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6 Generalizing Wiener chaos

6a First chaos, decomposable processes, stability

We consider an arbitrary continuous factorization. As was mentioned in Sect. 5b, Borel
functions on C act on Ly(Q2, F, P) by linear operators, and indicators of Borel subsets of C
act by orthogonal projections to subspaces.

In particular, for the Brownian factorization, only Cgpite is relevant. The set {M € Cgpite :
|M| = n} corresponds to the subspace called n-th Wiener chaos.

In general, we may define n-th chaos as the subspace of Ly(2, F, P) that corresponds to
{M € C: |M| = n}. These subspaces are orthogonal, however, they do not span the whole
Ly(S2, F, P), unless the noise is classical.

6al Proposition. (a) The subspace of Ly(Q2, F, P), spanned by n-th chaos spaces for n =
0,1,2,..., is equal to Lo(Fgable)-
(b) The sub-o-field generated by the first chaos is equal to Fyapie-

For a proof, see [10, (2.7) and Th. 2.12].
A random variable X € Ly(Q2, F, P) belongs to the first chaos if and only if

X=E(X|Fwy) +E(X|Fi) foralteR.

For such X, letting X,; = ]E(X | fs,t) we get a decomposable process, that is, a family
(X,t)s<t of random variables such that X, is F, ;-measurable and X, ;+X,; = X, ; whenever
r < s < t. This way we get decomposable processes satisfying E|X;;|? < co and EX;; =
0. Waiving these additional conditions we get a larger set of processes, but the sub-o-
field generated by these processes is still Fgape- We may also consider complex-valued
multiplicative decomposable processes; it means that X, : 2 — C is F;;-measurable and
Xy s X5y = X,s. The generated sub-o-field is Fgape, again. The same holds under the
restriction | X,,| =1 a.s. See [11, Th. 1.7].

Dealing with a noise (rather than factorization) we may restrict ourselves to stationary
Brownian and Poisson decomposable processes. ‘Stationary’ means X, o oy = X,_;s_4.
‘Brownian’ means X,; ~ N(0,¢ — s). ‘Poisson’ means X,; ~ Poisson(A(t — s)) for some
A € (0,00). The generated sub-o-field is still Fypaple- See [7, Lemma 2.9]. (It was written for
the Brownian component, but works also for the Poisson component.)

For a finite set L = {s1,...,s,} C R, $1 < -+ < s, introduce an operator (), on the
space LY = {X € Ly(Q, F,P) : EX =0} by

QL:]E(“F_OOP”I) +E(‘|'7:31’52) +‘“+E('|fsn—1’5") +E(‘fsn,oo) .

6a2 Proposition. If finite sets L; C Ly C ... are such that their union is dense in R, then
operators (), converge in the strong operator topology to the orthogonal projection from
L3 onto the first chaos.

The proof is left to the reader. Hint: ()1 corresponds to the set of all nonempty M € C
contained in one of the n 4+ 1 intervals.
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Stochastic analysis gives us another useful tool for calculating the first chaos, pioneered
by Jon Warren [12, Th. 8]. Let (B;;)s<: be a decomposable Brownian motion, that is, a
decomposable process such that By, ~ N(0,t — s). One says that B has the representation
property, if every X € Ly(Q, F, P) such that EX = 0 is equal to a stochastic integral,

+00
X == H(t) dB(),t ,

—0oQ
where H is a predictable process w.r.t. the filtration (F_oo)ter-

6a3 Proposition. If B has the representation property then the first chaos is equal to the
set of all linear stochastic integrals

400
/ o(t)dBoy, ¢ € Ly(R).

It follows that Fgaple is generated by B.

6a4 Example. For the sticky noise (see Sect. 4), the process (a(s, t))sgt is a decomposable
Brownian motion having the representation property. Therefore it generates Fgiape- On the
other hand we know (recall 4h3) that a(-,-) does not generate the whole o-field. So, the
sticky noise is not classical (Warren [12]).

The approach of 6a2 is also applicable. Let ¢ : G5 — [—1,+1] be a Borel function,
and 0 < t—¢ <t < 1. We consider ¢(&,1) = ©(8o,s &t ciéra) (you know, & ., =
fa(t—a,t),b(t—a,t),c(t—s,t)): and compare it with @(fo,t—sft—e,tft,l); where & ., = fa(t—s,t),b(t—s,t),o-

It appears that
lo(&o,0-e&i—e,6&t,1) — ‘P(fo,t—egt—s,tft,l)”Lz = 0(53/4) = o(Ve),

provided that ¢ is bounded away from 1 (otherwise we get O(%/*(1—1)~'/2) with an absolute
constant). Taking into account that g},g,t is measurable w.r.t. the o-field generated by af(-, )
we conclude that the projection of ¢(&; ;) onto the first chaos is measurable w.r.t. the o-field
generated by a(-,-). See Sect. 7b for the rest.

6b Higher levels of chaos

We still consider an arbitrary continuous factorization. Any Borel subset of C determines
a subspace of Ly(€Q, F, P). However, the subset Ciniie C C is special; the corresponding
subspace, being equal to Lo (Fianie) by 6al(a), is of the form Ly (F;) for a sub-o-field F; C F.
Moreover, sub-o-fields ff,ttable = F, N Fatable form a continuous factorization (of the quotient
probability space (2, F, P)/Fgable). That is a special case of the following result.
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6b1 Proposition. Let C; C C be an ideal, that is,

M1CM2, MQECl = M1€C1,
Ml,MQ € Cl — (M1 UMQ) € Cl .

Then:

(a) The corresponding (to C;) subspace of Ly(€2, F, P) is of the form Lo(F;) for some
sub-o-field F; C F.

(b) The family (F,; N F1)s<: is a continuous factorization (of the quotient probability
space (2, F, P)/F1).

I omit the proof.
If a noise is given (rather than a factorization), and C; is shift invariant, that is,

MeC = M+t)e forallt,
M+t={m+t:me M},

then the new object pointed out in 6b1(b) is also a noise (a subnoise of the given noise).
The two most important ideals are

Cﬁnite C Ccountable C C,
Cinite = {M € C : |M| < R},
Ccountable = {M eC: ‘M‘ < NO} .

A countable compact set M contains at least one limit point (in other words, accumulation
point). The set
M cM, Mec,

of all limit points of M may be finite or countable. In the latter case, it has its own limit
points, these form M" = (M') € M'. And so on. We may classify sets of Ceountable according
to the number of steps (M — M' — M" — ...) until a finite set is reached, and the
number of points of the last (finite) set. In general, the hierarchy is transfinite, numbered
by all countable ordinals (the so-called Cantor-Bendixson hierarchy), but let us not climb
too high.

We define the n-th superchaos as the subspace of Ly(Q, F, P) corresponding to {M € C :
|M'| = n}.

Similarly to (6al), the subspace spanned by n-th chaos spaces and n-th superchaos spaces
for all n is equal to Ly(F;,) for some sub-o-field Fo C F, and F; is generated by Fyape and
the first superchaos.

Similarly to (5b2) and (5b7) we may ‘count’ points of M’ by the operator

n—1

I{Sl,---,Sn} = Z(l - E( ) | ‘7:*°°a51‘ ® fs;?slji ® f8j+1,oo) ) =

J=1

— (1 — U(gilas2)) + 4 (1 _ Uéj_n—l,sn)) ,
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or rather its limit N’ = lim,, N7 . Further, similarly to 5b3 we may define
Vi = limexp(—AN7 ).

This way, an ordinal hierarchy of operators may be constructed. It corresponds to Cantor-
Bendixson hierarchy of countable compact sets.
Similarly to 6a2 we consider

QI{SI:---,Sn}X =E ( X ‘ f—oo,sl ® fStable) + E ( X ‘ fStable 3¢ fshsz X Ptable) +--+

51,00 —0Q,51 §2,00
+E (X[ ® Forni, @ T ) +E(X[FES @ Fioc)

for X € Ly(Q, F, P) such that E( X | Feabte ) = 0.

6b2 Proposition. If finite sets L; C Ly C ... are such that their union is dense in R, then
Q7, X converge to the orthogonal projection of X onto the first superchaos.

6b3 Example. For the sticky noise, consider such a random variable X: the number of
random chords [s,#] x {z} such that s > 0 and ¢ > 1. In other words (see 4i),

X =H{z:01(z) € IIN(0,00)}.

The conditional distribution of X given the Brownian path B(-) = a(0, -) is Poisson(A) with
A =a(0,1)+b(0,1) = B(1)—ming ;) B(-), which is easy to guess from the discrete counterpart
(see (4c10)). That is a generalization of a result of 4h3. In fact, the conditional distribution
of the set {z : 01(z) € IIN(0,00)}, given the Brownian path, is the Poisson point process of
intensity 1 on [—b(0,1),a(0,1)], which is a result of Warren [12]. Taking into account that
the o-field generated by B(-) is Fyaple (recall 6a4), we get E ( X | fstable) =a(0,1)+b(0,1).
The random variable

V=X-E(X|Fgae) =X —a(0,1) — b(0,1)

is sensitive, that is, E ( Y | fstable) = 0. I claim that Y belongs to the first superchaos.

The proof is based on 6b2. Given 0 < s; < --- < s, < 1, we have to check that
Y can be decomposed into a sum Y, + --- + Y}, such that each Y is measurable w.r.t.
Fstable @ ® Fotable Here is the needed decomposition:

O)Sj 055 +1 5]-{—1;1.
Xj=|{z:01(x) € IN (55,5541},
Y= Xj = E(Xj| Fetavle) -

We apply a small perturbation on (0, s;) and (s;41, 1) but not (s;, s;+1). The set IIN(s;, s41)
remains unperturbed. The function o, is perturbed, but only a little; being a function of
B(+), it is stable.

So, Y belongs to the first superchaos, and X belongs to the first superchaos plus Lo (Fstable)-
It means that px is concentrated on sets M such that [M'| < 1.

The same holds for random variables X, = [{z : x < u, o1(z) € 1 N (0,00)}|, for any
u. They all are measurable w.r.t. the o-field generated by the first superchaos and Fgape-
The random variable ¢(0, 1) is a (nonlinear!) function of these X, (recall 4i). We see that
the first superchaos and Fype generate the whole o-field F. Every spectral set (of every
random variable) has only a finite number of limit points.
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6b4 Example. Another nonclassical noise, discovered and investigated by Warren [13], see
also Watanabe [14], may be called the noise of splitting. It is the scaling limit of the model
of 1lel; see also 8c. Spectral measures of most interesting random variables are described
explicitly! A spectral set contains a single limit point, and two sequences converging to the
point from the left and from the right.

Again, every spectral set (of every random variable) has only a finite number of limit
points.

6b5 Question. We have no example of a noise whose spectral sets M are countable and
M' is not always finite. Can it happen, at all? Can it happen for the refinement of a dyadic
coarse factorization (as defined in 3b1)?

6¢c Black noise

6¢cl Definition. A noise is black, if its stable o-field Fgape is degenerate. In other words:
its first chaos contains only 0.

Why ‘black’? Well, the white noise is called ‘white’ since its spectral density is constant.
It excites harmonic oscillators of all frequencies to the same extent. For a black noise,
however, the response of any linear sensor is zero!

What could be a physically reasonable nonlinear sensor able to sense a black noise?
Maybe, a fluid could do it, which is hinted at by the following words by Shnirelman [6, p. 1263]
about a paradoxical motion of an ideal incompressible fluid: ‘... very strong external forces
are present, but they are infinitely fast oscillating in space and therefore are indistinguishable
from zero in the sense of distributions. The smooth test functions are not “sensitive” enough
to “feel” these forces.’

The very idea of black noises, nonclassical factorizations etc. was suggested to me by
Anatoly Vershik in 1994.

6c2 Proposition. A noise is black if and only if the spectral measure px of every random
variable X € L, is concentrated on (the set of all) perfect sets M € C (that is, M having no
isolated points), except for the empty set.

For a proof see [7, Corollary 2.11].

Existence of black noises was proven first by Tsirelson and Vershik [11, Sect. 5]. A simpler
and more natural example is described in the next section. Another example is found by
Watanabe [15].

If all spectral sets are finite or countable (as in 6b3, 6b4), such a noise cannot contain a
black subnoise.

6¢3 Question. If a noise contains no black subnoise, does it follow that all spectral sets are
countable?

Perfect sets may be classified, say, by Hausdorff dimension. For any « € (0,1), sets
M € C of Hausdorff dimension < « are a shift invariant ideal, which leads to a subnoise
(recall 6b1), and to a ‘chaos subspace number «’. A continuum of such chaos subspaces
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(not in a single noise, of course) could occur, corresponding to different ‘levels of stability’.
Namely, in terms of 5b, we may consider p ~ 1 — n™%, that is,

U)(\a) = lim exp (—/\n_O‘NLn)

where L,, divides (0,1) into intervals of length 1/n. For now, however, I know of perfect
spectral sets of Hausdorff dimension 1/2 only.

6¢c4 Question. Can a noise have perfect spectral sets of Hausdorff dimension other than
1/27

6¢5 Question. Can a black noise emerge as the refinement of a dyadic coarse factorization
(as defined in 3b1)?



