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coordinates. The result is
1,.(£)=F(C"™D,C)P{xi., =&},

where F(C"D,.C) does not depend on &,- The expressions for I1,,(00), i =1, 2, 3, can be
obtained by twice differentiating the identity

vial
@ ﬂ_)k/Z
where one must take G™' or DG™'D as the matrix A, and then make the substitution
Y=A"'Zandsetu,=1, -, u =1. The result is
[ha(©)==T, Ib(©)=3TL 4T\, ~2Ts,, I, (0)=T3, 2T, - Ts.,

where T, and T,, are defined in the formulation of the theorem.
We now write the final result:

oL
( au,)o = (1T3/4~ T = 3To/ PG 56}
—(T3/2DP{x%2 SEY+(BTL/4~ T, - T2./2)P{xi s &)
—ZTIaP{XidQ §gp}." (2T2a +4Tla —ZTf,, )P{Xlz(+2 §-§p}
k/2 o =612
- __P — —
2’ r'(k/2+1)
The expression obtained and the representation for h(¢,, o) indicated in the formulation
of the theorem prove the relation (11). The theorem is proved.

A particular case of the result obtained for k =1 and A.=(1,++,1)7T with an
investigation of the maximum and minimum of the difference

P{V(S)éfp[1+h(§p: S)]}—P

over all values of o, was considered in [2]. In concluding the author thanks the referee
for his remarks.

e YTAY2 gy, . dY, =1,

[(OT3/4~Tyu = 3T30/2)~ £, (3T — 4T, —2T2) /(4 (k +2))].
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A GEOMETRICAL APPROACH TO MAXIMUM LIKELIHOOD
ESTIMATION FOR INFINITE-DIMENSIONAL GAUSSIAN LOCATION. I

B. S. TSIREL’SON

(Translated by A. B. Aries)

In this paper we discuss the estimation of a shift of an infinite-dimensional Gaussian
measure or, what is the same, estimation of the mean of a Gaussian process (a nonstation-
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ary process, with known covariance function), the estimated parameter belonging to.
(known) infinite-dimensional set V. We consider here only a maximum likelihood ™
estimator. Other estimators, more appropriate for an “extensive” set V, have been studied = X
by L A. Ibragimov and R. Z. Khas’minskii [1], [2]. We give necessary and sufficient .
conditions for existence, uniqueness and consistency of the maximum likelihood estimator. ~
We formulate these conditions in terms of geometric characteristics of the set V, namely,
mean width; V. N. Sudakov established its connection with a Gaussian measure, see for -
example [3]. All the geometrical notions used in this paper concern a “‘canonical” metric =
on V, uniquely defined by the given Gaussian measure. Making the most general assump- -
tions, we obtained for the distance between the true value of the parameter and the o
maximum likelihood estimator inequalities which, in particular, imply that this distance - -
has finite-order moments. As an example, we consider the estimation of a signal satisfying
a Holder condition of order e, in additive white noise; it turns out that the maximum
likelihood estimator is applicable for a >1/2 but not for a =1/2. T
Assume given a linear space with a centered Gaussian measure (E, ») and its
kernel Eq< E; for definitions see, for example, [3], pp. 13-14. As is well known, E, is

a Hilbert space; for 6, n € Eq, a scalar product (6, n) and norm }8}j= (6, 6)'? are given - -
and uniquely defined by the measure . For each 6 € E,, the linear functional {6, ) which
is continuous in n € E, has a unique (up to equality almost everywhere) extension to a
linear functional (6, x), measurable in x € E; here [(8, x)*y(dx)=]|6|F. The measure v,
obtained from the measure vy by a shift vector 6 has a density with respect to the measure

v if (and only if) 8 € E,; this density is given by the formula

LR

a(dx)
1 Y.
W v(dx)

We shall estimate the shift parameter @ on the basis of one observation of x € E. But
our next statements can be applied to estimation by a sample if by x we mean the sample
mean; the distribution of this mean is the Gaussian measure homothetic to the initial
one. To simplify our discussion of consistency, we introduce a parameter & > 0. In addition,
let y,, denote the image of the measure y under the homothetic mapping x » ox + 6.
We assume that § runs through a known set V < E, and o is known, i.e., we consider
the statistical structure Py, ={y,,: 8 € V'} with the corresponding likelihood function

1
2.(6,0)=exp (25 (0, )~ o).

In the infinite-dimensional case, y-almost every x does not lie in E, and hence (4, x)
cannot be regarded as continuous in # € E,. We cannot even define (8, x) in a natural
way for all § € E, simultaneously; whether this can be done for all § e V simultaneously
depends on the “value” of the set V (see [4]). It is sufficient now to go over to a separable
modification of the process (6, x) and therefore of the process Z, (6, x), x running through

(E, v) and 6 running through V (equipped with a metric from E,). Recall that V is called
a GB-set if

=2(6, x)=exp (8, x)—3}l6|P).

v{x e E:sup (0, x)<+o0}=1.
eV
In this case, but only this case is

@ hl(V)=(2ﬂ)"2f (sup (6, )y )

is finite; see, for example, [3], Chapter 2, Theorem 1 and Proposition 14. In order that the
likelihood function %, (6, x) be bounded from above in 8 € V, it is sufficient that V be a
GB-set and necessary that any bounded part of the set V be GB. It is well known that
a closed GB-set is compact. Even if V is GB-compact, the likelihood function may not
attain its maximum on V. If (and only if) the compact set' V has the GC-property (for
- the definition sce, for instance, {3], p. 28), the likelihood function is continuous on V
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with probability 1 and therefore there exists d(x) e V such that
3 Z.(8(x), x)=sup £,(0, x).
eV

Is the point 6(x) unique? Is it a consistent estimator? To what extent is the GC-property
and the boundedness of the set V essential? The following theorem provides answers to
these questions. First we introduce the quantity (possibly, equal to +00)

) Cu(V) =B 5 Gy ki V N B0, 1)

here and below B(8, r)={n € Eq: lln —6||=r}, where 8 denotes a point of E,; it is easy
to show that C,(V') does not depend on 6.

Theorem 1. Let V < E, be a closed set, .
Ci(V)<+0o, o>0, 40Cy (V) <1, 6eE,;

then, for vq,-almost all x € E,
(@) sup,evZ,(n, x)<+00;
(b) 6(x)e V exists, is unique and is such that, for any r >0,

(5) sup L, (n, x)<supZ,(n, x).
ne VAB(8(x),r) nev
Furthermore, for any 6 € V and any r >0,
(€} im,.os Yeoix € E: 0(x)-0l=r}=1.
If, however, C,(V) = +00, then, for any o >0, 8 € E,, for y,.-almost all x € E,

sup Z,(6, x) = +co.
eV

REMARK 1. From (5) we have the following: if 6,€V, lim,...%, (6., x)=
Supaevfu(oy X), theﬂ uon _e(x)"_) Oa n -0,

REMARK 2. The point é(x) does not depend on o this can easily be deduced from
the fact that o log %, (8, x) does not depend on o.

We say that (x) mentioned in the theorem is a maximum likelihood estimator in
spite of the fact that (3) is, perhaps, violated with positive probability. (For the correct
consideration of the probability of this event separable modification of the process (0, x)
is not sufficient, a natural modification in the sense defined in [4] is required.) This term
is appropriate if we mean by it a loss function which is continuous in § € V. Where
necessary, we shall denote 6(x) by the more precise 9(x, V).

REMARK 3. If V, V, V,, - - - are closed sets in Eo, V, < V,<- - -V, V,UV,U- -
is dense in V and C,(V) <+, then ||6(x, V,)-8(x, V)I|>0, n >, for A, -almost all
x, for any 6 € Ey, o <1/(4C(V)). This follows from Remark 1. There also are situations
when lim, .., C1(V,) <+00, but C,(V) =+, (x, V,,) converging as n - o0 to a limit which
can be used as an estimator of 6 € V. This resembles somewhat the principal value of an
improper integral. The sets V,, must be chosen in a special way, otherwise estimation can
be very poor; see Example 3 below. For C,(V} =+ one should not use as an estimator
the point near which the maximum likelihood function goes to infinity, even if such a
point exists and is unique; one can show that the set of these points is defined only by
the geometry of the set V' and does not depend on either x, 6, or ¢.

We turn now to inequalities. Since C,(V) gives only ‘‘asymptotic” information
concerning the set V, we need the characteristic

Ci(V,60)= s:grlz(zw)“’zhl(v NB(g,r)).

It 1s clear that C‘;( V, @) < +oo for some (or any) @ if and only if C,(V) < +c0. Furthermore,
for a bounded V we set R(V, 8)=sup, v n -8} - o
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Theorem 2. (a) Let V < E, be a closed set, .
CiV)<+m, eV, a>0, 40CyV,0)<1;
then ]
Yoolx €E: l0(x)—-0]zr}se™
for any positive r, u such that
r’=32uc?+3.2C5(V, 8)a +81c>.
(b) Let V< E, be GB-compact, 6 € V, o >0; then
Yoo{x € E: |6(x)-6]zr}se™
for any positive r, u such that .
r*=2V2VuR(V, 8)o +2Q2m) V?hy(V)o.

REMARK 4. Under the conditions (b) of Theorem 2 we have: R(V, 8)=h,(V);
hence we can replace the relation between r and u given there by

= 2J5(~/Z +2%/_)h,(V)cr.

k8

Let us now consider several examples connected with the estimation of a signal in
additive white noise; this problem has been studied in its geometrical aspect in
(1], [2]. Let the measure ¥ correspond to white noise on [0, 1], and let E be a suitable
space of generalized functions, for example, (C,[0, 1])*; then E, = L,{0, 1] with the usual
scalar product. The maximal likelihood estimator makes sense if it is a priori known that
the estimated signal @ (which is a function of ¢ &[0, 1]) belongs to a definite closed set
V < L,[0,1], Ci{(V)<+0., The last assertion is clearly not satisfied if V contains all
continuous (and therefore all measurable) functions 8 such that |§(z)| = 1 for all ¢; different
conditions need to be imposed on 6.

EXAMPLE 1. The set V consists of all functions 8 satisfying the Hélder condition
|8(s)—8()|=M|s —1|* (a and M are fixed). We can show that C,(V)=+o0 for a <},
Ci(V) <+ for $<a =1; in what follows we consider only the second case. The set V
is a sum of the one-dimensional space of constants and the set V, ={fe V: L; 8(t) dr =0},
it is easy to show that 6(x, V)=6(x, Vi)+ 101 s x(r) dt, hence it is sufficient to
consider 8(x, V,). The set V, is GC-compact; the maximal likelihood function is con-
tinuous on V) and attains a maximum exactly at one point §(x). One can show that

0.09
2a-1

For a = 1 one can find the exact value

2a-1

M_—<=(217')—”2h1(vl)§( —0.16)M.

Q) Phy(Vy) = \/%M ~0.31M.

EXAMPLE 2. To estimate a discontinuous signal one can use functions of bounded
variation. Let V consist of all functions on (0, 1) whose variation does not exceed M. As
in the previous example, we go over from V to the set V; of functions, orthogonal to 1.
We can show that V, is GC-compact, and (27)™'%h,(V,) = Vm/8M =0.63M. In our
next paper we shall prove that 8(x) is a step function on (0, 1) with probability 1,
independent of the properties of the ‘“‘true” function 6.

EXAMPLE 3. Let V consist of all increasing square-summable functions on (0, 1).
Then C,(V) = +00; the likelihood function is not bounded from above on V. Consider
the set V,, of all functions 8 € V such that a =8(¢t)=5 for all t€(0, 1). We can show
that V,,€ GB and that the limit lim,___,_ .. 8(x; V.,) exists (in the metric L,[0, 1))
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with probability 1; we denote this limit by é(x, V). In fact, the function 6(x, V) is neither
bounded from below nor from above on (0, 1), and the function é(x, V,,) is obtained
from it by replacing all values lying beyond the interval [a, 5] by the values of this
interval nearest to a or 5. Note that the function 8(x, V) can be constructed on the basis
of a given observation x in a very simple way, namely, by the “method of stretched
thread”; 6(x, V) is a derivative (in t) of the lower convex enveloping function of X (1),
primitive for x(¢); see [5]. This enveloping function is a polygon whose vertices cluster
toward the end-points of the interval 0, 1). :

The proof of Theorem 1 used the property of a Gaussian process to assume the
maximum at a single point, which is of interest in itself (see, for example, [6], [7]).

Theorem 3. (a) Let T be a metric compact set and let £(t, w) be a Gaussian random
process with realizations which are continuous in te T, E|£(t) - £(t)*> 0 for any distinct
t, 226 T. Then for almost each w there exists aq unique t, €T such that £, w)=
Sup.eré(t, w).

(b) Let (T, p) be a separable metric space; let £(t, w) be a separable modification of
a stochastically continuous Gaussian process, sup,er£(t, w) <+00 with probability 1. We
say that the points t,, t,e T are equivalent with respect to ¢, if £(th, w)=€(t2, @) for almost
all w. We define Tp..(w) as the set of all points t € T such that for any neighborhood U of
the point t the equality sup,., £(s, w) = sup..r€(s, w) is satisfied. Then for almost each w
the set Toalw) is such that all its points are equivalent with respect to &. (It is possible that
Tnax(w) is empty.)

PROOF. Assertion (a) follows from (b); let us prove (b). We expand the given
Gaussian process as a random function series of random variables:

6) £(, w) = folt) + f L@,

where f, denote continuous functions on T and Z, denote independent Gaussian standard
random variables; for each te T the equality (6) is satisfied with probability 1. (It is well
known (cf. [4]) that the series (6) converges with probability 1 at all points r e T simul-
taneously, but we do not employ this fact here.} Assume that for a given w the set T axl@)
contains points ¢,, ¢,, not equivalent with respect to € Then f,(1,) # £, () at least for one
n. We assume that f, (t,) <f.(t2); let rational a, b be such that f{t))<a <b<f.(t,). Since
ty, 1€ Tpux(w), we have

sup {(hw)=supé(fLw)= sup £(1, w).

teT falt)<a teT teT.falt)>b

Thus, it suffices to prove that for any n and any rational a <

(7) sup é(hw)= sup £(t, w)

teT.falt)<a teT.fnit)>b
has zero probability. Invoking separability we now assume that T is at most countable.
The space of elementary outcomes () can be identified with the space R™ of all numerical
sequences with standard Gaussian measure, {, are coordinate functionals on R”, ¢t w)
is given by (6). We have

£l w)=fo)+L(fu)—a)+al,+ T cnfanlt):

m=en

showing that, for fixed ¢, with m # n,

sup {(t,w)=al,+(a decreasing function of ¢,);

1eTfatt)<a

similarly,

sup  £(1, )= b{, +(an increasing function of a);
teTfatt)>b
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it is clear that these suprema can coincide only for one value of ¢,, that is with zero -

probability. Note that these considerations have something in common with those used

in [8]. EOT

Lemma 1. Let V < E, be GB-compact, 6 € Eo, 0 >0, r 2(20(2m)" *hy(V)'; then
Yoolx€E: sup ZL(n,x)=%(6,x)}

neV'.B(4.r)

<exp (—F&E(g—(zv)-”’hl(w)z).
PROOF. We have
log Z(n, oy +6)—log £(6, oy +8) = (n, ay +8) - Hni?
8,0y +0)+Ho =a(n—06,y)~Hn -0 so(n—8,y)-i?
for any n e V\B(6, 7). Let o(y) =sup,cvise., (1 — 6, y); then
Yooix €E: sup ).?(n, x)=%#(0, x)}

neV\B(o,s

=y{yeE: sup ZL(n,ay+0)=%(9,0y+0)}

ne VIB(8,r)
Sy{yeE:op(y)-ir’z0}.

The function ¢ belongs to the class Lip (v, R(V, 6)), see [9], Example 3, on page 23.
Hence, for any a =0,

© 52
y{yeE: ¢(y)-m=aR(V, 0)}§2J’ Qmw)y™? exp(—?) ds;

see [9], Corollary 1, p. 26; here m =[E<p(y)y(dy). It remains only to note that m =
Qm) 2 xhy(V\B(6, 1)) = (27) 2k, (V), take

2

__1 r -172
a_R(V,H)(Zo (2m) h‘(v))

and use the elementary inequality

© 2, 2
ZJ (27r)'”2exp(—£2—)dséexp(—%) fora =0.

Lemma 2. Let V(V c E,) be a closed set, Ci(V) <+, § € Ey, 0 >0. We partition

V into “rings” V,={neV:V8(n-Do(cvo)=|n-6|=v8na(c vao)l, n=1,2,---;
here and below c v o denotes the largest amaong the numbers c, o ; we choose ¢ later.
(a) If 40C»(V, 8)<1 and ¢ =15C,(V, 9), then, for any n,

Yo.o{x € F: sup £(n, x) 2 2(6, x)} <exp (—(g— 1)(£v 1))

NEVa

(b) If 46C\(V) <1, then there exist ¢ >0, ¢ >0 and N such that, forany n = N,

Youlx € E: (1+€)sup Lln, x)2.2(6, 1)} <2 exp (—(g— 1)(§v 1))

NEVy,

PROOF. First we prove (a). Application of Lemma 1 to the set V., yields
‘YC.G'{X € E: Sup 2’("7, x) 23(0’ x)}

nev,

C=Sexp -

1. B-Dolcve) _ N
16no(c va')( 20 _~(2.1r) nh,(V,.)) )



INFINITE-DIMENSIONAL GAUSSIAN LOCATION. I 417

(the fact that the difference in the parentheses is positive will become clearer somewhat
later). But

27) 2hy(V,) = Co(V, 8)(1 v 8no(c v o))

8n(c va))
4C,(V, 0)

=Cy(V,8)v2n(cva)=10c v2n(c v o).

=GV, 0)(1 v

We assume that n =5; otherwise the inequality we are proving is trivial. We have:
@m) ?hy(V,)=2n(c vo); hence

Yoo{x € E: sup L(n, x)=%(4, x)}

NeEVa

Sexp (— (dn—-1)cvo)-2n(cv o’))’)

16no(cvo)

n?—4n+4cv n c
=exp(——-———— ”)éexp(—(——l (-—vl )
4n o 4 o

To prove (b) we note that under the conditions of Lemma 1, for any ¢ >0, the inequality
Yoolx €E: (1+¢) sup Z(n,x)=%(6,x)}

neV\B(6.r)

<exp (—m(g—(Zv)“”zhl(V)—i)z)

is satisfied; the proof of this fact is only slightly different from the proof of Lemma 1.
Let ¢ be such that 40C,(V)<40coc<1. Then for sufficiently large R, we have:

(2m)?h, (VN B(8, R)) = 10cR?; for sufficiently large n,
Q2m) " ?hy(V,)=(10c)8na(c vo) =2n(c vo).
We proceed in the same way as in proving (a) and obtain

Yeolx € E: (1+€) sup L(n, x) = L(6, x)}<exp(—(§—1)( vl) 4;2);

NneEVa

now it is easy to choose the appropriate ¢.

PROOF OF THEOREM 1. We can assume that § € V. From Lemma 2(b) it follows that

Z', Yooix €E: (1+¢&)sup L(n, x)2£(8, x)} < +00;
M€ Va
hence for v, ,-almost each x € E there is r, < +c0 such that sup,cviae.., L(m x) <Z(6, x).
But VN B(4,r) is GB-compact for any r, and hence sup,.vna.e.n., L8, x) <+ for
Yo.o-almost ail x; (a) is proved. We prove (b) first for the case when V is bounded. In
such a case V is compact. Let §,.(x) € V be such that

sup Z(n, x) = lim Z(8,(x), x);

nev
the sequence 6, (x) has the limit point O(x, V). Theorem 3(b) shows that this limit point
is the only one and that it does not depend on the choice of 6,(x). We have thereby
proved (b) for bounded V. If V is unbounded, then it suffices to set dx, V)=
6x, V NB(o, r.)) and take advantage of facts already proven. Assertion (c) of Theorem
1 follows from Theorem 2, which is proved below.

PROOF OF THEOREM 2. We start with (a). Let n be such that
8(n -1a(cvo)<ri<8na(cva),
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where ¢ ={%C,(V, 6), and apply Lemma 2(a):
Yoolx € E:[l6(x) -6l =z 1)
=vyel{xeE: sup Z(n, x)>2(0, x)}

MEVallVnJ---

Eenl-GEw0)
e o)1)

r’ N )c vo
320(cvo)

1A

1IA

=4.53 exp (—(

g

2
=4.53exp —é—#c—v‘f)
a

=4.53 exp

2

( ;
(_32u02+32c0' +81¢? +c +a’)
320 o

=4.53exp(—u —%+ 1) =exp (—u).

Assertion (b) follows from Lemma 1:
Yoolx € E: |l(x)-6]|>r} -
SYeo{x€E: sup ZL(n,x)z2(, x)}

neV\B(6,r)
2

1 2.
RV T) 0)(;—0_'—(211)-“2}!1(‘/)) ) =exp (~u).
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