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1. INTRODUCTION

The Copenhagen interpretation stipulates for a joint ap-
plication of the two description modes, the classical and the
quantum ones, to the physical world, which apparently is ‘“con-
nected” in the sense that it cannot be naturally (from the
nature of things) divided into two realms, well-separated with
some gap, one being covered with the quantum description, the
other - with the classical one. The Copenhagen interpretation
specifies an interface between the application domains (not
“applicability domains"!) of the two description modes; being
sharp, this interface is conventional and movable. It can be
shifted within the limits of a "neutral domain', where both
description modes are applicable and conform; this is nothing
but the correspondence principle for the gquantum and classical
theories. The "neutral domain'" is supposed to be roomy enough
to contain all physical phenomena immediately perceivable by
human observers and also all those which can be successfully
described by classical physics and treated as a part of the
classically described macroscopic environment.

The physical contents of the correspondence principle is
obviously connected with the roominess of the '"neutral area".
Is it really so vast as indicated above? That was declared
rather than proved. Two main approaches are known to the
problem of the quantum-classical correspondence: ‘“the quasi-
-classical limit for h — 0" and the Everett’s approach.

The first approach seems thorough, being based on Hamil-
tonian mechanics and on the short-wave asymptotics for the
Schrédinger equation. However, Hamiltonian dynamics can turn
(rather quickly, during the so-called Ehrenfest time) a micro-
scopically localized wave function into a macroscopically delo-
calized one. Indeed, fast divergence of trajectories is ordi-
nary for non-well-integrable systems of classical mechanics.
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The second (Everett’s) approach obtains the correspon-
dence principle from a certain scenario of the quantum corre-
lation propagation. However, the mentioned scenario is over-
-simplified. The correlation propagation is described by highly
abstract models for interactions; their correspondence to mo-
re realistic models remains problematic, as well as quantitati-
ve criteria.

We propose a new approach to the problem of the quan-
tum-classical correspondence, combining features of the two
mentioned approaches and by virtue of that free from their
drawbacks pointed above. Our approach uses Hamiltonian mecha-
nics and the short-wave asymptotics for the Schrddinger equ-
ation, and also the gquantum correlation propagation. The for-
mer saves us from over-simplifying the interactions descripti-
on (our description is realistic in some cases, but, of course,
not in all cases), the latter - from the delocalization of wave
functions.

We have arrived at this approach when developing inves-
tigations of Bell-type inequalities for quasi-classical systems,
which can be described by localized wave functions moving
along the classical trajectories; in this case the quantum
theory provides small corrections to classical predictions. It
was natural to suppose that there are quantum corrections
to the Bell inequalities too. Just so was this problem treated

in our previous paperl). It was shown there that the maximum
value of the possible violation of the Bell-CHSH inequality for
a quasi-classical system depends essentially on such factors
as the accuracy of measurements and the thermal fluctuations
intensity; these factors introduce discrepancies. It was shown
that in the absence of discrepancies the Bell-CHSH inequality
may be violated for quasi-classical systems to the same ex-
tent as for spin systems. In the opposite case, when the quan=-
tum uncertainties are small in comparison with the discrepan-
cles, we have obtained an upper bound vor vioclations of the
Bell-CHSH inequality showing that these vioclations are small.
However, no lower bound was given. Further investigations
presented here led us to an unexpected result. It turns out
that, if the discrepancies exceed the quantum uncertainties,
then a classical description with hidden variables is possible
and therefore the Bell inequalities hold exactly, without any
corrections. (All hidden variables are assumed local throughout
this paper).

Our approach inherits from investigations of Bell inequ-
alities the idea that the informal notion of the possibility of
a classical description may be formalized as the possibility of
a description with hidden variables. And hidden variables are
treated here somewhat non-traditionally; instead of a continu-
ous-in-time description, we obtain a '"dotted-in-time" one. The
continuous evolution of the quantum state of a quasi-classical
system, weakly interacting with a heat bath, is accompanied
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(in the sense explained throughout this paper) by a discrete-
-in-time evolution of the classical state. The time pitch is
nothing but the characteristic time for the process of estab-
lishing quantum correlations between the system and the bath.
And it is determined by the thermal fluctuations intensity.
This time can be estimated easily by means of the method
presented here and involving fluctuation-dissipation relations.
Several examples are given. For macroscopical systems belon-
ging to the above-mentioned "neutral domain” the time pitch
turns out. to be small, and the sequence of classical states
turns out to approximate the classical trajectory.

The mathematical examination of the presented approach
is due to B.S.Tsirelson. The general outlines were formed in
the process of authors’ collaboration.

2. QUANTUM MEASUREMENTS OF LIMITED ACCURACY
AND BELL INEQUALITIES

Apparently there is no accepted rigorous definition of
the quantum measurement accuracy. We accept that a measure-
ment of a coordinate with an accuracy Aq is equivalent (of
course, in the outcomes’ distribution, not in affecting the
object) to the exact coordinate measurement followed by ad-
ding [Aq to the outcome; here [ is a normally distributed ran-
dom variable with zero mean and unity variance. A measure-
ment of a momentum with an accuracy Ap is understood simi-
larly. We want to realize, how the possibility of the Bell ine-
quality violation is related to AqAp. This problem was conside-

red in our paperi); here we obtain essentially more complete
results by virtue of use of the "measurement compatibility"
notion. Measurements of limited accuracy are, of course, not
ideal ones, therefore it is better to avail of the general

treatment of a quantum measurement (see for examplez)) as
a transformation of gquantum states into classical ones:

M: Li(H) — Li(}();
H is the Hilbert space, describing the quantum system; L‘(H)
denot.es the Banach space of all Hermitian trace-class opera-
tors in H; X is a measurable space describing possible measu-
rement outcomes; Li()() denotes the Banach space of all mea-

sures on X having densities with respect to some prescribed
"background" measure (or, what is the same, the space of all
functions integrable with respect to this "background"” measu-
re). The map M, describing a measurement, must be linear, po-
sitive and normalization preserving; that is, if \w‘eL_l(H),

feLi(X) and f=M{(W>, then Tr(W)=jr and W20 => >0. We set asi-

de some possible mathematical refinements related to the infi-
nite dimension, because our conclusions are in fact insensitive
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%*
to them. The conjugate transformation M : Lw()() >—p Lw(H)
maps the commutative algebra Lw(X) of classical observables

- .
into the non-commutative C -algebra Lw(H) of quantum obser-

vables. For the measurement outcome the probability of hit-
ting a subset Y of X equals fyp where p=M(W)>, W is the den-

sity mat,mx, this probability can be written as <M (‘Ily)> =
= TrdW: M (‘ﬂ 3, where TlY is the indicator of the event. Y (the

function Lhat, equals 1 on Y and 0 out of Y)>. The possibility

of a violation of the Bell-CHSH inequality (one of the family
ot Bell inequalities) for guantum objects means in this terms
that. there exist two Hilbert spaces Hl’ H2, four nieasurements
M L (H D>>s» L (X > (1=n=2,12m<2), four classical observab-
nm 1 n 1 nm

les 1 el (X > taking values *1 only, and a density matrix on
nm ®© nm

the tensor product WeLi(HIQHz) such that

& _ ;
|*< AIQB A1®B + ;:‘2@8 AZGB )w | > 2,
where AkzMik 1h)el, (Hl), B M‘“ &l)eL (H ). The existence of

such W is equivalent to Lhe relation
+ + - Y
“ Al'ébB1 A1®82 Az(bB1 1‘._{:0913z || > 2,
which can be written as
I T Tk )@M > | > 2

‘Ha zl
e an at. OWS T =T, =T -+. sl as
here and in wha !ouuws r“ 5T 1 PN 1. In the case of
arbitrary measurements Mnm the above norm can be equal to
2¥2, but cannot exceed this boundary (see 1)).

21. Definition. Two measuremets M : L _(H> >» L _(X ),

k 1 1 'k
k=1,2, are compatible, if there is a commutative diagram
M
1

> > L ()( >

/ R
L1(H) -» L_<{X> >——~<

\ 1
EO—
':’ A Ll(XZ)
2
where all transformations are linear, positive and normali-
zation preserving.e

This is equivalent to a definition in e (see Ch. 2, § 6.
The Bell inequalities can result from the measurements compa-
tibility.

2.2. Theorem Let Hl’ H2 be Hilbert spaces and

Mk: Ll(Hl) > Li(xk) are compatible measurements (k=1,2>. Then
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for every 1!~:Ei'w(xk) such that I[I'k”fjl and every BILI-&I(H_‘Z)

such that HBI"il a=1,2>
IEne TaMRCERO%B 1

Proof. By virtue of the compatibility, the two measure-

ments Ml can be replaced by one measurement M : Ll(Hl))aL‘(}().

two functions f}a being transferred to X (see the diagram in

2.1>. It is sufficient to prove that | [ TMHH“R)QBI | = 2 tor
t‘keLm(X). [t kﬂ‘i For any xeX | L 7,.f OB, | =

kU k
I fl(x)Bl+f1(x)Bz+f2(x)B -1,00B, | = |# (x)+1'2(x)| 1B+

|fi('x)-fz(x)| ||B 2, hence | £ v f @B | = 2 It only re-

&“ kl k
mains to prove that the transtormation M o1 : l,l‘(x)aLa‘(sz »
> L (HD)eL (H > = L (H @®H_ ) is positive (then it cannot in-
o 1 w2 w1 2
crease the norm, because 1L preserves the identity operator)

; " - " a
And this follows from the Stinespring's ~ Theorem 4, according
Lo which the positive transformation M with a commutative
domain is completely positive.e

The proved theorem shows that [I}er ‘k<f1k)€w[“ )“_
that is=, the Bell-CHSH inequality holds provided at ll—‘d&l- one
of two measurement pairs {Mu M1?}. {M:“ ,,} satisfties the

compatibility condition. Comparing the above proof with the
classical proof of the Bell inequality we see that a point x ol
X is nothing but a hidden variable.

Armed with the mathematical tools presented above, we
return to measurements of limited accuracy. The measurement
of a coordinate with an accuracy Aq is the transtormation
l.l{HJ >+ L _(~=m,+x) which transforms W into p according to the

1
2
1 Q-q
v2r - Aq i W

here Q is the coordinate operator. And the same holds for a

equation

momentum. It is knownZ) that these measurements are compa-
tible provided ISqﬁth/E. We see that. the violation of Bell
inegualities in a spinless coordinate-momentum Gedankenexpe-

riment., discussed in 1), Sect. 3, requires the measurement.

accuracy high enough. In this case inadequate accuracy cannot
be compensated with any reiterations of the experiment.

3. OPERATIONS DESTROYING QUANTUM CORRELATIONS

The quantum theory asserts that Bell inequalities can be
violated in an experiment with two particles or, more general-
ly, two quantum objects, jointly prepared with one source and
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then separately measured with two instruments. And it is of
principle that the guantum object transmissgion from the sour-
ce to the instrument cannot be replaced with any classically
describable signal transmission whatsoever (since otherwise
the classical proof of Bell inequalities would have been appli-
cable). On the other hand, in quasi-classical situations quan-
tum states can be approximated by classical ones. Can this
reason be used to obtain Bell inequalities?

Any quantum object transmission can be approximated to
a certain extent by a classical signal transmission according
to the following plan. At first, one subjects the quantum
object to a quantum measurement, getting some aggregate of
numbers (or, more generally, some classical state). Then one
prepares a quantum state (of the same or another but identi-
cal object), using the above numbers as classical parameters
affecting the prepared state. As it were, the classical system
absorbs and re-emits the quantum object. An operation which
transforms one quantum state into another according to such
plan will be called here a classically factorizable operation.
The rigorous definition follows <H, X, L1<H), Li(X) are as in

Sect.. 2).
3.1. Definition. A linear transformation O : LI(H) > LI(H) is

called a classically factoricable operation, if there is a
commutative diagram

O
L _CH> — —— L_CH)
& \—69 ~~~~~ L] (X)) ——» “—‘/ !
1 2

where transformations Oj, ()2 are linear, positive and norma-
lization prescrving. @

The class of all classically factorizable operations over
H will be denoted by Opf(H>. It is a part of the class Op<CH> of

all operations over H (see b for a definition); this follows

easily from Stinespring’SS) Theorems 3, 4, showing that any
positive transformation is completely positive provided at
least one of the two algebras (the domain and the range) is
commutative. It is clear that O1 describes a measurement (or

absorbtion), O2 - a preparation (or re-emitting).
If O=Opf{H), then measurements of the form MIO, MZO are

: L‘(H) »» L_<X D;

compatible for arbitrary measurements M 1%

k
this is evident by virtue of the diagram
e e - ] Ll(xl)
LI(H) >y Ll(X) > L1(H) >—<
-------- — Ll(xz)
{In fact, this property of an operation is equivalent to its
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classical factorizability.) This statement coupled with Theorem
2.2 leads to the following result.

3.2. Theorem Let Hl' H2 be Hilbert spaces, and OeOpf(Hi).

Then for any Hermitian operators Ai' A_ in H1 and Bl' B, in

2 2

H2, having norm <1,

| 0™capeB, + 0™ deB, + 0™CA 8B - O™CA

1 1 2 2 )mla2 || <2 e

2
So any violation of Bell inequalities becomes impossible

classically factorizable operation. And it is not at all neces-
sary that the object be actually absorbed and re-emitted by a
classical system. We will see that in many cases an equivalent
effect is caused by thermal fluctuations in a medium between
the source and the instrument.

Theorem 3.2 was formulated essentially as a property of

the transformation O @1 in Lw(Hieﬂz); it transforms observab-

les of the form § TklAhQBl into observables with the norm =<2

(Tkl was introduced in Sect. 2). It is natural-to ask, what is

remarkable in the transformation 01 in Li(HlJaHz). It turns

out. that it transforms any density matrix into a mixture of
non-correlated (that is, having the form wlswz) density mat-

rices. And this means destroying quantum correlations between
two correlated objects when at most one of them is subjected
to a classically factorizable operation. Only classical correla-
tions remain, which are describable by means of a classical
parameter affecting both objects. Of course, this rules out
the possibility of any violation of the Bell inequalities.

The class Op(H) of all operations is vast, as well as its
subclass Opf(H)>. In the rest of this paper we confine ourself
to '"Gaussian" operations defined below. A special part played
by such operations will be argued in Sect. 4. The irreducible
representation of the finite-dimensional canonical commutation
relations is supposed given in the Hilbert space H. The Weyl

correspondence is weu-knownS) between operators in H a2nd
functions on the phase space (which is finite-dimensional sym-
plectic linear space); the function corresponding to an opera-
tor is called its Weyl symbol. The Weyl symbol of a density
matrix is known as its Wigner distribution too. A density mat-

rix is cauedZ) Gaussian if its Wigner distribution is equal

to the density of a Gaussian measure. And the last obeys a

known conditlonz) connected with the Heisenberg uncertainty
relation. It is convenient to formulate this condition in terms
of two bilinear forms on the space L of all linear real-valued
functions on the phase space, namely, the Poisson bracket

{f, g} considered as a skew real-valued bilinear form on L, and
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the covariation form Cour(f,g) = [fedy - (ffdy)-(fgdr) or
rather the corresponding norm "f”?’ = fESCr(f,f). So a Gaus-

sian measure y on the phase space is a Wigner distribution if
and only if
h-{f < 2|f a
ir, ek < 2|1 e,
for aill f,gel.

3.3. Definition. An operation O€Op(H) is called Gaussian if
there is a Gaussian measure ) on the phase space such that

for any WELi(H) the Wigner distributions w for W and vy for

W1=O(W) are connected through the convolution relation
w,e=v »* w, that is, wl(x) = fw(x+y);v(dy). ®

It is easy to see that one and only one Gaussian opera-
tion O_ exists for any Gaussian measure ¥ on the phase space.
See also 1), Sect. 3.
3.4. Theorem. A Gaussian operation O)’ is classically factori-
zable provided

e, e < e el @

for all f,gel.

Proof. Consider the Gaussian measure Y~ Such that

0
Y% =y. Then ||f" = 2 72 €] for all feL. Accordingly to the
0 ‘0 }’0 Id

criterion formulated above Yq is the Wigner distribution for

some Gaussian density matrix WO. We define the transformati-
on 01: L1<H) > L1(X), where X is the phase space, through the
relation VS(O1(W)) = }’O”VS(W) for any WeLl(H); here Ws deno-
tes the Weyl symbol. Then Oi(W)(x) = Tr(wo(x)~W), where wo(x)

is the Gaussian density matrix whose Wigner distribution is
Yo translated to x. Hence O1 is positive. Further, we define

the transformation 02: Li(X) > L1(H) through the relation
V.s(Oz(f)) = ro*f for any feLi(X). Then Oz(f) = fwo(x)f(x)dx,
therefore 02 is positive too. And
Vs(Oz(Oi(W))) = 70*70*VS(W) = yuWs(W), hence ()201 = OY' ®
The proved theorem yields a sufficient condition for a
Gaussian operation to be classically factorizable; we do not
know whether this condition is necessary. In the case of one
degree of freedom, that is, two-dimensional phase space (q,p),

any Gaussian operation is unitary equivalent (through a linear

canonical transformation) to one of operations O Aq,Ap which
»

are OY for » such that ||q"y=Aq, ||p|‘7=Ap and Cour(q,p)=0. And
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such operations are mutually unitary equivalent for any fixed
value of AgAp. They are classically factorizable provided
AqApzh due to Theorem 3.4. We do not know whether the criti-
cal value of the parameter Aqu/h separating the presence
and the absence of the classical factorizability is equal to 1.
But we know that such critical value exists in (0,1] . Its posi-
tiveness can, be obtained trom properties of

sup | TkloAq,Ap(Ah)QBl" considered as a function of Aqap/h,

the supremum being taken over all A Bl having norm <1. Our

k!
information about this function is scanty; but we can prove
that it is decreasing, continuous on the right, constant and
equal to 2 on [1, +x); at the origin however it is equal to
2vY2 and continuous.

4 > AgAp/h

This behavior looks like a phase transition, the more so that
the argument of this function turns out to be depending on
the temperature in situations considered further.

4. QUASI-CLASSICAL SYSTEMS AS SPECIAL OPEN SYSTEMS

One is speaking about a classical Hamiltonian mechanical
system when one neglects all deviations in the behavior of a
physical system from the classical dynamics. When the deviati-
ons are to be taken into account as small corrections, then
it is sald about a quasi-classical system. Usually one bears in
mind, however, only the deviations resulting from the quantum
nature of the system. But other deviations prevail quite
often, those occuring through the fact that the considered
system is not well isolated, and first of all through the ther-
mal fluctuations. In this section quasi-classical systems are
treated as weakly non-isolated quantum systems of a special
form. The first approximation to their dynamics is naturally
classical Hamiltonian mechanics. The second approximation is a
Gaussian operation introduced in Sect. 3 rather than conser-
vative quantum mechanics or classical diffusion.

4.1. Elimination of Tensor Product
from Chronological Descrition of Interaction

An interaction of two quantum systems is described by a

unitary operator U on the tensor product H10H2. Assuming a

non-correlated initial state w1®\~’ with a prescribed wz, the

2
quantum state change for the first system is described with
the operation O€Op(H> defined by the equality {( M >O(W1) =

»
= U MU)W:@W: for all MeLm(Hi). (We do not subject the second

system to any measurements; accordingly O is non-selective,
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that is, normalization preserving). Further,
p— e s | N
U = Texp(-th fdt.Hlnt(t.)), where Hint,“') is the interaction

Hamiltonian, T is the chronological ordering, and the interac-
tion representation is used. We accept the following form of
interaction: a 2>

Hint.“') = }_‘v A v (LOSA 35 ). (&3]

This is not too restrictive because operators of this form

can approximate any operator in H10"2' And this form is
convenient t.o(forn(l,glat.e needed conditions for an interaction
in terms of A7, AT

A way to eliminate tensor products is suggested by the
following formula:

< >W10W2
where % is the functional defined as

= - it . (2)
Fla) = (Texp(-ih  [dt [ a (LA W),
for any path a = {av(t,)). From here on indices v and sums

over v will be omitted <(but meant), and Ak(t,) will be written

= & TAD > “

rather than A(k)(t). Let us prove 4).

4]
_ _i)n -
Fla) = <"}::o[ H]tmf:::!t’?mn,..dnia(t.n)...a(t.i)AZ(t.n)...AZ(t.l) A =
a

= 7 j...f dt.n...dtifn(t,n,.,.,Li)a(tn)...a(ti),
n=0 tn>..>t1a

- [-i)n .
where f (t ,.t) = [n] CALCL DAL E) S5 so,

& _
<TFADD,, = :v:o tn_)f..\)rt'c:tn‘.Adtifn((,n,...,tl)Ai(Ln).,.Ai(Li) >w1=
©
=r [—:—‘]" Jof b dt ALt AL D5, <AL DA (L DDy, =
n=0 tny..ots
[0 ¢]
- _in =
= <h§°[ h]t’h!:::_)ftclibn...dtiAl(t,n)...Al(ti)oAz(tn)...Az(ti) et
i
= <Texp [—Ffdml(t,)e»\zct)]>wwwz= <Uu >w;ew’

and (4> is proved. The following formula can be proved
similarly:

2 ~
< U MU >www: =< T(M&'(Ai,Ai)) >W1' (&)
where ¥ is the two-place (with two path arguments) functio-
nal defined as ¥(a,b) =-

_ i * n.!

= S (Texp( Hfdtb(t)Az(t))) (Texp( '—lfdt,a(t)Az(t.))) >Wz’ (€.

and T denotes the ordering according to the following rules:
(a) operators A(t) substituted in # in place of the first ar-
gument. are ordered chronologically; (b> the inverse order for
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the second argument; (c)> the operators mentioned in (a) ac-
ting before M (that is, are written on the right of M) and
those mentioned in (b) acting after M <(on the left of M). Note
that the right-hand side of (6> can be considered as the sca-
lar product of two vectors, one depending on a, the other -
on b (n fact, any state defines a scalar product on the al-
gebra of observables), hence there is an expansion F<a,b) =

=¥ f‘k(a)?k(b) with some one-place functionals 5‘1,3’2,.,. Then

B gives " -

UMY > . = B < (TF <A Me(TF CAD) Dy 7>
unlike to (5>, only the usual chronological ordering is used in
(7). The formula (7) can be considered as a specific version of
the formula (3.7) in 4). Of course, the functionals $‘k are not
uniquely defined by ¥, but their arbitrariness does not affect
the right-hand side of (7). At last, the summation over the
discrete auxiliary index k can be replaced with the integra-
tion over an auxiliary variable running over arbitrary space
with a positive measure.

4.2. Gaussian Approximation for Environmept Influence

Now we will render concrete the functional ¥, defined by
(6), for some class of situations. Namely, we suppose in what
follows that the first system is a macroscopic mechanical sys-
tem (for example, a moving rigid body> and the second system
is a many-body system in the sense of statistical physics (for
example, a gas around the rigid body). The influence of the se-
cond system on the first one manifests in fluctuations of the
motion of the first system. Usually such fluctuations are nor-
mally (Gaussian) distributed random variables. The well-known
central limit theorem of the probability theory suggests a
reason for this special kind of distribution, namely, the inte-
gral effect can be considered as the sum of many (almost)
independent. contributions. The mathematical machinery is
simple; the Fourier transform for the probability measure is
the product of many functions:

: 1 2
fad =7y fk(7\) = exp ¥ In ka\) X exp T (1ak)\-§bk)\ ),

d a*
K _icT):|)\=0 ot S Shdw P 'Ei"'!x=o

important that In fC(A) admits a quadratic approximation in
much broader domain than f(\) itself.

Similarly we argue that In ¥(a,b) admits a quadratic ap-
proximation in much broader domain than ¥(a,b) itself. Instead
of the classical notion of independent random summands we use
the quantum notion of independent systems described by the
tensor product of Hilbert spaces, wz being factorized into the

where a in fk()x). And it is

tensor product of density matrices and Az(t) being expanded

into the sum of subsystem observables. Then F(a,b)> becomes
factorized into the product of functionals corresponding to
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subsystems, and the gquadratic approximation is obtained. In
addition, it can be shown that ¥(a,b) is the Fourier tLrans-
form of “quantum distribution for fluctuations", in a sense.

It is more simple to find coefficients for the quadratic
approximation for In ¥<(a,b); in fact, this is an usual calcula-
tion up to the second order in adt), b(t) considered as small
parameters in (62, giving

i
In ¥<a,b> x E_fdt.t‘i(t.)(a(t,) b{t))
1
é-ﬁzjfdhidtzf(tl,bz)(a(t.i) bCt d)(act >-bCt >) + €5}
i
+ il fdt dt gt
tz>ta

gt 2@t dD=bt d)(alt d+bCt)),
where
£, = AW D,
f(t.i,t.2> = < A2(L1)=52(L2) >w2- < Aztti) >W2'< Az(t,z) >Wz’
i
gt b = C plA LD, ALKt D] D >
Of course, A<B denotes (AB+BA)/2.

We will see that (8) implies that fluctuations form a
Gaussian random process. It is very likely that the applicabi-
lity domain for (B8) coincides with the class of =ituations
where fluctuations are (almost) Gaussian, regardless of how
convincing the above reasoning with many independent subsys-
tems seems. From here on we suppose that (8) holds.

4.3. What We Understand by Macroscopic Mechanical System

The canonical quantization of a macroscopic Hamiltonian
mechanical system leads to a quantum system which reconst-
ructs the original classical system as a result of well-known
passage to the limit for h — 0. A wave packet contracts into
a point which moves along a classical trajectory. The passage
to the limit needs some conditions, for example, that all used
observables result from quantization of such functions on the
phase space which are smooth and do not depend on h. How-
ever, we want apply such arguments to the world where h is a
finite constant rather than infinitesimal. The small parameter
is not h itself but its value in some “macroscopical”’ system
of units suitable for a given situation. This idea can be for-
malized as follows. Let us introduce constants S, q, p, E, L
having dimensions of the action, length, momentum, energy and
time respectively, obeying o -

qp = E:t =58 > h
It was said in Sect. 4.2 that the first system is supposed to
be a macroscopic mechanical system. Now we can define what
we understand by this. Prior to the canonical quantization we
have a classical Hamiltonian system, we restrict ourselves to
a bounded domain 1 of its phase space, and we assume the fol-
lowing condition:
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o heq,pd » E
k. L | = ZTR[ =1T] Qo
aq dp q P
for all (q,pden, |k|+|l| = 1,2,3; here h(q,p> is the Hamilton

function and k, | are multiindices, that is, k=C(k_, .,k ), n is
the number of degrees of freedom, q‘h denotes qi"..,qnn, | k|
denotes k1+.,.+kn, and the same for l. The inequality <10) is

nothing but the Ca*smoot.hness with the constant 1 (n (1> of
the Hamilton function in the choosen system of units. Three
of derivatives are essential in this paper; perhaps, in other
cases a different number of derivatives will be necessary.
First-order derivatives must satisfy (10> "without a wide
margin', that is, the following relation must be violated:

M hea,pd| E

quap! q|h|.p]l1

otherwise the Hamilton function would have been almost con-
stant. It is possible to generalize the condition (10> to the
case of a symplectic manifold as the phase space, but we do
not dwell on this matter. Note that (10> impHes that the con-
sidered system have no characteristic time less than t; so it
cannot perform many oscillations during t, and trajectories
cannot diverge very much during t.

for all (q,pde, |k|+|1| = 1;

So the macroscopicity condition is formulated for an
isolated classical system. The corresponding isolated quantum
system is defined uniquely by the canonical quantization using
the Weyl correspondence (mentioned in Sect. 3 above), accor-
dingly we have no need to impose more conditions on guantum
dynamics, but we require certain localization of a quantum
state, because our technique is local. Later we will argue that
such localization results from environment influence, but at
first we accept the following condition: each considered
quantum state iz localized in some domain of the phase space,
whose size is

< amSY? and « p(h/HYV an

for the coordinate and momentum dimensions respectively. Of
course, our conclusions can be extended to arbitrary mixtures
of such states. The localization of a state in a domain means
fast decreasing of its Weyl symbol ¢ = Wigner distribution)
outside of this domain. The bounds stated by (11) arise from
our technique used further. Note that they permit a quantum
state to occupy many phase cells, namely

a-Ch/SH 2 5 (/5 P

~ R = (S/h) > 1

for each degree of freedom. So the domain is macroscopically
small but microscopically large.

Further, we require some conditions on environment in-
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fluence; it must conform with the macroscopic nature of the
system itself. We impose a condition on the operators Al(t.)

introduced in Sect. 4.1. However, the interaction representati-
on was used in 4.1, hence the Hamiltonian motion of the first
system itself was included into explicit time dependence of

Ai“')’ whereas here we take Ai“') in Schrddinger representa-

tion, hence this explicit time dependence does not include the
Hamiltonian motion <(and in conservative cases Al(t,) does not

depend on t). We accept the following smoothness condition:

™ lacq,p,Ld a
T S TR =TT 12>
4q  dp q P
for all (q,pde, |k|+|l] = 1,2; here adq,p,t)> is the Weyl symbol

for Ai“')’ a is some constant such that first-order derivati-
ves satisfy (12) “without a wide margin'; cf. with (10> above.
However, the operators Al(t,) describe the interaction

only together with the operators A_(t), and we need a condi-

2
tion on Az(t) or rather on the functional ¥ defined by 6> to

ensure that the environment influence is not too large, name-
ly, that it deflects the first system from a classical trajec-
tory within the bounds stated by (11). We will see in the next
section that deflecting properties depend on the Fourier tran-
sform of # and that the formulation below is relevant. The fun-
ctional ¥ can be approximated, as well as any functional at all,

by some linear combinations of functionals 3‘c d of the form
’

_ _t i
.?‘c'd(-a,b) = exp ( Ffdta(t.)c(t,) + '—‘fdt.b(t.)d(t.) ] 13>

We assume that our functional ¥ admits such approximation
with the following restriction on pathes c¢,d:

| fdt;c(b) | <« §~(h/§)1/3 and the same for d; 14>

here the integral is taken over arbitrary time interval of
duration <t.

4.4. Canonical Commutation Relations
near Classical Trajectory

In this section we will show that locally (near a given
classical trajectory) the operators Ai“'> can be approximated

with some operators satisfying the canonical commutation
relations (CCR)> in the sense that their commutators are some
“c-numbers', that is, operators of the form A:1 Here

Ai(t') = AL:‘(L) are operators in the interaction representati-

on; the corresponding operitgrs in the Schrodinger represen-
tation will be denoted by AS°'(t), so that

int _ i . aSch . i

A 1 td) = exp &tﬂi] A1 L) -exp [Et.lll],
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where H1 is the Hamiltonian for the first system. (It was no-

ted that A?Ch(t) did not depend on t in conservative cases).

The approximation will ensure the possibility to replace the
operators under ¥ in formula 5).

We use the following statement (apparently belonging to
the folk-lore)> showing that a gquadratic Hamiltonian generates
a linear transform of the phase space, quantum dynamics being
reduced to a transfer of Weyl symbols by this transform, that
is, along classical trajectories.

4.4.1. Statement. Let a real-valued function h{(q,p,t> be a
polinomial of degree <2 in variables q = (qi,..,,qn) and

p = (pl,...,pn) (however its dependence on t remains arbitrary).
For each t we consider the operator H(t)> whose Weyl symbol
is h(q,p,t>. Let Ut) = Texp [—f;f:)’dsucsﬂ, and further

Wty = U(L)WU*(L), ACL) = U*(t)AU(t,) for any density matrix W
and any observable A. Then the Weyl symbols w(q,p,t> for W(L),
a(q,p,t) for A(t) satisfy .
w(q(td,pdtd,t) = w(qC0>,p<0>,0),
a(qod,pcod,t) = a(qdtd,pdtD,0) oh
for any classical trajectory q(t), p(t) defined by q = %’
. _ _6h
P = 3q L
One important corollary: if adq,p,0> is a linear function,
then adq,p,t> is linear for each t.

Let qc ), pcl(t) be a classical trajectory remaining in

l
the domain  during the considered time interval. We have for
any fixed t the following expansion for the Hamilton function
h (which is the Weyl symbol for Hl):

hdq,p> = h(qcl(t.), pcl(t)) + dh(q—qcl(t,), p—-pcl(t,)) +

q—qcl(t) 3 p—pcl(t,)l ]

q P
the first differential dh is a linear form, the second one dzh

is a quadratic form; of course, the differentials are taken at
the point qcl(t). pcl(t,). Re jecting the remainder term, we

obtain a polynomial E(q,p,b) of degree < 2 in q,p; it is the
Weyl symbol for some operator Hl(t,). Similarly,

alq,p,t> = a(qcl(t,), pcl(t), t) + da(q—qcl(t,), p—pcl(t.)) +

_ q-q _,<t> 2 p-p _,<(t)> 2
+ 3'0[’ fl ‘ » ’ fl l »
q P
where adq,p,t> is the Weyl symbol for A (t); rejecting the

’

4 -

1.2 =
+ — - + .
id h(q-q l(t,), P pcl“')) E O[l

sch
1~
remainder term, we obtain a polynomial adq,p,t) of degree =< 1



384

in q, p and the corresponding operator ;fCh(L). We define

approximating operators for A‘;‘l(l.) as

~int - et - PV ~ Iy (_'[ b
A = UTCOATOUC), where Uct) = Texp Hfodsnlcw].
Statement 4.4.1 or rather its corollary shows that the opera-

tors AL;“(t.) are linear combinations of the Q,P operators and

hence satisfy CCR. It should be proved that the replacement of

“~

A‘ with AL;“ under ¥ in formula (5) results in a small error
provided \u'l is localized near the considered trajectory, that
is, the point qc‘(O), pc!(ﬁ) belongs to the domain appeared in

(11)>. Taking <13) into account we see that, it{. is sufficient to
prove that the replacement of A'™ with A'™ in

[Texp [—%_rdsAL;l(s)c(s)]] M [Texp [—;;Idsf:l(s)d(s)] ] .
results in a change which is small, that is, of norm << 1 in

Ll(l-l), provided c,d satisfy (14). In Schrddinger representation
A7"(s> 1s replaced with AT"(s> and at the same time H with

H‘l(S) in

[Texp [—% [ds(H 1+,<\f”"c3)c:(s>)]] W, ['rexp [-;;st(u 1+Af°hcs)dcs)))] *
We introduce an "interpolating"

“~

gﬁ\erator, depending on an au-
xiliary parameter t, by taking Al {s) and Hi{S) for s{t but
Sch

Al (s> and H:l for s>t. It is enough to estimate the derivative
of the "interpolating'" operator with respect to t. This deri-
vative is the sum of two similar terms (“the right' and "the
left"); we consider one of them. Taking into account that the
norm of an operator in LI(H) remains unchanged if the operator

is multiplied (from the right or from the left) by any unitary
operator, we see that it is enough to estimate the tollowing:

1 Sch ~8ch 1pt ~ ~sch
ICH, - ceo+AT et >- KT Pcer)cced) [Texp [—Hfods(lli(s)i-;t‘ >cw)])

1 1
it ~ ~sch »

W, [Texp(’—‘fods(ﬂi(s)+ﬁi (s)d(s))]] becas:

We use again the possibility of multiplylng by any unitary ope-

rator to make a little trick, namely, to replace d(s) to c(s);

in fact we reject the whole unitary factor containing d(s)> and

instead we write the similar factor with c(s). Now we have the

product of two operators. The first has the Weyl symbol

= g-q_,<t> 3 p-p .C(L) 3 q-q_,<t> 2 p-p (L) 2)_

Eo[l €l ’ ’ £1 | +0 l-——_'?l--_ i *-L‘—_.l acL),
q P q P

The second results from the evolution of W under the “per-

turbated” Hamiltonian Hl(s)-l-:Tc (s>c(s), which is again quad-

ratic; hence the statement 4.41 is applicable, and we see that
this second operator is localized in the domain
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!q—q wWwd>

_._E_.[__._I << (h/§)1/3’

p-p_, (LD -
‘ i ' RET S 5

q P

These estimations together with the smoothness of the Weyl
symbol for the first operator show that the norm of the

product is << E-(h/S) + (h/ﬁ)z/a-acccx Using (14) and inte-

grating over time we obtain that the norm of the difference
is <« (tEh/S+Sh/S)/h. that is, << 1.

4.5. Gaussian Approximation for Operation

We had seen in 4.4 that the operators Ai“') in the inter-
action Hamiltonian Hlnt.(t') = Altt.)o;\z(t.) can be assumed locally
satisfying the canonical commutation relations. However AZCL)

can be assumed CCR too. Indeed, only the functional ¥ resul-
ting from A2(t,) according to (6) is essential, and this func-

tional is Gaussian, that is, the exponential of a quadratic
polynomial, according to (8). It is easy to see that any CCR
operators result in a Gaussian functional provided the state
(wz) is Gaussian. And conversely, we can construct CCR-opera-

tors and a Gaussian state for a given Gaussian functional #
provided that the latter satisfies the conditlon (1) or rather
its infinite-dimensional version. But this condition always
holds for a functional resulting from some observables and
state according to (8,9).

Thus we accept that Ai(t.) and AZ(L) are both CCR <(and

in addition that wz is Gaussian). Then the bilinear Hamiltonian
Hint,“') = Al(t.mu\z(t,) can be considered as a special case of
the quadratic Hamiltonian and the statement 4.4.1 is applicable.
But it was formulated for finite dimension only, whereas ope-
rators A2(t) can generate infinite dimensional CCR; however,

this is in fact of no importance here. The mentioned state-
ment reduces quantum dynamics to classical. A classical tra-
Jectory for the couple of systems is the pair of functions
Xj(t.), Xz(L) valued in the phase space of the first and the

second system respectively. The operator Altt.) has its Weyl
symbol 31(x,1..) which is a linear function of x running over the
z(t,),
a2(x,t.). The classical equations of motion under the bilinear

phase space of the first system, and the same for A

Hamiltonian ai(x,t.)'azo.:.t.) can be written (dn the interaction

representation) in the form

d = .
GeP (X ) = {a (), b} a (X, (t,L),



dt. b,(X,(t2) = {a,(t), b} a (X ,(t),t);
here b1 is an arbitrary linear function on the phase space of

the first system, bz-
for two linear functions result in a constant function, there-
fore the argument x is omitted inside these brackets. It fol-

lows from the second equation
a,(X,(t),L) = a,(X,0),t) + jods o L ,t) =

of the second one; the Poisson brackets

= a(X,0,t) + jods{a2<s>, a,(td}- a (X, (s),8);
substitution in the first equation leads to

d =
EE"1CX1“‘)3 = {h x,t), bi}, where

eff
- . t -
heff(x,t,) = ai(x,t.) [az(XZ(O),L)+fods{az(s), az(t,)} ai(xl(s),s)].

We see that the influence of the second system on the first
one can be described (on the classical level for the time be-

ing> by means of an "effective Hamiltonian" hefr(x,t.) for the

first system. Of course, it is not a true Hamiltonian, because
it depends not only on x and t, but also on the history x1<s>,
s<t, and on the initial state of the second system Xz(O). But
this quasi-Hamiltonian description provides a convenient tran-
sition from the interaction representation used above to the
Schr8dinger one; one must only add herf(x,t.) to the Hamilto-

nian of the first system.
It was shown in Sect. 4.2 that the three functions fl,f,g

are sufficient to describe the influence of the second system.

Let us express heff in terms of these functions. We have
i

st pt,) = LA (LA (L D] = {a, (b)), a, (i)
£, = KAL), = fdxazcx,wwz(x),

f(bi.tz)ﬂi(bi)f1(t2)=(A2(t.1)-Az(t2)>wz=fdxa2(x,t1)az(x 0w, (x0,

where wz(x)dx is the Wigner distribution for V2, which is a

Gaussian measure. Accordingly, the function [<(t> = az(XZ(O),t)

can be considered as a Gaussian random process with the mean

fi(t') and the covariance f(t‘i't'z)' if XZ(O) is considered as a

random point with the distribution wz(x)dx. We obtain
t
hegOOL) = 2 GGL>- [((L)+fodsg(s,b)ai(xi(s),s)].
And the summation over the auxiliary index », which was
omitted but meant from Sect. 4.1 up to here, can be now eli-
minated together with the functions al(x,t.). Namely, we put

[{x,t> = ):u (U(t)aiu(x,t) and the same for f1,



387

f(xl,t.i; xz,t.z) = zpv rpu“‘i"‘z)am("t’H)aw("z"'z’

and the same for g; then
t
= + ]
heﬂ.(x.t) [ (x,L) _rodsg()(1(s),s, x,t). 15>
It is clear that [(x,t) is a Gaussian random process with the
mean fi and the covariance f. By the way, these new functions

f , f, g can be expressed by means of operators

1!
Az(x.t.) = }; aiv(x,t)ﬁzv(t), In fact from the very beginning
we could have treated the interaction in terms of Az(x,t.)

rather than of Ai(t.)o.»\z(t.).

Quantum dynamics can now be reconstructed due to the
statement 4.4.1. Namely,

»
<M Doewiy = < U MU

for any initial state W

wiae = Efdxom(xi(b,xo))wi(xu)

1 of the first system and any observab-

le M for the first system, which is measured at a moment t;

here m is the Weyl symbol for M, Wy T for \»’1; Xi(t,xo) denotes

the classical trajectory starting from an mitial point X0 and

governed by the Hamiltonian including heff;it. depends on a path
of the random process ([, and [E denotes the averaging on [.

Often we will describe dynamics in terms which seem to
be classical (for example, the force of friction); however we
will mean quantum dynamics corresponding to classical as
stated here.

Now we abandon the second system itself (which was
called also the environment) because its influence on the
first system is taken into account by means of heff'

4.6. What We Understand by Quasi-Classical Approximation

Traditionally one treats the quasi-classical approximation
as short-wave asymptotics for the Schrodinger equation. We

propose a wider comprehension in the spirit of Wigner’s
ideas, including some environment influence taken in the
approximation given in 4.5 above. Besides the Hamiltonian,
three functions are used:

fi(x,t.), rix,t s %ot ply Xty

X)X, 0%, running over the phase space. These functions provide

a reduced description of an environment influence. An “evoluti-
on operation" describes quantum dynamics rather than a unita-
ry evolution operator. The presence of two time arguments in
f, g reflects possible memory effects in the environment,
through which the quantum evolution is generally non-markovian.
The markovian property and a semi-group of operations arises

if f, g are localized near t.1=t.2,‘ this case is of special inte-

), glx,,t
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rest. The opposite case, when a characteristic time for the
environment is much greater than that for the system, falls
outside of this paper; apparently it is conneclted with con-
cepts of dynamical chaos (classical and quantum). Our approach
can be used Lo investigate the long-time behavior of a system
only in case when stochastic effects prevall over gquantum
ones for moderate time (and all the more for large time> and
besides an environment gives no long-time memory effects. But
this is the case for a wide class of macroscopic systems.

Due to tLhe decay of memory effects we can consider
classical dynamics for te(-m,+m) rather than for te(0,+m).

The tfunctions 1‘1. f, g are assumed small and smooth on a

macroscopic scale, This is why the evolution operation is
locally Gaussian, Naturally, the corresponding coefficients are
smouothly varying on the macroscopic scale. By the way, the
functions f, g satisfy some inequality: the skew bilinear form
defined by the kernel g is bounded by the positive symmetric
bilinear tform defined by the kernel f. This shows that a non-
~Hamiltonian (n particular, dissipative) evolution is indispen-
sably accompanied by a noise. But. we do not dwell on this
matter, because we are mostly interested in such cases when
the noise is much greater than its tundamental lower bound
(due to non-zero temperature; see below).

4.7. Using Fluctuation-Dissipation Relations

From here on we suppose that the second system (the en-
vironment.) is a heat. bath. At the same time we s.uppuie t.hhaL
the interaction does not depend explicitly on t. So A =

1 2
do not. depend on t, and [Hz,wzj =0 {H2 is the Hamiltonian for
the second system), hence

f1(x,t) = f (x), t(x ,t. § x_ ,L,) = f(xl,xz.t.i-bz).

g(x .t,l, X, ) g(\: x 1 t,z)

We suppose that wz is Lhe Gibbs :atat.e for a positive tempe-
rature T or, more generally (Lo comprehend the case of conti-

nuous spectrum of H_ ), the Kubo-Martin-Schwinger (KMS) state.

2
We do not touch upon fundamental problems of statistical
physics about the origin of such state, and we leave out of
account the kunown non-Gibbsian terms We accept the following
fluctuation-dissipation relation connecting the Fourier trans-
forms (with respect to time) for f and g:

- e huw
g(xl,xz.w) = tf(xl,xz,w) th SRT' (16>
In terms of f,g themselves this is a convolution relation:
_ h nkT ] 1
g(xi,xz.t.) = I ds[ﬁ sh -5 —_t=-8) f(xi,xz,s} (7>

Note that the time kernel is exponentially small outside the
domain t-s=0(h/kT). We suppose that h/kT= =0(t) and that both
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-t POX, XL 5T)s BCx, X,
functions t x1 xz, [ 17%2

main z-:-«)(E)‘ This is suited for continuous spectrum of Hz; tor

models with a discrete spectrum one can use decreasing in a
domain which is finite but large enough.

,T> are negligible outside the do-

; ; 7>t Ty >=0
It follows trom 17> 1alt, f—oo 1g(x1,x2,1 =0.
Uf:\ng g(xl,xz,'r )=—g(x2,x1,-—1) we have
2 E =
f() dTg(x ,%,,T) o dTg(xz,xl,T) and hence
a 40 _ 1 @2 “+w )
| x=x Jo ATEGLXTY = 5 — [ dTe(xx,1);
ax Ix 0

this will be used below.

An environment influence results in a trend and fluctua-
tions. The trend is determined by the differential of the
“effective Hamiltonian' (15) averaged on (:

a : . 9 [ - t LK s -
.t i x—";)(((,)&—'het‘f(x"') B | XL ix(x,t)*-f_wdsg(X(s),s. x,t,)]
ax ax

6 a

— £ - —|

axK ¥ Xto 1 oxk X=
"
k
ax

x(t’)ﬂ;wd'rg(x,)((_'.t_,-r >,7) =

(x> -

+m
se=Xct 5T 1 adre(x, XL, 1)

k x=X(b)J-0

ax

a +00 . )
;,;T{ x=X(t,)f0 AT (OG-, 7)-g(x, XD, 1)) =

a3 N _ 1t - ] N
;x.l; xr)((t,)[-xi(,‘) EJ‘O drgx,x. 1)

r o k x=X(t. )fodedas(x,)(ﬂ,-e),r); 18>

the first term 15 a total derivative without any path depen-
dence; hence it brings in a Hamiltonian correction to the
motion. A non-Hamiltonian correction is introduced by the
second term. It, can be évrit,t,en as

d'rdex - 8)—::——1 g(xl,xz,*r),
0<8<t < oxldxz x1=X(t,),x2=)((t,-8)

and it is clear that the knowledge of this correction tor all
pat,hgzs X(s) is equivalent to the knowledge of the function

k~—~lb(x Xy ,T2. Due to the fluctuation-dissipation relation
dx dx
ths sz equivalent to the knowledge of the function
a : - .
‘ﬁt(xi,xz,r) = Cou(l ,k(xl,r), {"l(xz,())). that is, of the
0x10x2

covariance function for fluctuation forces. The non-Hamilto-
nian correction can be expressed through the fluctuation
covariances as follows:
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- Cou {l_:d'r( X, L+T)—lnlcthll’;’l |, f_;dsxl(s)q

But. this is too general for our purposes.

I(X(s),s)].

4.8. Markovian Approximation

It was supposed in 4.7 that the relaxation time for the
heat bath is ©OCt). Starting from here we suppose that it is
<<t.. Correspondingly, the evolution becomes local in time, that
is, markovian, described by differential equat ions rather than
by integro-differential ones. A force of friction arises often
which is proportional to the velocity. Sometimes it is propor-
tional to the third derivative (for example, the radiative
friction). It may occur a linear combination of different
derivatives. Non-linear friction is also possible (for example,
one proportional to the cube of velocity), but we do not
examine such cases here

So we linearize the non-Hamiltonian correction 18):

a 00 . o . -
- xmxu)f(: AT CE(x,XCb-1,7)- (X, 1)) =
= L g > =
X :’? x=X(t.)’ d‘!’(x 1D~ X L) lly—)((t,)g(x'y’T) =
2 n n
=—ngdr—z—7 g(xl;xz,T)'Z-c-——:,—?——rn—c—ir—‘ Xl(s)=
0x10x2 x1=)(<t,),x2=)((t,) ds |s=t
n a” 1
= -Va" oxee»)-=— X ¢sd,
kRl n
n ds |s=t 2
where C (x)=-(—~£-- md1‘~rn~——i——~ gdx, ,X.,,T);
ki n! JoO 6xk0xl —— 1'72
1 2171772

the sum over n is regarded as an asymptotic expansion rather
than as a convergent serie:. On the other hand, (16> gives

for w<<KT/h gix,y,wd> X —Zk,-rw,t (X, Y,w), hence

00 Y
thd'rq)(r)g(x,y T X szr dre’ (T x,y, 1>

for any function ¢ whose Fourier transform is negligible
outside the domain w=0O(kT/h). However

- 1 (n) n _
I_wdrrﬁ(“r)g(x,y,'r) = |_md1'g(x,y,1')2n-—T¢ Wr =

= Z;—T¢(n)(0)- Ugwdrg(x,y,r)-rn + J;mdrg(x.y,—T)-(—T)n] =

_ 11 X e .n n ..n
= 2‘“_!¢ W [f; dtgx,y, ) 1 = C(-1) ’0 dTgly,%,T)" T ],

henﬁe
; - _ NN _~D nd
| l_lwmd'r¢(r)g(x,y,1)—2[( »el, oo a7 00,
g Ty | KRN
so0 we obtain
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+ 0
J_id"ro‘:’(r)Cov(E L0t € 1(}(,0))«.-2—,:—2[( vl “ [ $XO=C lk(x)]¢(n)(0).

2ZKT N+ N ntl
h [ CxO+(-1) ”! C )]é

that. ix,

. >,
Cou(l XT3, L ,0600) = s

We see that. the same coefficients C:”(.x) determine both the

non-Hamiltonian correction to dynamics and the correlation of
fluctuations. The last is found only for coincided points x;
however it can be shown that one may put

Cou(l W x(t .t ), (’l(xuz),t.z)) x

" 2%"1_‘2[{3::1[ x[ f=1+t. ]]+( 1)n i+ [x[t_'ih:‘_a]]] é{m(t‘zﬁl‘l)

with an error of the same order as the error introduced
above by the linearization.

Let. us note some restrictions for C:!(x) arising from

the positive definiteness of a covariance function Namely, the
following matrix must be positive semi-definite ftor all w,
both pgsitiv.e and negat,ive
h . Jnf. . n n . n+1
8 e S S Hx:(xi.xz,u) x 2(“.:) [(‘kt I+ (-1) (.. (x)]
1 1’ - 2 .. 2.8 .8
c (" -G + C -
(0 PO Gy G ¥ (G 1Oy e
1t is clear Lhat. the first non-vanishing term here must be a
term with an even power of w, and this leading term must

contain a positive semi-definite matrix.

The most simple and most widespread case is that of
force of friction which is proportional to the velocity:

N T e L e ) n .
Ffr\ic kiq, Such case can be described by means ot GH with
n=1, and we arrive at the corresponding fluctuation forces
Fi’lur with the following covariation:
s>, F = 'K » >
Cuv(l’-‘ﬂuc(b), }-Il L) 2kTK é(s t 19

The next case is "radiative-type” force of fru‘d,;l)on which is

proportional to the third derivative: I'-‘f ia 'qu ; here GM is

sed giving
2 hy = =2 st >
(,uu(Fﬂ (s), F‘“uc(l,)) kTKaé s-tL)> 20
The same fluctuations conform to more general friction
2> (&) 4>
=K2q +l{3q +K4q , because the symmetric part of the
Kl with an even n makes no contribution to the low-
-frequency part of fluctuation spectrum. Note also that Kaq(3)

Ffric
matrix C

is in fact an approximation for some expression which is
non-local in time. This approximation is valid for trajectories
smooth enough, and invalid for ‘“self-accelerating trajectories"
containing the ftactor exp(mt../Ka).
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5. TIME OF CLASSICAL FACTORIZATION
54. Definition and General Relations

It was shown in section 4 that the operation describing
the evolution of a quasi-classical system is locally Gaussian,
and a method was given to find its parameters. Therefore re-
sults of section 3 can be applied to decide whether this ope-
ration is classically factorizable. We define the time of clas-
stcal factorization Ty for a quasi-classical system as such

time that the operation describing the evolution during a time

t is classically factorizable tor L)Tf but. it is not for t.<1f_

This is treated locally, that is, near a classical trajectory.

We regret to note that the theorem 3.4 yields only a suffici-
ent. condition for classical ftactorizability and we do not know
whether it is necessary. Through this fact true values for Te

can disagree with the values obtained below. However the ra-
tio of this values is bounded with some constant of mathema-
tical nature, so our calculations yields acceptable estimations.

Let. us calculate the time ot classical factorization tor
translational degrees of freedom for a body of mass m whose
interaction with an environment results in a small force of

friction Ft e Kifq, other forces being absent. The friction

coefticient K1 interests us so far as it enables to tind fluc-

tuation forces. We neglect. a damping effect of the friction
because in considered cases P i much less than the time

r1=m/}\’1 characterizing the damping effect. Considering one

degree of freedom, assuming zero initial coordinate and velo-
city and applying <19 we obtain the following (C'u—)vdrianues:

D(p<t)) = ZkTKlt,; D(qLd) = ZkTK L /‘3m A
Cov(qdty, ptd) = Zle\ t /zm
Calculating the criterion (2> we find t,hat T [V‘k"ll‘ !nl]l/z‘
So ;
P .
Ty “therm'1’ et
where 7 =h/kT is a characteristic period of thermal fluc-
therm
tuations, 71=m/K1~ -
The second case Ft‘x\iczKSq may seem completely similar

but in fact it is not. In the first case the fluctuation force
as a function of time behaves as the white noise, hence the
momentum behaves as the Wiener process having continuous pa-
thes, therefore the instant values of the momentum are well-
defined. However in the second case the momentum behaves as
the white noise and the coordinate - as the Wiener process i-
ke the situation for the Brownian motion), hence the instant
values of the momentum have too large variances. But this mo-
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mentum averages to a small value during a long time. One can
speak about intensive exchange of momentum between the body
and the surroundings media where a momentum passed to the
body returns progressively to the media. So it should be given
an averaging time Taver’ specifying indirectly thickness of a

boundary layer of the media which is implicitly included in the
considered quasi-classical system. Then we obtain

T 2

therm

T,. ~ ¥ e . 22>
b § aver 1'3

where Tt,hex*mzh/kT as above, 13=K3/m.

Two effects were considered above. However their combi-
nation needs a special consideration. Indeed, if one effect re-
sults in large fluctuations of the momentum and small fluctu-
ations of the coordinate, but the opposite for the other et-
fect,, then their combination leads to a time of classical fac-
torization which is much less than that for each etfect sepa-
rately. We obtain

. 1/2 1/2 1/2 -1/2 1/3.-1/3.1/3 2/3

Ty min [ Lherm Tl T3 Tt,herm’ Ti ’.3 aver t,hel m’
=2 2 ) .
'3 Yaver therm/’ k232

The above formulas are valid for an almost free body.
For a body in a non-linear potential specifying by a time
T mech (it may be a period of oscillation or a time of divergen-

Al
ce of trajectories) the following two terms must be included
under the minimum sign in (23):
1/6 —1/6 1/3 _2/3 -1/2 /2 24>
“therm' mech’ "therm mech’

However if the minimum is > t Lhen we known that 'rf » t

and nothing more.
5.2. Several Examples

Let us consider a macroscopic body interacting only with
a thermal electromagnetic radiation and with a rarefied gas.
Its translation motion is accompanied by the following force
of friction:

F ~ = Yp + Y .p ‘S
fric ¢ rad v gas i’

0
where v, c, VO are the velocities of the body, the light and
the gas molecules respectively, Prad (resp. Pgas) is the spe-

cific pressure of the radiation (resp. the gas), S is the
sectional area of the body. Substituting

P 'v(kT)4(hc)-3 P ~pv2 v ~V(kT/m )1/‘2 and S~12 we obtain
rad T gas ] 0

F, . =K with K, ~ & oS¢ tiZ1? + $1/2m 12 201/2,

fric 1 0

here T is the temperature of the radiation and the gas (as-
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suming equal), mO

specific density of the gas and | is the size of the body. Hen-
ce T, = m/K, ~ min (h3c4k—4ml_2T_4, h_i/zmé/zp_lm[_z-rﬂ/z)' i
take for example m ~ 1 g, 1 ~ 1 em, T ~ 1 K, p ~ 10'26 kg/ma.

m_ o~ 10_27 kg; then 17, ~ mt'n(1024,10zb) ~ IO‘H sec,

0

is the mass of the gas molecules, p is the

-11 1 6
L iharm ™ 10 sec and (21) gilves T 10" sec.
Let the body have an electric charge Q and consider the
radiative friction q. 78 2q(3).
»

Ferin ™ (08g) "¢ "Q

here q(S) denotes the third derivative of the body coordinate;

the coefficient is adapted to the SI system of units. We have

Ka"-s;ic_an and Ty = l(3/m ~ saic-at}zm_i. We take for example
=0 = 40

Q ~ 10 G, then T4 10 sec and (22) gives rf 10 Taver'

We see that the classical factorization caused by the radiati-

ve friction is practically impossible. The combined account of

Ti ~ 1024 sec and Ty = 10_31 sec through (23) shows that 7
is negligible even for 7 o 10_12 sec.
aver
Now let. the body be in the Coulomb field of another body

with a charge Q2 at a distance r. Calculating the second deri-

3

vative of the potential with respect to r we find

mech

then Tioals ~ 1 sec. The six terms form 71 _ (see (23), (24)),
ec

-1 /6 /3
and the leading term is "ri 6-r_ 1/ 11/3 T ~ 105 sec, which
1 3 therm mech

is however not too different from the first term

T ~ Eé/zm1/2]_3/zQ—1/2Q;1/z. We take for example r~1, Q2~Q,

'I'I/Z'rl/'d ~ 106 sec. Since all the terms are > 7
1 therm

concludes that v _ > 7
f mech

But. the motion in a potential causes a varying deformati-
on and hence a dissipation provided that. the potential is not
quadratic. Let Lhe body be a dielectric crystal (say, quartz or
sapphire). The dissipation in the body can be described by the

one
mech’
~ 1 sec.

relation Q = (wr where Q is the quality of mechanical

-1
dis) 2

oscillations of the frequency w and T is a parameter

dis
characterizing the material Sapphire at T ~ 1 K has

Tdis ~ 10 19 sec; see 6), Chap. 2. For the case ot the body in

the Coulomb potential the dissipation through deformations
can be described by a force of friction proportional tou the

L-1 2-1 -1 4
velocity with 1 - E1 : :“)l -

5 il mech’ Where E is the modulus
()
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of elasticity. Taking E ~ 1011 N/m2 we obtain T 1024 sec.

At last we consider the dissipation caused by the heat
exchange between the body and its surrounding when the body
is subjected to varying deformations. The thermodynamic cycle
is almost adiabatic if nc_lp_il_z‘rmech<<1 and almost isothermal
in the opposite case; here » is' the heat conductivity for the
material of the body, ¢ is its specific heat and p is its
specific density. For sapphire at T ~ 1 K we have

uc—lp-‘1 ~ 104 mz/sec, this is why we consider only the almost

isothermal case. The dissipation can be described again by a
force of friction proportional to the velocity with

T, * ua_z'l‘_lrzl—sm_ir4 , where o is the temperature coef-
1 mech

ficient of expansion. For sapphire at T ~ 1 K we have

xct ZT-1 -~ 1022 m- kg sec 3 and again 7, ~ 1025 sec.

The mechanisms of dissipation have been considered which
are the most difficult ones for being eliminated, and we see
that some extraordinary but surely attainahle isolation of
mechanical degrees of freedom makes it possible to retain
guantum correlations in macroscopic motion during a macro-
scopically considerable time which may be enough to execute
rather a complicated movement. At the same time we see that
even under such extraordinary circumstances a macroscopic
delocalization of the wave function is unattainable. On the
other hand, consider a macroscopic system under usual cir-
cumstances, say, the pointer of a galvanometer, which moves
at T ~ 300 K with a friction such that 7, ~ 3 sec. Then (21>

. 1/2_1/2 -6 ! .

gives 7. ~ v /T 4 m ~ 10 sec. Of course, making use of
(21> in such a way is questionable because the interaction is
not weak. Nevertheless it is very likely that the time

any case much greater than the time of classical factorizati-
on for the corresponding degrees of freedom of the pointer.

6. DISCUSSION AND CONCLUSION

6.1. About Accuracy of Mechanical Description
There is the judgement that any talk about the coordi-

nate of a macroscopic body with the accuracy, say, 10-20 m, is
a mathematical abstraction obviously devoid of any physical
sense regardless of which mechanics are used, classical or
quantum. To prove it they think enough to remind that a mac-
roscopic body is nothing more than a bounded state of many
particles described actually by a tield theory, and the body is
non-ideal in many respects, each of which is enough to intro-
duce a fuzziness much greater than 10 i m.

However a macroscopic body is a collective phenomenon
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and it is naturally much less fuzzy than its small parts. The
accuracy intrinsic to coordinates and momenta of a macrosco-
pic body is the accuracy up to which the corresponding mecha-
nical equations hold. And it is a fundamental limit for the ac-
curacy of our measurements. If this limit is not attained, it
becomes a challenge for. the measurements technology rather
than for the theory, unless some fundamental barrier is
revealed.

For the extraordinary but attainable situation conside-

red in 5.2 {!.e mechanical equations hold during t ~ 1 sec with
the following accuracy:
(D{p(t.)))ifz ~ :— :.-‘-T ~ 10_24 kg-m/sec for the momenta,
f
(D(q(t.)))if2 ~ 2’-—— EE’- ~ 10-21 m for the coordinates.

Of course, it is a mabtsr of gquantum mechanical equations,
since D(p(t)) D(q(tII<<h . (This does not contradict to the un-
certainty principle, because these parameters are related to
an operation rather than a state.) We try to suggest some
two-valued measurement with such accuracy. Unfortunately it
destroys the gquantum state and cannot be used to prepare a
state localized as much. Thus, we place a body with a positive
electric charge near the unstable stationary point between
two fixed bodies with negative charges. Choosing the parame-

ters as in 5.2 we have ¥ edh 1 sec. Several tens of seconds
c

later an obvious deviation will occur toward one of the two

attractors, So we can measure the following two-valued

observable: =

sign [Q + ——ng—?-l‘ g2 ],
i 1/2 -21

where [ is a random variable with (DU DX)7/77 ~ 10 7 m,

6.2. About Bell Inequalities for Macroscopic Bodies

Is it possible to observe a violation ot a Bell inequality
in some macroscopic experiment? This intriguing problem was

discussed in our paper i and will be discussed in what follows

but remains still unsolved. The formal solution given in i le-

aves the three open questions: (a) -how to prepare the needed
initial state; (b> how to eliminate thermal fluctuations; (c)
how to execute the needed measurements. The gquestion (al
remains open; (b) is answered in Sect. 52; (¢) will be now

discussed. According to = and Sect., 2 here we need a way to
measure (alternatively, of course) sign(P+[) or sign(Q+n),
where (,n ape normally distributed random variables such that
D) D(m)<<h™. Due to the unitary equivalence the pointed
operators can be replaced with sign(Q+aP+{) and sign(Q+bP+y)
with arbitrary but. essentially different a,b (the initial state
being replaced accordingly). And such measurements were
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proposed in Sect. 6.1; LI being the classical parameter like

the famous orientation of a spin-measuring device.

Remark. Maybe, it is the preparation which is crucial
here. Maybe, only the states with positive Wigner distributions

>
(cf. with 8 ) can be prepared for macroscopic systems during
an acceptable time. This seems an interesting topic for
mathematical examination.

6.3. About Hidden Variables

A "dotted-in-time" description with hidden variables was
promised in the introduction and will be developed here. Consi-
der a gquasi-classical system with a finite time of classical
factorization r’.. One can partition the time axis into inter-
vals of the duration Te C(or more); then an aggregate of
hidden wvariables <(or, what is the same, a classical state) per
interval arises as follows.

The quantém state change during one interval is descri-
bed by some operation O of the form O = O7°Q""7, where o%9
transtorms quantum states into classical ones, and O does
the reverse. The evolution during a time >>1f can be described

by the iteration of O:
L000... = .09 “q)(oq“ 0%y
rﬁam\anglng t.he bpackefs we obhta
.0 C‘)“C)(o"qoq‘:)(o‘:“'oqc) .
non-coupled boundary terms being omitted. However, 0dpac is
nothing else but a Markov transition function; correspondingly,
its iteration describes a Markov chain

> A, >3 A, >
(1 T+l

which accompanies the quantum evolution; each )\l. is an aggre-
gate ot hidden variables. If Te is small then the Markov chain

approximates a continuous-time Markov process. This is the
case for immediately perceivable motion (say, the pointer of
a galvanometer). The opposite case arises tor extraordinary
circumstances considered in Sect. 5.2. Executing guantum mea-
surements of short duration in partitioning instants we
obtain a Markov chain of the form

> ).L, > (,\i,xl_) >3 )\i

>— (N ) >

+1 i+1" i+
vhere )\i is the aggregate of hidden variables for the time

interval preceding the measurement. which gives the outcome
X, Omitting one half of terms, one obtains again
()
> A > )\i+1 >3 ... but the transition probabilities are
i
changed by the measurements. Omitting the other halt of
terms one obtains a two-component. Markov chain

> O'i"xi) > O‘iﬁ-l’xi-ﬂ) >3 ... with the second component ob-
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servable but the first one not. Note that the random sequence

,..xl.. xi+1’"' is not Markov in general; this is connected with

the non-ideal nature of our measurements. Of course, in many
cases one and the same interaction process forms the basis
of both the classical factorization and the measurement. In
this case one can take ,\1, = xl., and the hidden variables

become open.
6.4. About Quasi-Classical Limit
Instead of the well-known quasi-classical limit for h — 0

we propose a new limit: for h —» 0, A — 0 and )\A/h — 00
here X\ is the coupling constant of the interaction with the
environment. The classical factorization lgads to a Markov
chain in the phase space. The condition A\ /h ~— 0 ensures
that. Te — 0, hence the time discreteness vanishes in the

limit. And the stochastics vanish too; the Markov pathes tend
to classical trajectories.

This (h,A0-limit is more adequate than the traditional
h-limit for describing situations occuring usually for actual
macroscopic systems, like a billiard-ball rolling on a billiard-
-cloth, or a planet rotating around the sun, or the pointer
of a galvanometer moving along the indicator.

It is possible to calculate for given finite h and A the
corresponding Aq, Ap, At indicating the limits for the classi-
cal description.

In addition, the long-time behavior for finite A is quite
different. from that for A=0.

Table. Modes of the behavior of a macrosccpic mechani-
cal system.

accuracy of mea- | - -
extra-
surements
" usual ordinarily
isolation hieh
from environment = | L €
: mecha
¢ lassical mechanics hidden
usual with dissipation and s apiabl es
. small fluctuations v
extraordinarily classical quantum
high B _ mechanics mechanics |

6.5. Information Propagation as Cause of Classical
Factorization

Let us return to the operators Az(x,L) mentioned in

Sect. 45 and put i
Ux> = Texp [—'-Jduzcx,t,)]

for an arbitrary point x of the phase space of a quasi-classi-
cal system taken in the Heisenberg representation. Due to (6),
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(8), (92 we obtain
-2 : -~ »* -
h D(((xz) (,(xl)) x -2 In | <u ()(Z)U(x‘))wz |

Define the Riemann metric on the phase space by taking the
above right-hand side as the square of the distance between
infinitesimally close points X X, Then the criterion (2) of
classical factorizability can be written as

h-{f, gt < |df|- |dg]|
for any smooth functions t,g on the phase space; here |df|
denotes the norm of the covariant vector df on the Riemann
space. For the case of one degree of freedom this means that
the phase volume of the ellipse, which is the unit circle for
this Riemann metric, does not exceed rnh.

In the case of a pure state w2 we have
>
U (x D = (C (x.D0>,
< (xZ)U x1 >Wz {y xl), Y xz >
where ypGO=Uxdy, y is the state vector for Wz. The state of

the second system after the interaction is close to wx) pro-
vided the state of the first system is localized near x, name-
ly, in a neighborhood where w(x> is almost constant. However,
this condition is impracticable in the case of classical facto-
rization. We realize that our Riemann metric characterizes
the interaction as 'information propagation’; the second sys-
tem reacts to the first one through the transition y — wx),
neighboring points being almost indistinguishable. Of course,
we take some liberty with the notion of information; we should
rather to talk about gquantum correlation setting capable to
lead to an indirect guantum measurement. .

The classical factorizability means nothing else but the
inevitability of such information propagation. This leads to a
new point of view on actions which are to be taken in order
to prevent the classical factorization (see Sect. 52). The
high vacuum is needed to prevent the information propagation
to the surrounding gas. (But one may say equally right that it
is needed to reduce the fluctuations.> The cooled sapphire is
needed to prevent the propagation of the information about
mechanical movements of the body through its deformations
into the phonon gas inside the body or generally into internal
degrees of freedom. And so on. The following idea arises: maybe
it is better to do the experiment in a superconducting
chamber to prevent the information propagation through the
electromagnetic radiation? And this is really the case. This is
a way to reduce the radiative friction and the friction on
the thermal electromagnetic radiation.

We see that the “information propagation’ point of view
is heuristic. However, its inadequate use leads to discouraging
conclusions. It is senseless to drown (to overrun) the radia-
tion of the body with some noise. Speaking about information
in this context we are perfectly inditfferent. towards the
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availability of this "“information'. Perhaps this kind of infor-
mation should be named "hidden information'. Note that it is
undestroyable (cf. with the classical law of the conservation
of the phase volume).

Remark. Our approach, being local, allows us to estimate
Z)U(x1)>Wz only for near points xi, Xy We assume that it
is small all the more if these points are distant. We have no
reason for doubt, however we would like to have a proof.

U x

6.6. Several Remarks

The essence of the Everett’s approach is an irreversible
propagation of quantum correlations as the cause of the clas-
sical behavior. But as to '“many worlds", this is rather
Kolmogorov’s approach. Indeed, the Kolmogorov’s axiomatics of
the probability theory ¢ X 1930) treats any random variable as
a function of a universal auxiliary variable w. Enlarged to the
whole physical world this leads immediately to one ‘'possible
world"” per each value of w. And Everett warned from the very
beginning: worlds co-exist as possibilities rather than as

physical systems; see 9), Note % on page 459-460.

Our technique has a common part with that of Stapp 10),

namely the Gaussian transform of quantum states into classi-

cal ones (see O1 in the proof of Theorem 3.4 above). It enab-

les to overcome the known continuum problem in the quantum
measurement. theory. On the other hand, we are not inclined to
share Stapp’s determination to postulate an exceptional onto-
logical status for the light or for any physical system what.-
soever. But we could have entitled this paper like the Stapp’s
one: "Heat as Foundation of Belng": Indeed, just the thermal
fluctuations are the main cause of the classical factorization;
the latter would occur much slower at zero temperature. And
the nature of the heat bath is of less importance. A case is
pcessible where the electromagnetic radiation to the infinity
is negligible and the classical factorization results mainly
from the phonon radiation intco the body.

Maybe there are such cases where the classical behavior
results from some mechanism other than proposed here.

We are not inclined to insist on a completely sharp clas-
sical description. If we consider this description as seconda-
ry, derived from the quantum one, then we should not be
surprised at some its fuzziness. However, we are glad that it
satisfies the Bell inequalities exactly. Further, why the sole
classical realm can be derived? We have no reason to contend
its non-uniqueness, but we admit this possibility. If it is

really sole according to Deutsch’sii) trend, then it is inte-

resting, but not vital. Indeed, nobody believes it vital for a
physical theory to predict the sole planet inhabited by people
in the world. The exceptional status of some realm with res-
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pect to us people is rather natural

Maybe a reader is displeased that we use ‘'second-grade"
notions of thermodynamic nature for foundations of the "first-
-grade" quantum theory. However, if we admit the possibility
that the God is kindly disposed to dice, why not to heat
also?..

Of course, we do not pretend for having solved here any
problem of statistical physics. On the contrary, we need solu-
tions for some of them tor the foundation of our approach.
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