIC AL P eOn S RATEr S et LA LR

R R S

:
]
;

t that
i
5 1 C\? 2
exp (——(E—-—Z> >+2,_S_9 exp (——(——C,) )
2\oc ry/+
2
=9exp (—1(2—9) ),
2 o To/ +
{ where
e § e (1S,
n=1 2\o I, +
thus,
2 S
. X, 8exp(—l(2—-£z))
: 2\ r/+
b,
' We now have
Li; A 1 r Cz 2
: Yoo{xe E: |0(x) =0 Zzr}=exp| S\ ——7) |+

o IRR S e

A
v
[¢]

o
)

i
N |-
A~
SRR
|
~ |0
S
+ ~
N

as required.
Second step. Given ro=(C,+2)0,; it is required to construct ry, rz,* * - such that

<n<r<::-,r,~»+o and

o ! .’_'_'_.’:L£3)2)< (_l(ﬁz_ )’)
..)-'-‘oexP( 2(6 r. /s =9exp{5\o GJ )

R e A -2 S Al MR LS et
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We make the substitution r, = (Cy+1,)o; and then we have

fn 1y Gy (s + C)Cy
S22+ —antl  ~2/%2
o r, .+ G 1, +C
G,
? =1, C2+ 1, (‘n+| 'n)

= ln _(’n+l - ln) =2‘n_ bty -

Thus, for given 1,=2 it suffices to construct hL,f, - -,suchthat (o<t <fy<---

+00, and
- 1 2 1,
Zoexp —5(2!,,—1..“)4» =9%exp —510 .

Take p, 2 1 such that p,+ 1/ Po=t,. Further, take p, 21 such that
Paexp (=3p2) =2""py exp (-4p2).

Then clearly p, increases to +. For n = 1,2,- - set

N n-1
,=2"1,— Y 2" 1p,,

k=0

»1n

<>

We then have 21, — 1, , = p,.. At the third step we shall see that Z‘:_o 27"p, <2(po+1/po).

We have

n n-1
tn+l_'n=2"+l'0— E 2"_kpk_2"10+ Z 2"_k—lpk
k=0 k=0
n—1 w©
=2"— % 2" % 'p~p, = 2"~ ¥ 2" 'p,
k=0 k=0

|
=2"(lo‘5k202 kpk).

and the last expression in the parentheses is positive. It is now evident that 1, increases

to +00. We have

E exp (—%(2’.."';”1)1) = § CXP(_%I’:)

n=0 n=0

2 ac 1 1
=Y 2 "&exp (—Ep§)§2exp (—Epz).

n=0 Pn

But
l 2 1 2 -2 l 2
9exp ~3fo)=9exp —5(po+2+po) Z9exp —5(po+3)

3 1 1
=9 exp (—5) exp (—Ep?,) >2 cxp(—ipf,)

= E ¢xXp (_%(Zln _‘n+l)2+)-

n=0
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Third step. Let us show that ¥_o27"p, <2(po+1/po)- We have

1 2 1 2 L 1 2
exp| —5Pn | ~exp —3Pan) = x exp | —5X dx
Pn
1
> (Pn+1 = Pn)Pn+1 €XP (_El’iﬂ)

- 1
=(pn+l_pn)2 ‘Poexp ("51’%):

and summing over n=0,1,---, we obtain

1 1 1 1=,
exp (—5p3)>poew (—Ep%)(—ipofi z2 p..),

1 1 12
=>->pots T 2P,
7o 2Po 2-};1 4

1 12 __.
Pot—>72 Z 2" "pa.

Po 2 n=0
Remark 4. The “9” in the statement of the lemma can of course be improved.
Numerical computation shows that it can be made less than 4.
Remark 5. For nonconvex V the corresponding weaker estimate is derived from
other considerations [1, Thm. 2(a)]; let us give both estimates in comparable notation:

| but

I'z C2 81
—_——— ——— M 1 .
=Tt 100 32 OnUID
1{r C, )z
I %2 ) —iog9  (here);
u 2(0 min (r, 1) og9 (here);
81 1{r G\ r C,
<= “(=-=2) =- -1 .
log9 <35, and 2(0 r) 320 100

always, and _

1fr L S 6 1
—-\—- z——s—-——— f =—
Z(a C’) 1207 100 O TOFF

these inequalities can be verified by reducing them to homogeneous quadratic
inequalities with two variables by means of appropriate changes of variables.

Proof of Theorem 1 in [2]. Point (a) follows immediately from Lemma 1 in [2]
and inequality (1); indeed, assuming that =0 and o =1 (the general case reduces to
this one via a shift and a dilation), we obtain

P(3(E) € Fil = vix: ()€ F} S wlx: B(x)e ) =75 4a(V)

| S __1__ k
émﬂ,(V)—k!C .

Let us prove point (b).
First step. From point (a) already proved, noting (2) we can derivethatforany r=1

k
PO e Rl - ol s =) 5

o
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] k
P{6(6)e FUF.,,U---UF,, |4(¢)-8| §’}§(Ek%r) '

Indeed, assuming that Cor/(ko) =1 (otherwise there is nothing to prove), we have

n ! ao !
¥ l(—Cér) =mina™* ¥ l(gz_'a)

I=k “ (e aixt 1=k I a

.k C,r
érz:zlrlla exp -—;a
= thll a ’exp ko a “\ T /-

2
P{ué(g)—enzr}émp(—%(;’—Cz) )

+

On the other hand,

for r=1 by Lemma 4; thus,

R C,r\* 1 2
P{o(¢)e FL UK, ,U-- -UF,.}é(%) +9exp (—§(£~Cz) )

+
for any r=1.
Second step. Let us show that

) . eCyr k ( l(r )2) (e2C§ k)"/2
—— + —— — -3 —
rfltl?( ) 9 exp 2 G, . =10 X log C§

for k> C3 and ok log (k/ C2) = 1. For this we put @ =vk/C, and take r = oVk log a’.

We then have
(eCzr)" : (e2 log a’) k/2
ka | a? ’

2 2
exp (_%(;r_ Cz)+) =exp (—-ZIS(VZ log a —‘—11-)+).

It is not hard to check that

1( 1)?
-2-(\/210ga—;> éloga—%log(Zloga)—l
+

for all a> 1; hence

2 .
exp (—%(é— Cz) ) Sexp (—k(log a—%log (21og a)-l))

k
e’ log a®\*/?
=(=—2%=) .

which yields the required result.

Remark 6. If all the hypotheses of Theorem 1(b) are satisfied aside from the
inequality o’k log (k/C3)=1, then we can use the estimate

k 2
P{é(f)(—: FkUFk+|U"'UF,,}§(e—C2) +9exp (—l(']—_C2) );
ko 2\o

+

it is derived from the reasoning given above for r=1.
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The next two lemmas (one is for the ﬁnite-dimensioﬁal case, the other for the
infinite-dimensional case) are directed towards the proof of Theorem 3.
LEMMA 5. Let V(VcR") be a convex compact set with piecewise C*-smooth

boundary and 0 € V; then, for any o> 0 and a>0,

j exp (aAp(x)) Yo, (dx) S exp (";m( V))

(here A is the differential Laplace operator).

Proof. The Laplacian is the sum of the characteristic numbers of the second
differential: Ap(x)=A(x)+ . -+, (x) (note incidentally that this is the trace of the
differential of the mapping 8, see (8)). Using the inequality exp (@A) =1+(e" — 1A,
which is valid for 0=A =1, and Lemma 2, we obtain '

j exp (aAp(x)) Yas(dx) S j' 1 (14 (e = DA eurld)

=exp (—i;.ll,( V)).

LEMMA 6. Let V< E, be a convex GB-compact set and 0 € V. Then, for any positive
g, 8and a, -

[ exp (Btouta-p(a0) restmrsexp (£am).

where 5(x) =] o (x + 8y) y(dy)-
Proof. We can assume that Vis a finite-dimensional convex solid with piecewise

smooth boundary; the general case is derived from this one by means of an approxima-
tion from the inside. We shall assume that (E, y)=(R", ¥"). We shall need the formula

A

tp}(x)—w(X)=% L dt J y(dy) Be(x+V1y).

It can be checked by routine calculations (passage to polar coordinates in the integral
with respect to y) or by application of Itd’s formula to the stochastic differential
dp(w,(1)), where w, is an n-dimensional Wiener process. Let us use this formula, the
convexity of the exponential function and Lemma 5:

[ exp (Rcoutar-ox9) ot

[+]

= j Yo.0(dx) exp (a;lz- j dt j y(dy)A¢(x+ﬁy))

5
éJ' yo.o(dx)'ali‘[ dt j y(dy) exp (aAqP(X+~/7y))

D |

82 '
—J drI yosoi7:(dx) exp (ade(x))

1 & a a
)

A
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Proof of Theorem 3 in [2]. First step. As will be proved at the second step,

Jim =5(ps(x) - 9(x) 2 K(6(x)

30+

for y,,-almost all x € E. Because of this, point (a) reduces to Lemma 6:

E cxp (aK(é(f)))éIeXP (agi%f;(%(x)—m))) Youlds)
. 2a
= lim f exp (3—,(%(::) - ¢<x))) Youlds)

=exp (e—.lt,( V)) =exp (_e_ C).
a ag
From point (a), for a =log (ko/C) it follows that

. k
P{K(6(x))z k}é(ff) ;

and now it remains to apply Lemma 4 and the second step in the proof of Theorem |. -
Second step. Let us prove that

lim 2(ps(x) - #(x) 2 K (6(3)
30+

for y,,-almostall xe E. Let K (5§x)) Z k, k <+00. There exist a k-dimensional subspace
H, < E, and an £ >0 such that §(x)+n e V for all 71 € Hy such that || 5| = &. Consider
the orthogonal projector Py : E,- H, and extend it to a measurable linear operalor
Py:E~> H,. For ne H, put Q(n)=1 if ||n||=e and Q(n)=0if |||>¢; for yeE
put Q(y) = Q(P.(y)). We recall the definition of ¢, note that 6(x)+ Q(8y)e V, drop
the odd terms with respect to y (their integral is zero), and discard inessential measure-
ments:

ps(x)—p(x)= j (p(x+8y)—@(x))y(dy)
zf (6(x)+Q(3y), x+ay>—§u 6(x)+ Q(y)|?
" = (6(x), x)+[16(x)|2) y(dy)
=J ((Q(ay), ay)—%th(&y)u’) ¥(dy)
- |, (caten, sm-210emr) yitam)

2

= Inl*y*(dn);
2 Jyntsess
thus, ~
.2 .
lim :s-i((pg(x)*'qo(x))_?: lim J Inl?y*(dn)
50+ §-+0+ Inkse/s

=J Inl*y*(dn) =k
Hy

The next two lemmas pertaining to the finite-dimensional case set the stage for
the proof of Theorem 2.
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LEMMA 7. Suppasé that the quadratic form A on R" has characteristic values
M2+ ZA,=0. Then, foranymeR", 0 € (0,1/V2A1,),

- A(m)

. —1/2
J exp A(m+ax)y"(dx)§(ﬂ (1_202Al)) eXPm-

Proof. We can assume that A has been reduced to the principal axes:
A(x.,---,x,,)=2A;xf. Then the integral decomposes into the product of one-
dimensional integrals that are easy to compute:

" A(m; +ox)2) vy (dx) =(1-2A,07) "2 (_Aﬂ?—')
. exp (A;(m;+ox.)?)y'(dx;) = o) exp 1-2x0%)

LemMMA 8. Let V(V<R") be a convex compact set, 0c V, and ||0]| =r for all 0 in
Y. Then, for any a, b>0, ce (0,3),

” exp (c<l|0(GX+ by)z-bo(ax—by)ﬂ) )Y..(dx)y..(dy)

o (A{‘(V) b )
SeXP\vi=2¢ a‘(1-20))

Proof. We can assume that V is a convex solid with piecewise smooth boundary.
We use formulas (5) and (8):

I16(ax + by) — 6(ax — by)||*=(6(ax + by) — 6(ax — by), 2by)
= D¢ (ax+ by, 2by) — Do (ax — by, 2by)

r=+1

d
=2-‘;;¢(axﬂby) =1
+1 d2
=2 J n e(ax+thy) dt
-1

+1
=2 j D?¢(ax+ tby, by) dt.

We take into account the convexity of the exponential function:

I I exp (c(u 6ax+ by)z—bé(ax - by)u)’) " (dx)y"(dy)

= ” exp (é % r D?¢(ax+ by, by) dt) y"(dx)y"(dy)

-1

1 +1
= jj 2 J exp (% D?¢(ax+ tby, by)) dt y"(dx)y"(dy).
Changing the order of integration, we obtain 1§75 J(1r) dt, where
J()= ” exp (cD’p(ax + tby, y))y"(dx)y" (dy).

It suflices to prove that, for all te[~1,1],

AL(V) + cb?r? )
av1=2¢ a*(1-2¢)/’

J(t)éexp(
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We cannot apply Lemma 7 to the integral for J(¢) directly due to the fact that y appears
in the expression ax+ tby. We switch from the variables X, y to the ncw variables
v=_(ax+1tby)s™', w=(tbx - ay)s™", where s = (a*+ 1°b?)"/2, and then y"(dx)y"(dy)=
7" (dv)y"(dw). We apply Lemma 7 to the integral with respect to w and note that the ‘

characteristic values A,(x) of the quadratic form D?*(x, h) do not exceed one:
i

J(t)= J'J exp (¢D?*¢(sv, (tbv — aw)s ™)) y"(dv) y" (dw)

§J (‘[:Il (l —2(-3)ch,-(.¢0)))—”2 exp (%2:‘%({:'/—?;%_—‘) y"(dv).

Note that D’p(sv, sv) = % Indeed, if sv € V, then D?(sv, sv) = ||sv]]>= r; butif sve V,
then the quadratic form D?¢(sv, h) is degenerate in the direction of the vector h=
sv—0(sv), and therefore D?¢(sv, sv) = D?¢(sv, 8(sv)) = l6(sv)l|*=r> Using this
estimate, the routine inequality

2
—1))\ for Ae[o,1], 5=2:—,°<1,

1-8A “/2§1+(
( ) =

as well as Lemma 2 for z=1/v1-56—-1, we obtain

2122 ”
J(t)sexp (s—f:%a_)).[(.l.], (l+zA,(sv))) " (dv)

ct’b*r? ./{{,(V))
=<
‘°"p(s‘(1—s)) °"p(s -8
A (V) ch?r? )
av1-8 a‘(1-5))’

éexp(

it remains to note that & <2¢.

Proof of Theorem 2 in [2]. Let us first prove point (a). We can assume that § =0,
The correlated vectors ¢, and ¢, can be represented in the form £ =a{,+b¢,, &=
aly—b{,, where a=oV(1+p)/2, b=0oV(1-p)/2, and ¢{, and {; are independent

random vectors with standard Gaussian distribution. Let us apply Lemma 8 for c=1:

B exp (100 feal)’ J' J exp (100t b9)— Blax— )

) 7"(dX)7"({iy)

But r=v27C, and so

2.2 2
.\/iC_'_b r4§_(_?<ﬁ+1rb3C)
a 2a
_C w2C
Ta a(1+p)3/2(]_p)
g m2C o
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Hence

AR —}
P{ Jol=p) =3vVou+2C

o (PR o (25550

( 90(1—p)(ou+2C) 1.9C)
Sexp\ — +

A 16b* a
o (_gu_g 1.9ﬁC)
sexp 8 40 oVl+p
=exp (—u—g(g— 19\5)) =exp(—u).
- o\4 Vi+p

This proves point (a). Substituting u = q*/(90) —2C/ o, we rewrite it as

1éce) - 8(el } ( ¢’ 20)
RS sl gt sexp| —o—+— )
P{ \/ail—piv 1 °Xp 90 o
In order to prove point (b), we apply the last inequality to the set VN B(8, r); using
Lemma 4 and (2) we have, for any r&1,
P {llo(f.)—o(fz)ug q}
Vo(1-p)

N ARG NP <}
=P{ Ja(l-p) zq,]6(£) oll=r,16(¢&) ol=r

+P{||8(¢) -0l =} +P{|6(&) -0l =1}

2 2

q° 2C,r l(r ) )
< =2 _ ——
_exp( 90'+ p )+18cxp( o C, )

It suffices to choose r=1 such that

q* 2C,r 1/r 2

9a'+ p =-(u+3) and 2(0 C2)+§—(u+3),
for exp (—u—3)+18 exp (—u—3) <exp (—u). Take r=max(1, o(V2(u+3)+Cy)); it
is not hard to check that for r=o(v2(u+3)+C,) we have g =3Vo(Vu+3+v2Gy)
(the first case), while for r=1 we have g = 3vao(u +3)+2G, (the second case). In the
first case we simply have —q*/(90) +2Cyr/ o =—(u+3) and ~Yr)o=C)=—(u+3).
In the second case we again have —q*/(90)+2Cyr/ o = —(u+3) and, moreover,

1(r P11 ?
—E(Z—Cz) ——-2-(;—6‘2) =—(u+3),

since o(vV2(u+3)+ C;)=1.
Proof of Theorem 4 in [2]. Fora finite-dimensional V, the desired assertions follow
from Theorem 2. The passage to the limit for the general case is carried out via Remark

3in [1].
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