NOT EVERY BANACH SPACE CONTAINS
AN IMBEDDING OF Ip OR ¢,

B. S. Tsirel'son

In the geometric theory of Banach spaces the following problem has been posed (see, for instance,
[1]): does every infinite-dimensional Banach space contain a subspace which is linearly homeomorphic to 3
one of the spaces lp, 1=p< + ®,0rco? g

In this work we give a negative answer to this question. In fact, we will construct a reflexive Banach
space which does not contain any infinite-dimensional subspace which is linearly homeomorphic to a uni-
formly convex space. A more complete formulation of the result stated in our theorem requires the fol-
lowing definition. ‘

Definition 1. A Banach space X is said to be finitely universal if there exists C > 1 such that for

each finite-dimensional normed space E there exists a subspace F c X of the same dimension and an in-
vertible operator T:E—TF such that | T|- | T™< C.

In this definition we can restrict our attention, without changing the result, to spaces E of the form ¥
12 (which denotes an N-dimensional space with norm max (|A¢], - .., |]AN|)). In fact, if E is a finite-dimen-g@
sional normed space, then for each ¢ >0 the space can be e-isometrically imbedded in ¥ (where N is suf-§
ficiently large); it suffices to choose a finite collection of linear functionals gy, ..., gNE€E* such that §

max | g; (z)] <lz]1< (1 +¢) max [g;(x)] and to set Ux = (g;(x), ..., gnix))-
1<i<N 1<ieN

It is clear that this property |s invariant with respect to taking linear homeomorphisms.
LEMMA 1. A uniformly convex space cannot be finitely universal.

Proof. Suppose that X is finitely universal with a constant C and is also uniformly convex. There ¥
exists € (0, 1) such that if |z]=1,|yl=1,l(z—y)/2|>1/C, then || (x + y)/2]| = 6. Suppose that we are givena
invertible operator T:IN—F c X; we will show that | '] - | T-1| > min (C, 8*-V). (This will immediately5
lead to a contradiction if we choose N sufficiently large and T such that || T|j-[| T-!< C.) For N=1the ‘i
inequality is trivial; for other values of N we use proof by induction. Suppose that ITEH- 1T min (c'g
0%-M). We assume that [N"! is imbedded in [N in the natural way, and we consider the restriction U of T %
to {N-1; it suffices to show that [[U[j<g||T|. This follows easily from the fact that each z€ Noz<1, B
can be written in the form z=(z4y)2,z, y =l |z] <1, [yI<tlz—9)21>1. b

THEOREM. There exists a reflexive Banach space in which each infinite-dimensional subspace is
finitely universal. :

The proof of this theorem will be given after several lemmas. In Lemma 2 we construct a weakly |
compact set K in ¢y which has some special properties. Then we show that its closed convex hull V also §
has these properties. Finally we consider a Banach space X for which V is the unit ball and we show t.’na!
this is the required space. ;

It will be convenient to speak of elements of the space m (and other spaces of sequences) ad functios

takes the points 1, ..., n to zero (that is, the operator of pointwise multiplication by the characteristic
function Xfn+1, o) Will be denoted by P,. {
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Definition 2, A collection (xy, ..., xN) of elements of the space m does not contain inverses if for
arbitrary i, j such that 1 =1i< j =< N and arbitrary k, £ such that x; (k)= 0 and Xj (Z)= 0 we have k< L.

It is clear that in such a case the x; are automatically finite except perhaps for one of them, namely,
the last nonzero one. There exist 1 and n such that x; = Pplxq+ ... + xN).

We formulate properties which we will later verify for some sets A lying in m.

. (1) A is contained in the unit ball. Each basis vector e (equal to 1 in position j.and 0 elsewhere)
belongs to A.
) VzeAaVyem (|y|<|z|=>y=4). (The moduli and the inequalities are pointwise.)
Properties (1) and (2) are preserved if we take the closed and the convex hull.
@) If (x,. e xN) isa collection of elements in A (of arbitrary order N) which does not contain in-
verses, then Y, Ppxg+ o0 +XN) €A .

If A has properties (1)-(3), then its closure (in the topology of pointwise convergence) also has these
properties.

) Vze A qn2P,(z) E A.
Repeated apélication of (4) gives us the following property:

(42) Vxe= A Vg dn2%P, (z) = A; from (4%) and (1) it follows that A c cq. Property (4) is not neces-
" sarily preserved when we take closures.

LEMMA 2. There exists a weakly compact set K < ¢, which has properties (1)-(4).

Proof. Let A be the smallest set having properties (1)-(3). In other words, let A=AjUA;U.«.o

={aez j>1, |a|<1) (the ej are basis vectors), and Ap4+y = Ap U By where By, is the set of all ele-
ments of the form ', Py (x;+ ... + x\) where (x, ..., XN) is an arbitrary collection of elements of An
which does not contain inverses. :

We let K be the closure of A in m in the topology of pointwise convergence; K has properties (1)-(3)

and we will show that it also has property (4). Let x€ K; we assume that x is not finite, for otherwise the

- proof is trivial. We select x'S/ in A such that x(8)—x pointwise. For large s the function %) is nonzero
at the point kg = min {k:x(k) = 0} and also at some other point, and therefore x 8/ ¢ A;. But then x(8) be-
longs to some By, that is, x x&) =Y, PN(x(S) et x(s)), where {8, ..., (S)) is a collection of elements

" of A which does not contain inverses. It is essential that Ng = k; (since x(S)(ko)# 0). We can assume

_ therefore that Ng does not depend on s, Ng = N, where if necessary we can pass to a subsequence {x(

" x82, ...}. We can also assume that each of the N sequences {xi"'}s=; converges pointwise to some x;

- where x{ € K. If we take the limit we find that x = }’ZPN (xy+ «.. + xN); here the collection (xy, ..., xN) does
" not contain inverses (as a limit of a sequence of collections which do not contain inverses). Then there

i exist i and n such that x{ = Pp (X;+ + . + x); hence, 2P iax (nn) (2) = PyPp (2 + .. +2n) = Py(z)E K.

: Thus K has properties (1)-(4) and hence is contained in ¢y. In a ball in ¢, the weak topology coincides
- with the topology of pointwise convergence, and in this topology K is compact.

LEMMA 3. Suppose that K C ¢y is a weakly compact set which has properties (1)-(4). Then its
. dosed ¢onvex hull V is an absolutely convex weakly compact set in ¢, and has properties (1)-@4).

Proof. It is known that the closed convex hull of a weakly compact set in a Banach space is’ weakly
compact. Absolute convexity of V follows from the fact that z & K = —z=K. We note that it makes no dif-
ference in which topology we close the convex hull M of K: the norm, weak, or pointwise topology. We

' bave to show two things: that M has property (3) and that V has property (4).

: Suppose that (xy, ..., x)y) does not contain inverses and each xj is a convex combination of elements
of Kizy= a2 + ... + af"d", 2" & K. Since K has property (2), we ca? a)ssume that (k) = 0=

" (x) = 0; then for each set of h3dices St o) sN in (1, n] the collection x°Y, ., x sN) does not contain
joverses and therefore Y, PN(x +eeet x ) € K. It is easy to see that x;+ ... + x)y can be written as

1. 1 convex combination of elements of the form xfs,) benot xBN) consequently, %, P (x; ...+ xN)EM.
9 We now establish property (4). We set D, = {z & K: 4P, (z) € K}; {Da)n=1 is 2n ascending sequence
of weakly closed subsets of K whose union equals K. Let xq€ V; it is known (see [2], theorem 5. 6.4) that

mere exists a probability measure y on K (weakly Borel regular) such that for each linear functional fonc,

fin wego = b L
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we have f(z,) = S/dp- Since uDp —1, there exists ng such that uDp)= % then 2Pp,(xq) € V, since other- |!
K

wise there would exist a function £ such that f(xg) > 1 and Vz (2P, (z) = V= | f(z) | < 1), and this would
yleld the contradiction o

1< §rant § fdp <o D+ 2(ENDI< G+
K .

D ny \D, e

N
We recall that by a normed block-system with respect to the basis {ej}ro we mean a sequence of the ;
b €3 e ’

form { iz )"'e"}uq for which the norm of each term equals one. §
="

LEMMA 4. Suppose that an absolutely convex weakly compact set V < ¢y has properties (1)-(4). We
let X denote the linear hull of V equipped with a norm in which V is the unit ball. Then X is a reflexive
Banach space; the sequence of unit vectors {e-}{” forms an unconditional basis in X, and the conjugate sys-
tem of fuuictions {e{;}f is an unconditional basis in the dual space X*. If {x;};" 15 a normed block-system

with respect to the asis-.{ej} ;°, then Py (Airy+ .o 4-Avzw) e 2.12?:"[ A} for arbitrary N and Ag, «.., AN
X

Proof. Completeness of X follows from the fact that V is closed and bounded in cy. In order to show
that {e,} is a basis in X we just have to verify that Yz & X | Pz lx 3 0, and this follows from (43). By
virtue of property (2) this basis is unconditional. If {x;} is a normed block-system, then for each N the
collection (x4, ..., xy) does not contain inverses; property (3) implies that %, Pyn(xq+ ... + X)) € V; from

property (2) we now obtain the required inequalities for | Py 2} Az lx.

We will show that {ei"} is an unconditional basis in X*. We only have toshow that Vf & X* | Paf | 0.
Suppose the contrary, thatis, Va [P f] >e; we choose a finite x; such that ||x,|| = 1 and f(x;) > ¢; then we .
choose x,, which is "further to the right" than x;, with the same properties. We continue this process and -
obtain a normed block-system {x;} such that - Vi f(x) > e. Clearly PN does not affect xpn4q + -+ » + XN and
therefore [[xy,q + - -+ + XNl < 2 in spite of the fact that / (v« +... + z,8) > Ne; this contradicts the
fact that r is continuous. N

We still have to show that X is reflexive, that is, that V is compact in the weak topology ¢ (X, X*).
We will show that the topologies ¢ (X, X*) and ¢ (cq, cf) coincide on V. For each f € X* the restriction
fly is continuous in the topology o (cy, c¢) since f|y is the uniform limit of a sequence {/x v}, fu & c5; for ;
instance, we canlet fn = /(&) e + ... + f(en) &n = f — Paf. [We could also make use of conditions for
reflexivity of a space with a basis (see [3]).]

Proof of the Theorem. We have to show that every infinite-dimensional subspace Y of the space X
considered in the preceding lemma is finitely universal. I {xi} is a normed block-system with respect to :
the basis {e;} in X, then the subspace X, c X generated by this system is finitely universal since for arbi-
trary Nand Ay, ..., AN we have 1$2§|Ai|<|xlx~n + ..+ Azl ZIrLI!aévl Ail. Therefore it suffices to choose

e~ -

{x;} such that X, is linearly homeomorphic to some subspace X; Y. This is done in the usual fashion;
namely, we successively choose y; from Y and x; such that "yi— xill = 271 and we apply the Krein—
Mil'man—Rutman theorem on stability of minimal systems [4] according to which there exists an invertible ]
linear operator S taking X, onto the subspace X; ¢ Y generated by the system {y;} such that Sx; = y;. The
theorem is proved.

Remark 1, The constant in the definition of finite universality is obtained simultaneously for all in- !
finite-dimensional subspaces of the space we constructed and can be chosen arbitrarily close to 2; it can *
be reduced if in the construction of K we replace % Py(x;+ ... + xN) by (1—¢) PNy &g+ ... +xN). - For each
€ >0 there exists a reflexive Banach space in which each infinite-dimensional subspace ts finitely univer-

sal with a constant <1 4¢. ‘

Remark 2. We can show that for each infinite-dimensional subspace Z c X* and each N there exist |
an N-dimensional subspace F < 7 and an invertible operator T:IN— T such that ITlx | T~ <3. From
this it follows that X* does not contain an infinite-dimensional subspace which is linearly isomorphic toa '
uniformly econvex space. ;
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