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5 Stability

5a Discrete case
Fourier-Walsh coefficients, introduced in Sect. 3c for an arbitrary dyadic coarse factorization,

f: Z fMTM:f®+ Z f{m}Tm+ Z f{ml,mz}Tmle2+---

MeC[i] me%Z ml,mze%Z,m1<m2

help us to examine stability of a function f, as explained below. Imagine another array
of random signs (77,),,c15 (also independent equiprobable £1) correlated with the array
(Tm)me%%
1
E7,7, =p foreach me -Z;
i

p € [-1,41] is a parameter. Other correlations vanish. That is, the joint distribution of all
Tm and 7), is the product (over m € $+7Z) of (copies of) such a four-atom distribution:

Tm
-1 41
A
m L1] =2 | e
4 4

Denoting by Q]3] the product of such four-point probability spaces, we have a natural measure
preserving map « : Q[i] — Q[i]; as before, Q[4] is the product of two-point probability spaces.
In addition, we have another measure preserving map o' : Q[i] — QJi];

Tm OO =Ty, Tmod =T,;

we use the same ‘7, for denoting a coordinate function on Q[i] and Q[i].
For products

™ = HTm, M eCli|={M C iZ: M| < oo}

méeM

we have

Ermry =pM, Ttmoa=7y, Tmod =Ty,

where |M| is the number of elements of M. Therefore

E(foa)(god) = fudup™ ={g,,""f),

M
N Loli] = Lofi], Ny = pMliry,, pNEf = Zp|M|fMTM.
M

The Hermite operator pN is a function of a self-adjoint operator N[i| such that N[i]ry, =
|M |75 for M € CJi].
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Every bounded function ¢ : C[i] — R acts on L[] by the operator f — >~ /ey (M) .
A commutative operator algebra is isomorphic to the algebra of functions. The operator p™NU
corresponds to the function M ~ p/™|. (In some sense, the unbounded operator N corre-
sponds to the unbounded function M +— |M|.)

A function ¢ : C[i] — {0, 1}, the indicator of a subset of C[i], corresponds to a projection
operator. Say, for the (indicator of) the set {(}}, the operator projects to the one-dimensional
space of constants (the expectation). For the set {M : M N (—o0,0) = (1}, the operator is
the conditional expectation, E (- | Fooli] ) -

The function M — | M| is the sum (over m € +Z) of localized functions M — |[M N{m}|.

The latter is the indicator of the set {M : M > m}, corresponding to the projection operator
1—E(-|Fiz\gmy) - Thus,

Nf=Y (f=E(f|Fraim) -

The operator pN!l may be interpreted as the conditional expectation w.r.t. the sub-o-field
o~ !(F) generated by 7, 0 a, m € 7t
E(fod|a ! (F)) = (PN fyoa for f e Lyfi].
We may imagine that our data 7, are an unreliable copy of true data 7;,; each sign 7, is
either correct (with probability (1 + p)/2) or inverted (with probability (1 — p)/2). If p is
close to 1, our knowledge of 74, is satisfactory for moderate |M| (when pl™ ~ 1) but very

bad for large |M| (when p!™' ~ 0). The place of a given function f between the two extremes
is indicated by the number || f — p™ f|.

5al Example. In the Brownian coarse factorization (recall 3b2),

sup | fl2] — ,ON[i]f[i]H —0 forp—1

for all f € Ly(A). Tt follows easily from convergence of operators (recall 2¢ and 3d2):

Lim; o oM = pNII,

pN[oo]f:OOpn | fte, - ta}) dB(ty) ... dB(t,) .

Convergence of operators follows from (2a6). The same holds for Example 3b4.

5a2 Example. A very different situation appears in Example 3b5. The second Brownian
motion By (or rather, its discrete approximation) is not linear but quadratic in random signs
Tm» M € +Z. It is twice less stable:

N[ = 2fP[i);  Lime pN = p?N0] |

if N[oo] is defined in the same way as in 5al. For B it is p>N[], and so on. Still, sup; || f[i] —
pNE£[3]|| — 0 for p — 1. For By, however, the change is dramatic. Namely,

NS = entier W)L i) Limy o0 o = 0N

for all p € (=1,+1); here ONI®I = lim, ,, pNI*! is the orthogonal projection to the one-
dimensional subspace of constants (just the expectation). The same holds for Example 3b6.
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5b Continuous case

We start with the Brownian continuous factorization ((Q, F,P), (7s,t)s§t)- Using Wiener-1t6
decomposition of Ly(2, F, P),

f:Z//f({tl,,tn})dB(tl)dB(tn), f€L2(Cﬁnite)a

=04 <<ty

J/

~
belongs to n-th Wiener chaos

we can define a self-adjoint operator N : Ly — Ly such that for each n, Nf = nf for all f of
n-th Wiener chaos. Accordingly, p~ f = p™ f for these f. Informally, N(dB(t,)...dB(t,)) =
Every bounded Borel function ¢ on Cgpite acts on Ly(S2, F, P) by the operator

o0

(5b1) fi—>Z/---/go({tl,...,tn})f({tl,...,tn}) dB(t1)...dB(t,).

n=04 <<ty

The operator pNN corresponds to the function M +— p™|. (In some sense, the unbounded

operator N corresponds to the unbounded function M +— |M|.) The decomposition |M| =
|M N (—o0,t)|+ |M N (t 00) (it holds for p-almost all M) leads to the operator decompo-
sition N = N_y; + N; . Informally, N_;(dB(t1)...dB(t,)) = kdB(t1)...dB(t,) and
Nioo(dB(t1)...dB(t,)) = (n — k)dB(t1) ...dB(t,) whenever t; < -+ < tj <t < tjy1 <
-+ < t,. Accordingly, pN = pN-=t @ pNt.co,

A function ¢ : Cgnite — {0, 1}, the indicator of a Borel subset of Cgpite, corresponds to
a projection operator. Say, for the (indicator of the) set {(#} the operator projects to the
one-dimensional space of constants (the expectation). For the set {M : M N (—o0,0) = 0}
the operator is the conditional expectation, ]E( . ‘ .7-"0,00) .

The function
1 if MN(s,t)#0,
Psi(M) = . (5:%)
0 if MN(s,t)=0

acts by the operator 1 — E ( ‘f(—oo,s)u(t,oo)) .
For a finite set L = {s1,...,8,} CR, 81 < -+ < sy, the function ¢, (M) = ¢4, s, (M) +
o+ Qs 1.5, (M) counts intervals (s;, sj+1) that intersect M. Clearly, ¢, (M) < |M|, and

or(M) 1t M for ps-almost all M

if Ly C Ly C ... are chosen so that their union is dense in R. Accordingly,
NLn T N ’
n—1
(5b2) N} = 21— E (| Fresouusme) ) ) -
7j=1

The operator N is expressed in terms of the factorization only, irrespective of Wiener-Ito
decomposition. It gives us a bridge to arbitrary continuous factorizations.
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5b3 Lemma. For every continuous factorization ((Q, F,P), (7s,t)sgt), every finite sets L; C
Ly C ... whose union is dense in R, and every A € [0, 00), the limit

Uy = limexp(—ANy, ),

where N is defined by (5b2), exists in the strong operator topology, and does not depend
on the choice of L1, Lo, ... Also,

U\U, =Uyyy, forall A, pe[0,00).

For a proof, see [10, (2.4)].

In the Brownian factorization we know that Uy = exp(—AN), N = lim,, N _. In general,
however, the semigroup (Uy)>o is discontinuous at A = 0 (and N is ill-defined).

In fact, every bounded Borel function ¢ on C acts on Ly(£2, F, P) by an operator [7,
Sect. 2], though in general we have no explicit formula like (5b1). Once again, a commutative
operator algebra is isomorphic to the algebra of functions. The operator U, corresponds to

the function
(M) = e MMl (e =0).

If 415 is concentrated on {M € C : |[M| = oo} then U, f = 0 for all A > 0. Of course, Upf = f
anyway.

5b4 Lemma. For every continuous factorization ((Q,F, P), (Fs+)s<:) there exists a sub-o-
field Fyiaple C F such that for all f € Ly(Q), F, P),

f € L2(-7:stable) — ||f — U)\f“ — 0.
A—0

For a proof, see [10, Lemma 2.5].
In order to understand probabilistic meaning of Uy, consider first pNt, L = {sy,...,s,},
s1 < -+ < S,. We have

Q=0 5 X Qg 50 X -+ xXQ X ., 00

Sn—1,5n

or rather, (2, F,P) = (Q 00,51, F-00,51, P—co,s1) X .., but let me use the shorter notation.
Each w € Q may be thought of as a sequence (W_nos;,Wsy,s05- - - Ws,_ 1,50 Wsn,00) Of local
portions of data. Imagine another portion of data wy, ,, € €s,s,, either equal to wy, 5, (With
probability p), or independent of it (with probability 1 — p). The joint distribution of wy, s,
and w;w is a convex combination of two probability measures on QSI,SQ = Q.50 X g, 5,
One measure is concentrated on the diagonal, it is the image of P, ;, under the map €2, 5, >
W59 > (Wey.s05 Weyss) € sy.s,; this measure encounters with the coefficient p. The other
measure is the product measure P;, ;, ® P;, ,,; it encounters with the coefficient 1 — p.
Similarly we introduce QS%SS,...,QSWW and construct ) = Q0,6 X Qsm X ++0 X
an_l,sn X €2, 0o (the factors being equipped with corresponding measures). You see, it is
the same idea as in Sect. 5a. Again, we have two measure preserving maps a, o/ : @ — Q.

It appears that
E(foa’|a/71(f)):(pNLf)OO{ fOI'fELQ(Q,f,P).
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This is the probabilistic interpretation of p™NZ; each portion of data is either correct (with
probability p), or wrong (with probability 1 — p).2* However, portions are not small yet. The

limit n — oo makes them infinitesimal, and turns pN into Uy, where p and X are related by

—A
p=e "
The interpretation above motivates the term ‘stable’ for f € Lo(Fsable)-

5b5 Lemma. For every f € Ly(2, F, P),
(VA>0 Uyf=0) <= E(f]|Fsabe) =0.

For a proof, see [10, Lemma 2.14].

Such functions may be called sensitive.

The space Ly(S2, F, P) decomposes into the direct sum of two subspaces, stable and
sensitive.

A continuous factorization is called classical (or stable), if Fyape = F.

A noise is called classical, if its continuous factorization is classical.

Two limiting cases of U, are projections. Namely, U, = lim,_, U, is the expectation,
and Upy = limy 04 Uy is E (| Ftable ) - Restricting the ‘perturbation of local data’ to

a given interval (s,t) we get operators Uis’t). These correspond to functions C 5 M —
exp(—A|M N (s,t)|) and satisfy
s,t s,t) __ s,t) . T, st) rt) .
I e e e &)
(5b6) USH =E (| Fooos ® Froo) ;

o0

U =E (| Fony @ F @ F, o )
Note that (5b2) may be written as

(5b7) N{S1,--.,sn} — (1 _ Uo(gl,sz)) R (1 _ Uo(gn—hsn)) _

5¢ Back to discrete: two kinds of stability

The operator equality Lim pNE = pNI*l holds for some dyadic coarse factorizations (recall
5al) but fails for some others (recall 5a2). Nothing like that happens for spectral measures;
ppli] = psfoo] always (see 3ch and 3d). However, the operator pNl corresponds to the
function C[i] > M +~ pM treated as an element of L. (u/[i]), and the operator pNl
corresponds to the function C[oo] 3 M + p/™! treated as an element of Ly, (uf[oc]). How is
it possible? Where is the origin of the clash between discrete and continuous?

The origin is, discontinuity of functions M + p'™l and M + |M| w.r.t. the Hausdorff
topology on C.

24This time, p € [0,1] rather than [—1,1]. The relation to the approach of Sect. 5a is expressed by the
equality

# (162 1?2) +¥ (1(/)2 162) - (git%i 81%9 =7 (162 192) +1=p) G;i i;i) '
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5¢1 Example. Return to the equality N[ fs(?t) [i] =2 fs(?t) 7] for fs(?t) [i] = i Y23 TonTont 1))

see ba2 and 3b5). The spectral measure of f )77] is concentrated on two-point sets M C
s,t

17, namely, on pairs of two adjacent points {m,m + (1/i)}. However, fs(i) [00] is just a
Brownian increment; its spectral measure is concentrated on single-point sets. Now we see
what happens; two close points merge in the limit! Multiplicity of spectral points eludes the
continuous model.

The effect becomes dramatic for fs(”;) [i]; everything is stable in the continuous model
(1 = 00), however, everything is asymptotically sensitive (for i — o) in the discrete model.
A finite spectral set on the continuum hides infinite multiplicity of each point.

Conformity between discrete and continuous can be restored by modifying the idea of
stability introduced in Sect. 5a. Instead of inverting each 7, (with probability (1 — p)/2)
independently of others, we may invert blocks T,[;j, Ts[ij+(1/4) - - - » T[s) Where coarse instants s, ¢
satisfy t[oo] — s[oo] = €. Each block is inverted with probability (1 — p)/2, independently of
other blocks. Ultimately we let ¢ — 0, but the order of limits is crucial: lim, o lim; ,5(. .. ).
This way, we can define (in discrete time setup) block stability and block sensitivity, equivalent
to stability and sensitivity (resp.) of the refinement. In contrast, the approach of Sect. 5a
leads to what may be called micro-stability and micro-sensitivity (for discrete time only).

The function C 3 M — p ™l is not continuous, but it is upper semicontinuous. Therefore,
every micro-stable function is block stable, and every block sensitive function is micro-
sensitive.

5c2 Example. The function g¢,; of Example 3b6 is micro-sensitive but block stable. The
same holds for all coarse random variables in that dyadic coarse factorization. It holds also
for the second construction of Example 3b5 (I mean fs(,)‘t)).

5d Permutation, not replacement

A different idea of stability /sensitivity emerges from a different perturbation of random signs
(or other local data). Instead of replacing (or inverting) a small fraction of random signs,
we may rearrange them a little.

In the discrete-time setup, we divide %Z into intervals of length ¢, and apply a random
permutation within each interval. Every such (e-local) permutation o acts on §2[i] by a
measure preserving transformation, thus, on Ly[i] by a unitary operator U,[i]. We have a
natural probability measure (just the uniform distribution) on the set of all these permuta-
tions; denote it y.[].

For the Brownian dyadic coarse factorization, for every f € Lo(A),

(5d1) sup [ 111~ Va3l duc ) oli) —3 0.
which implies a weaker property,

sup
i

Vm-/mmmwmww

‘—>0.
e—0
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The latter property (and the more so, the former one) characterizes the Brownian coarse
factorization among all dyadic coarse factorizations! (I omit the proof.)

In the continuous-time setup, we consider a noise (not just a continuous factorization).
Arbitrary measure preserving maps R — R do not act on (€2, F, P) (unless the noise is clas-
sical),?® but piecewise linear maps o (having derivative +1 on each piece) act on (2, F, P) by
measure preserving transformations, therefore they act on Ly(€2, F, P) by unitary operators
U,. Once again, we divide R into intervals of length ¢, and require ¢ to map each interval
into itself. Of course, there is no ‘uniform distribution’ on such o. Rather, we subdivide
each e-interval into smaller intervals, of equal length §, and use a random permutation of
these d-subintervals. This way, we have probability measures y. s on maps o.

If f is stable (that is, f € Lo(Ftable), recall 5b), then

(542) / 1f = Uy £l dite (o) = 0

fore - 0,0 — 0, 6 < . The converse is also true. Moreover, if f is sensitive (that is,
]E( f | Fstable) = 0, recall 5b5), then f and U, f are asymptotically independent when § — 0,
for every £. (I omit the proof.)

Note that the Poisson (continuous) factorization is classical; everything satisfies (5d2) in
this case. However, it cannot be obtained as the refinement of a dyadic coarse factorization
satisfying (5d1).

25 Another characterization of classical noises!



