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4 Example: Warren’s “noise made by a Poisson snake”

This section is devoted to a noise discovered and investigated by J. Warren in a manuscript
“The noise made by a Poisson snake” [12].

4a Three discrete semigroups: algebraic definition

A discrete semigroup (with unit; non-commutative, in general) may be defined by generators
and relations.

Two generators f, f_ with two relations f.f_ = 1, f_f. = 1 generate a semigroup
Gdiscrete that is in fact a group, just the cyclic group Z. Indeed, every word reduces to some
f*or f* (or1).

Two generators f,, f_ with a single relation f,f = 1 generate a semigroup Ggiscrete,
Every word reduces to some f* fi. The composition is

k= k‘l + maX(O, k‘g - ll) s

k1 pl1 ko pla _ rk gl
(4a1) (f, +)(fff+)_f*f+’ l:lQ+max(0,l1—k2)-

The canonical homomorphism G5 — Giserete maps f. to fi, f- to f_, and f*fL into
et Gtk > 1), or fAF (if k < 1), or 1 (if k = ). Accordingly, the composition law (4al)
satisfies

L~ k= (I — k) + (I — k).
There is a more convenient pair of parameters, a = [ — k, b = k; that is,?°

fap=fofe? fora,b€Z,b>0,a+b>0;

(4a2) a=a + a,
fal,blfag,b2 = fa,ba

b= max(bl, b2 — al) .

The canonical homomorphism G§**¢ — G{isere® maps f, , to f,, where f, € G is f¢

for a > 0, f|_a‘ for a < 0, and 1 for a = 0.
Three generators f_, f., f« with three relations

(43‘3) f—i—f—:la f*f_=1, f*f-l-:f*f*

generate a semigroup G§*"**. Every word reduces to some f*f! f™. The following homo-
morphism G§erete — Gaiserete will be called canonical: f_ +— f_, fi — fi, fo = fr. We have
FEFLF™ s fEFF™ which suggests such a triple of parameters for GEs®: ¢ = | +m — k,
b=k, c = m; that is,

fape = LI f8 fora,b,c€Z, >0, 0<c<a+b;

(4&4) a=a;+ay, _{CL2+01 if01>b2,

fal,b1,61 fa2,b2,62 = fa,b,c ) c=

b =max(by, by — a1), o otherwise.

The canonical homomorphism Giserete — Gdiscrete jg jugt, fo 4. > fap.
Note that G is commutative, but G5 and G35t are not.

20parameters a, b of (4a2) and a, b, c of (4a4) are suggested by S. Watanabe.
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4b The three discrete semigroups: representation

By a representation of a semigroup G on a set S we mean amap G X S 3 (g,s) — g(s) € S
such that

(9192)(5) = g2(g1(5)) and 1(s) =s
for all g1, 90 € G, s € S. The representation is called faithful, if

g1#g9 = dse€S (91(3) 7 92(3)) .

Every G has a faithful representation on itself, S = G, namely, the regular representation,
9(g0) = gog- Fortunately, Gisrete and G5**® have more economical faithful representations,
on the set Z, = {0,1,2,...}. Namely, for Ggiscrete’

I+ f-

fi(x)=2z+4+1, f (x)=max(0,z—1), e
(401) fap(z) = a + max(z,b), ath prewe-e

b
T € Z+_ FOI‘ Ggiscrete’
fi(z)=2+1, f_(z)=max(0,z—-1),
PO +1 f 0
x or x >0, -
(4b2) i 0 for z = 0; atb | e
: c for 0 <z <b, —b—>
S S () =
Jape() {a:-l—a for x > b.

4c Random walks and stochastic flows in discrete semigroups

4c1 Example. The standard random walk on Z may be described by G{***_yalued random
variables

gs,t = 65,3—1—1654—1,3—1—2 R gt—l,t for S,t € Z, S S t;

(4c2) &i1+1 are independent random variables (t € Z) ;
1
P(gt,t—kl:f—):§:P(£t,t+1:f+) foreacht € Z.

Note that &, &+ = &+ whenever r < s < {. Everyone knows that

(4c3) P (fo,t = fa) = %(é)

fora=—t,—t+2,—-t+4,...,t
In fact, ‘the standard random walk’ is the random process ¢ — & ;. Taking into account
that G5t s a group, &, may be thought of as an increment, &, = f()_’slfs,t.
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4c4 Example. Formulas (4¢2) work equally well on Ggsrete. Still, &, &, = &, However,
G§iserete ig not, a group, and & is not an increment; moreover, it is not a function of & ; and
&o- Indeed, knowing ay, b and a; + aq, max(by, by —ay) (recall (4a2)) we can find ay but not
by. Thus, the two-parameter family (&;;)s<; of random variables is more than just a random
walk. Let us call such a family an abstract (stochastic) flow. Why ‘abstract’? Since G35t jg
an abstract semigroup rather than a semigroup of transformations (of some set). So, we have
the standard abstract flow in G35®, In order to get a (usual, not abstract) stochastic flow,
we have to choose a representation of G35 Of course, the regular representation could
be used, but the representation (4bl) is more useful. Introducing integer-valued random
variables a(s,t), b(s,t) by
Est = fa(s,t)b(s,0)
we express the stochastic flow as

&(x) = als, t) + max(z, b(s, t)).

Fixing s and = we get a random process called a single-point motion of the flow. Namely, it
is a reflecting random walk. Especially, for s = 0 and x = 0, the process

t— fO,t(O) = CL(O, t) + b(O, t)
is a reflecting random walk. It is easy to see that two processes

t = &0.4(0) = a(0,7) + b(0,7) ,

I—)‘ (Ot)—i-l‘ 1
BT Ty

are identically distributed. Also,

b(0,t) = — min a(0,s),
(405) §=0,1,000pt | a@+000)
a(0,t) +b(0,t) = max a(s,t), o0 I X

0 ¢
and a(,-) is the standard random walk on Gd5*¢ = 7, That is, the canonical homomor-

phism Ggiscrete y Gdiserete transforms the standard flow on G3<®* into the standard flow
(or random walk) on G{eete_ Using the reflection principle one gets

a+2b+1 t!
2t a —Q '
(B2 +b+1)1(5e—0)!

Note that a,b occur only in the combination a + 2b.

(4C6) P (fO,t = fa,b) =

4c7 Example. On G§* we have no ‘standard’ random walk or flow; rather, we introduce
a one-parameter family of abstract stochastic flows,

gs,t = 65,3—1—165—1—1,3—1—2 ... gt—l,t for S;t € Z; S S t;

(4c8) &:1+1 are independent random variables (¢ € Z) ;
1 1—
P(gt:f—)zia P(gt:f-i—):Tp, P(é-t:f*):g,
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p € (0,1) is the parameter. The canonical homomorphism G§iserete — Gdiscrete glyeg together
f+ and f,, thus eliminating the parameter p and giving the standard abstract flow on Gg§screte,
Deﬁning CL(-, '): b(a ')a C(', ) by
Eo,t = Ja(s,0)5(s),c(5,1)
we see that the joint distribution of a(-,-) and b(+, ) is the same as before.
Representation (4b2) of G$¢™* turns the abstract flow into a stochastic flow on Z,. Tts
single-point motion is a sticky random walk,

£ £4(0) = (0, 1) .

In order to find the conditional distribution of ¢(-,-) given a(-,-) and b(-,-) we observe
that

(4c9) a(0,t) — ¢(0,t) = min(a 0,t), min{z : £5(2),0(a11) = f*})
where o(xz) = max{s=0,...,t:a(0,s) =z}, —b(0,t) <z <a(0,t).
a(0,)

Therefore the conditional distribution of ¢(0,t) is basically the truncated geometric distri-
bution. More exactly, it is the (conditional) distribution of

(4c10) max (0, a(0,t) +b(0,t) — G+ 1), G ~ Geom(p) ;

here G is a random variable, independent of a(-,-), (-, -), such that P ( G = g) =p(l—p)!

for g =1,2,... That is the discrete counterpart of a well-known result of J. Warren. So,
a+2b+1 t! atb—c

(dcl1) P (& = fape) = -p(1=p)***

2 (e +b+1)1(55 - b)!

for ¢ > 0; for ¢ = 0 the factor p(1 — p)***=¢ turns into (1 — p)®*®, rather than p(1 — p)a*?,
because of truncation.

4d Three continuous semigroups

The continuous counterpart of the discrete semigroup G¢5¢r** = 7 is the semigroup G; =

R:{faZGER}, falfangal—l—az- _
The continuous counterpart of the discrete semigroup Ggserete = {f,, : a,b € Z, b >
0, a+ b > 0} is the semigroup

G2={fa,b:a,bER, b207a+b20},
(4d1) a=a +ay,
fal,b1fa2,b2 :fa,ba ' ?

b= max(bl, b2 — al)
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(recall (4a2)). The canonical homomorphism Gy — G maps fo to fo.
The continuous counterpart of the discrete semigroup G$5% = {f, ;. : a,b,c € Z, b >
0, 0 < ¢ < a+ b} is the semigroup

G3:{fa,b,c:a,b,C€R, bzoaOSCSa‘i‘b}a

(4d2) a=ai+asy, {a2+01 if ¢; > by,
cC=

fa1 ,b1,c1 fa2,b2,02 = fa,b,c ;

b= max(by, by, — a), Co otherwise

(recall (4a4)). The canonical homomorphism G — G5 maps fopc t0 fop-
Note that (i is commutative but Gs, G35 are not. Also, G; and G5 are topological
semigroups, but G5 is not (since the composition is discontinuous at ¢; = by).
There are two one-parameter semigroups in G, {fuo : a € [0,00)} and {f_pp : b €
[0,00)}. They generate G5 according to the relation fyof 45 = 1; namely, fop = f_ppfatb,0-
There are three one-parameter semigroups in G, {fs00 : @ € [0,00)}, {fpp0 : b €
[0,00)} and {fco.: ¢ € [0,00)}. They generate G according to relations fy00f bp0 = 1,
fb,O,bf—b,b,O =1, and fc,O,cfa,0,0 = fc,O,cfa,O,a, for ¢ > 0; namely, fa,b,c = f—b,b,Ofa+b—c,0,0fc,0,c-
Here is a faithful representation of G5 on [0, 00) (recall (4bl)):

fa,b

(4d3) fap(z) = a + max(z,b), a+b

b
z € [0, 00).
Here is a faithful representation of G3 on [0, 00) (recall (4b2)):

f <z<
(4d4) fa,b,c(x) = {C or 0 =T > b’ a+b}------e- Ab,c

z+a forzxz>b. c—d

All functions are increasing, but f,; are continuous, while f,4 . are not.

4e Convolution semigroups in these continuous semigroups

4el Example. Everyone knows that the binomial distribution (4c3) is asymptotically nor-
mal. That is, the distribution of \/£a(0,t/¢) converges weakly (for & — 0) to the normal
distribution ,ugl) = N(0,¢). These form a convolution semigroup, s u,(tl) = u&)t.

Note however, that a(s,t) and &, are defined (see (4c2)) only for integers s,¢. We may
extend them, in one way or another, to real s,¢. Or alternatively, we may use coarse instants
t = (t[i])%y, tli] € 1Z, t[i] — t[oc], introduced in 3b. For every coarse instant ¢, the

distribution of i~/2a(0, it[4]) converges weakly (for i — 00) to ,ug[lczo} = N(0, t[oc]).

4e2 Example. The two-dimensional distribution (4c6) on G has its asymptotics.
Namely, the joint distribution of i~'/2a(0,4t[i]) and i~'/2b(0,t[i]) converges weakly (for
(2)

1]oc] with such a density (on the relevant domain b > 0, a + b > 0;

i — 00) to the measure p
t means t[oo]):

(2) 2
2b
(4e3) pi’ (dadb) _ 2(a+ 2b) exp [ — (a + 2b) .
dadb V2 t3/2 2t
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Treating ,u,(f) (for t € [0,00)) as a measure on Go, we get a convolution semigroup: e ,u§2) =

,ugi)t. Of course, the convolution is taken according to the composition (4d1).
4e4 Example. What about the three-dimensional distribution (4c11) on G$¢™% ? Tt has a
parameter p. In order to get a non-degenerate asymptotics, we let p depend on 7, namely,

1
=——=0,

"V
then the distribution of i'/2G, where G ~ Geom(p) (recall (4c10)), converges weakly to the
exponential distribution Exp(1), and the joint distribution of i='/2a(0,t[i]), i~*/2b(0, it[i])
gf’o)o] The measure has an absolutely
continuous part and a singular part (at ¢ = 0), and may be described (somewhat indirectly)
as the joint distribution of three random variables a, b and (a + b — n)*, where the pair
(a, b) is distributed u? (see (4€3)), n is independent of (a, b), and n ~ Exp(1). Treating )
(for t € [0,00)) as a measure on (3, we get a convolution semigroup: ,u§3) * uﬁ?’) = ufﬂt, the
convolution being taken according to the composition (4d2). No need to check the relation
‘by hand’; it follows from its discrete counterpart. The latter follows from the construction of
4c (you see, random variables 1,812, . - ., &+1—1,5+¢ are independent). It may seem that the
limiting procedure does not work, since G5 is not a topological semigroup; the composition
(4d2) is discontinuous at ¢; = by. However, that is not an obstacle, since the equality
c1 = by is of zero probability, as far as triples (a1, b1, ¢1) and (ag, be, c2) are independent and

and i71/2¢(0,4t[i]) converges weakly to a measure

distributed ug?’), ,ug?’) respectively (s, > 0). The atom of ¢; at 0 does not matter, since b, is
nonatomic. The composition is continuous almost everywhere!

4f Getting dyadic

Our flows in Gt and Ggiseree are dyadic (two equiprobable possibilities on each step),
which cannot be said about G$*; here, on each step, we have 3 possibilities f_, f, f. of
probabilities 1/2, (1—p)/2,p/2. Can a dyadic model produce the same asymptotic behavior?
Yes, it can, at the expense of using i € {1,4,16,64,...} only (recall 3b6); and, of course,
the dyadic model is more complicated.?’ Instead of the trap at 0, we design a trap near 0
as follows:

O

9+ = fo=fro1; 9-= foT_l = foimpo;
1
P (ft,t+1 = 9—) = 2 = P(ft,tﬂ = g+) .
The old (small) parameter p disappears, and a new (large) parameter m appears. We'll see
that the two models are asymptotically equivalent, when p = 27™.
As before, we may denote

gs,t = fa(s,t),b(s,t),c(s,t) )

2'Maybe, a still more complicated construction can use all i; T do not know.
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note however that only a(s,t) is the same as before; b(s,t), c(s,t) and &, are modified.
Formula (4c¢b) for b(0,¢) fails, but still,

(4f1) b(0,t) = — min a(0,s) +O(m),

$=0,1,...,t

which is asymptotically the same. Formula (4c9) for ¢(0,t) also fails; instead,

. a(0,)

N

©) %’%W a(0,")—¢(0,")

(4£2) a(0,t) — ¢(0,t) =min{z :o(x + m—1) —o(x) =m — 1},

if such z exists in the set Z N [mingy a(0,-), a(0,t) —m+1]; otherwise, ¢(0,%) = O(m). (Here
o is the same as in (4c9).)

The conditional distribution of ¢(0,t), given the path a(0,-), is not at all geometric
(unlike (4¢10)), since now ¢(0,¢) is uniquely determined by «(0,-). However, according to
(4£2), ¢(0,t) is determined by small increments of the process o(-). On the other hand, the
large-scale structure of the path a(0,-) is correlated mostly with large increments of o(-);
small increments are numerous, but contribute a little to the sum. Using this argument, one
can show that ¢(0,?) is asymptotically independent of a(0,¢) (and b(0,t), due to (4f1)).

The unconditional distribution of ¢(0,%) can be found from (4f2), taking into account
that increments o(z + 1) — o(x) are independent, and each increment is equal to 1 with
probability 1/2. We have Bernoulli trials, and we wait for the first block of m —1 ‘successes’.
For large m, the waiting time is approximately exponential, with the mean 2™.?2 Thus,
27™(a(0,t) — (0, ¢) — ming ) a(0, -)) is asymptotically Exp(1), truncated (at ¢ = 0) as in 4e.

Taking the limit 4 = 2™ — oo we get for i~ /2a(0, it[4]), i~*/2b(0, it[4]), i~/2¢(0, it[i]) the
(3)

limiting distribution Hifoo): the same as in 4e.

4g Scaling limit
For any coarse instants s,t, the distribution ,ugt? [4] of =Y/ 251.(:[2]’%[1.] converges weakly (for
i — 00) to the measure ,ugf? [oo] = ,uiﬁi)]fs[oo] on Gy, for our three models, n = 1,2,3. Of
course, multiplication of & by i~'/2 is understood as multiplication of a(-,-), b(-,), ¢(-,-) by
i~/2, which is a homomorphic embedding of G4t into G,,.

Let 7, s,t be coarse instants, » < s < t. Due to independence, the joint distribution

) [i]®ugt? [i] of random variables i~/ 261.(:‘[2.] s and it 251.(:[3]’1. i) converges weakly to 18 [o0]®

uﬁ’ft) [co]. However, we need the joint distribution of three random variables,

e s T s T

ir[i),is[i] ° ar[i],it[i] *

22Guch a block appears, in the mean, after 2™~! shorter blocks, of mean length ~ 2 each.
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the third being the product of the first and the second in the semigroup G,. For n = 1,2
weak convergence for the triple follows immediately from weak convergence for the pair,
since the composition is continuous. For n = 3, discontinuity of the composition in G5 does
not invalidate the argument, since the composition is continuous almost everywhere w.r.t.
the relevant measure (recall 4e).

Similarly, for every k£ and every coarse instants t; < --- < tg, the joint distribution of
k(k — 1)/2 random variables i_1/2§z.(ggi],itm[i], 1 <1 < m <k, converges weakly (for i — 00).
We choose a sequence (x)52 ; of coarse instants such that the sequence of numbers (¢[00])$2
is dense in R, and use Lemma 2c10, getting a coarse probability space.

The Holder condition, the same as in 2a3, holds for all three models. I mean Holder
continuity of a(-,-), b(-,-), ¢(-,-). Indeed, a(-,-) is the same as in 2a3; b(-,-) is related to
a(-,-) via (4cb) or (4f1); and c(-,-) satisfies (on any interval)

0,s5) —¢c(0,t)| < 0,s) —a(0,?)];
max [c(0,5) = o(0,2)] < max a(0,5) — a(0, )]
though, for the model of 4f, O(m) must be added.

Thus, a joint o-compactification is constructed for all three models (the third model —
in two versions, (4c7) and 4f).

4h Noises

4h1 Example. The standard flow in G35t rescaled by i~'/2, gives us a coarse probability
space, identical to that of 3b2. It is a dyadic coarse factorization. Its refinement is the
Brownian continuous factorization (see 3d2). Equipped with the natural time shift, it is a
noise (see 3e4).

4h2 Example. The standard flow in G5 rescaled by i~'/2, gives us another coarse
probability space. It is also a dyadic coarse factorization (the proof is similar to the previous
case). Its ‘two-dimensional nature’ is a delusion; the dyadic coarse factorization is identical
to that of 4h1. The second dimension b(-,-) reduces to the first dimension, a(-,-), by (4c5b).

4h3 Example. The flow in Gs, introduced in 4c7, rescaled by i~/ with p = i7/2 (recall

4ed), gives us a coarse probability space. It is not a dyadic coarse factorization, since it is
not dyadic. However, it satisfies a natural generalization of Definition 3bl to non-dyadic
case (the proof is as before). Its refinement is a continuous factorization, and (with natural
time shift), a noise.

Once again, the second dimension, b(-,-), reduces to the first dimension, a(-,-). Indeed,
the joint distribution of a(-,-) and b(-,-) is the same as in 4h2. What about the third
dimension, ¢(-,-)?

The conditional distribution of c¢(s,t), given a(s,t) and b(s,t), is basically truncated
exponential. Namely, it is the distribution of (a(s,t) + b(s,t) — n)* where 5 ~ Exp(1); see
4ed. Moreover, for any r < s < t, the conditional distribution of ¢(r,t) given a(r, s), b(r, s)
and a(s,1),b(s,t), is still the distribution of (a(r,t) + b(r,t) —n)™. In other words, c(r,?)
is conditionally independent of a(r,s),b(r, s),a(s,t),b(s,t), given a(r,t),b(r,t). That is a
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property of the composition (4a4); if ¢; ~ (a1 + b — 771)+ and ¢y ~ (a2 + by — 772)+ then
c~(a+b—n)t.

6 ao+ba a—'l—b

It follows by induction that the conditional distribution of ¢(t1,t,), given all a(t;,t;) and
b(ti, t;), is given by the same formula (a(t1,t,) +b(t1, ;) — 1) ™, n ~ Exp(1), for every n and
ty < --- < t,. Therefore, the same holds for the conditional distribution of ¢(s,t) given all
a(u,v) and b(u, v) for u,v such that s < u < v <t (aresult of J. Warren). We see that c(-, -)
is not a function of a(-,-) (and b(-,-)).

4h4 Example. Another flow in G§®** introduced in 4f, rescaled by i~*/? with i = 22™
gives us a dyadic coarse factorization. Its refinement is the same continuous factorization
(and noise) as in 4h3.

41 The Poisson snake

Formula (4¢9) suggests a description of the sticky flow in G$®®* by a combination of a
simple random walk a(-,-) and a random subset of the set of its ‘chords’. A chord may
be defined as an interval [s,t], s,t € Z, s < t, such that a(s,t) = 0 and a(s,u) > 0 for
all u € (s,t) N Z. Or equivalently, a chord is a horizontal straight segment on the plane
that connects points (s,a(O, s)) and (t,a(O,t)) and goes below the graph of a(0,-). The
random subset of chords is very simple: every chord belongs to the subset with probability
p, independently of others. Note that p = i~'/2 is equal to the vertical pitch (after rescaling
a(-,-) by i~*/?). The scaling limit suggests itself: a Poisson random subset of the set of all
chords of the Brownian sample path.

4i1 Definition. A finite chord of a continuous function f : R — R is a set of the form
[s,t] x {z} C R? where s < t,x = f(s) and t = inf{u € (s,00) : f(u) > x}. An infinite chord
of f is a set of the form [s,00) x {z} C R? where z = f(s) and f(t) > z for all ¢ € (s, 00).
A chord of f is either a finite chord of f, or an infinite chord of f.

é N fi
a chord

a chord
If f decreases, it has no chords. Otherwise it has continuum of chords. The set of chords
is, naturally, a standard Borel space, due to the one-one correspondence between a chord
and its initial point (s, z) € R?.

4i2 Lemma. For every continuous function f : R — R there exists one and only one
o-finite positive Borel measure on the space of all chords of f, such that the set of chords
that intersect a vertical segment {t} x [z,y| is of measure y — x, whenever ¢, z,y are such
that infoc(_oo ) f(5) <z <y < f(2).
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-y

-z

§

The proof is left to the reader. Hint: for every € > 0, the set of chords longer than ¢ is
elementary; on this set, the measure is locally finite.

The map [s,t] X {z} — s (also [s,00) x {z} — s, of course) sends the measure on the
set of chords into a measure on R. If f is of locally finite variation, then the measure on
R is just (df)*, the positive part of the Lebesgue-Stieltjes measure. However, we need the
opposite case: f is of infinite variation on every interval, and the measure is also infinite on
every interval. Nevertheless, it is o-finite. We’ll denote it (df)™ anyway.

The measure (df )" is concentrated on the set of points of ‘local minimum from the right’.
If f is a Brownian sample path then the set is of Lebesgue measure 0.

So, the set of all chords is a measure space, it carries a natural o-finite (sometimes, finite)
measure. The latter is the intensity measure of a unique Poisson random measure.?? This
way, (the distribution of) a random set of chords is well-defined.

Or equivalently, we may consider a Poisson random subset of R, whose intensity measure
is (df)*.

However, it is not so easy, to substitute a Brownian sample path B(-) for f(-). In order
to get a (Poisson) random variable, we may ask, how many random points belong to a given
Borel set A C R such that (dB)*(A4) < co. Note that for any interval A, (dB)"(A) = oo
a.s. We cannot choose an appropriate A without knowing the path B(-). Countable dense
subsets of R do not carry a natural (non-pathological) Borel structure.

In this aspect, chords are better than points. They are parametrized by three (or two)
numbers, thus, they carry a natural Borel structure, irrespective of B(-). The random
countable set of chords is not dense; rather, it accumulates toward short chords.

A point (¢,z) belongs to a random chord of B(-) if and only if

r € o, '(II), thatis, oy(z)€ll,
where oy(x) = inf{s € (—o0,t] : B(s) > z} for x € (—o0, B(t))

(recall (4¢9)), and II is the Poisson random subset of R, whose intensity measure is (dB)*.
Do not confuse the inverse image o, *(II) with the image B(II). True, B(o;(x)) = z, but
o¢(B(s)) # s. Sets IT and B(II) are dense, but the set o, '(II) is locally finite. Moreover,
o; (II) is a Poisson random subset of (—oo, B(t)], its intensity being just 1.

The random countable dense set 1I itself is bad; we have no measurable functions of it.
However, the pair (B (+), H) of the Brownian path and the set is good; we have measurable
functions of the pair; in particular, measurable functions of the locally finite set o, *(II).
Especially,

a(0,t) — ¢(0,¢) = min(a(0, ), min{z : oy(z) € IIN (0,00)}).

4i3 Lemma. The o-field F; ; of the sticky noise is generated by Brownian increments B(u)—
B(s) for u € (s,t) and random sets o, (ILN (s,t)) for u € (s,t) (treated as random variables
whose values are finite subsets of R).

The proof is left to the reader.

23See for instance [5, X11.1.18)].



