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3 Scaling limit and independence

3a Product of coarse probability spaces

Having two coarse probability spaces ((4[i], Fi[i], Pi[i])$2,, A1) and ((Qeli], Fo[d], Pali])e2,,
As), we define their product as the coarse probability space ((Q[i], F[i], P[i])$2,,.A4) where
for each 1,

(Qfa], F[al, Plil) = (ula], Falal, Pafa]) x (€22[1], Fali], Pali])

is the usual product of probability spaces, and A is the smallest coarse o-field that contains
{A; x Ay : A] € A, Ay € Ay}, where A x Ay C Q[all] is defined by Vi (A; x Ay)[i] =
Aqi] x As[i]. Existence of such A is ensured by Lemma 2b3. We write 4 = A; ® A,.

3al Lemma. The refinement of the product of two coarse probability spaces is (canonically
isomorphic to) the product of their refinements.

Proof. Denote these refinements by (1, F1, P1), (Q9,Fe, P») and (Q,F,P). Both
MALG($2y, F1, P1) and MALG(Q, F2, P») are naturally embedded into MALG(Q, F, P) as
independent subalgebras. They generate MALG((Q, F, P) due to Lemma 2¢6.

]

Given an arbitrary coarse o-field A on the product coarse sample space ((Q1[z], Fi[i], Pi[d])
X (i), Fo[i], P2[i]))$2,, we may ask, whether A is a product, that is, A = A; ® Aj for some
A1, Ay, or not. No need to check all Ay, Ay. Rather, we have to check

.Alz{AltAlXQQEA}, AQZ{AQ:Q]_XAQEA};

of course, A; x Qy C Q[all] is defined by Vi (A; x Qo)[i] = A[i] x Qali]. If {41 x Ay A €
A, Ay € Ay} generates A, then A is a product; otherwise, it is not.

The refinement F of A contains two sub-o-fields F; = {(A; x Qo)[oc] 1 A1 € A},
Fo ={(21 x Ag)[o0] : A3 € Ay}. They are independent:

P(ANB)=P(A)P(B) forAc F,, BeF,.
3a2 Lemma. A is a product if and only if F;, F, generate F.
Proof. We apply Lemma 2¢6 to {A; x Ay : A1 € A1, Az € As}. 0

3a3 Note. It is well-known that a generating pair of independent sub-o-fields means that
(Q, F, P) is (isomorphic to) the product of two probability spaces. So, a coarse probability
space is a product if and only if its refinement is a product. (Assuming, of course, that the
coarse sample space is a product.)

Let A = A; ® Ay. Consider Hilbert spaces Hi[i] = Lo(u[i], Fili], Pi[i]), Hali] =
Ly(]d], Foli], Poli]), HIi] = Lo(Q[i], F[i], P[i]). For each i, the space H|[i| is (canonically
isomorphic to) Hy[i] ® Hy[i]. Indeed, for z; € Hi[i], xo € Hs[i] we define z; ® xo € H[i] by
(21 ® T2) (w1, ws) = x1(w1)xe(w2), then (z1 ® T2, Y1 ® y2) = (w1, y1){T2,y2), and factorizable
vectors (of the form z; ® z5) span the space H[i]. We know (see Lemma 2c¢7) that the
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refinement Hoo] of ((H[i])$%,, Lo(A)) is Lo(Q, F, P). Also, Hioo] = Lo(Q4, Fi, Pi) and
Hj[oo] = Ly(Qg, Fo, P5). Using Lemma 3al we get H[oo] = Hi[oo] ® Hs[oco]. In that sense,

Lim(H[i] ® H[i]) = (Lim H;[i]) ® (Lim Ho[1]) .

If x € Ly(Ay), y € La(Az), we define z ® y by (z ® y)[i] = z[i] ® y[i] for all 7, and we get
T Qy € Ly(A) and (z ® y)[oo] = z[oo] ® yloo], that is,

(3a4) Lim(z[i] ® y[i]) = (Limz[i]) ® (Limy[d]).
Indeed, it holds for (linear combinations of) indicators of coarse events. Note also that linear
combinations of factorizable vectors are dense in Ly(.A).

Assume that R;[i] : Hq[i] — Hi[i], Rali] : Hy[i] — Hs[i] are linear operators, possessing
limits R;[0o] = Lim R;[i], Re[oc] = Lim Ry[i]. Consider linear operators R;[i|® Ry[i] = R[i] :
H[i]| — HJ[i]. (It means that R[i]z[i] = Ry[i]z1[i] ® Rali]xs[i] whenever z[i| = z1[i] ® z3[i].)
If sup, || R1[3]|| < oo, sup; ||Ra[i]|| < oo, then Lim R[i| = R;[oo] ® Ra[oc], that is,

(3a5) Lim(Ry[i] ® Ry[i]) = (Lim Ry[i]) ® (Lim Ryld]) .
Indeed, we have to check that
Lim (R;[i] ® Ry[i])z[i] = (Lim R;[i] ® Lim R,[i]) (Lim z[i])

for all z € Ly(A). We may assume that x is factorizable, x = 71 ® zo; then

Lim (R [1] ® Ro[i]) (z1[i] ® z-[i]) =
= Lim (R [i]z1[i] ® Rsli]s[i]) =
= (Lim Ry [i]z1[1]) ® (Lim Ryi]zo[d]) =
(le Ryi ) (le x1[d] ) (le Ryli ) (le T [z]) =
= (Lim Ry [i] ® Lim Ry[4]) (Lim 21 [¢] ® Lim z[1]) .
Especially, let Rs[i] be the orthogonal projection to the one-dimensional subspace of
constants (basically, the expectation), and R;[i] be the unit (identity) operator, then (R:[i]|®
Ry[i]) (z[i]) = E(=[i]| F1[i]); indeed, it holds for factorizable vectors. Further, Ry[oc] =

Lim R5[7] is the expectation on (S, F», P»), since convergence of vectors implies convergence
of one-dimensional projections, and constant functions on 5[all] belong to Ly(A). So,

(3a6) LimE (z[i] | #1[i]) = E(Limal[i] | F,)

for all x € Ly(A).
All the same holds for the product of any finite number of spaces (not just two).

3b Dyadic case

Let (Q[i], F[i], P[i]) be the space of all maps +Z — {—1, +1} with the usual product measure.
That is, we have independent random signs 73 /; for all integer k;** each random sign takes on

HRigorously, I should denote it by 7[i], but 7 /i is more expressive. Though, 7 /¢ is not the same as 7y /3,
but hopefully it does not harm.
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two values £1 with probabilities 50%, 50%. The coarse sample space (€2[i], F|[i], P[i])$2, will
be called the dyadic coarse sample space.'® Let A be a coarse o-field on the dyadic coarse
sample space. What about decomposing it, say, into the past and the future w.r.t. a given
instant?

Let us define a coarse instant as a sequence ¢ = (t[i])%2; such that ¢[i] € +Z (that is,
it[i] € Z) for all i, and there exists t[oo] € R (call it the refinement of the coarse instant)
such that t[i] — t[oo] for i — co. A coarse time interval is a pair (s,t) of coarse instants s, ¢
such that s < ¢ in the sense that s[i] < t[i] for all .

For every coarse time interval (s, t) we define the coarse probability space ((€2,4[d], Fi ]3],
P, [i])$2,, A) as follows. First, Q,,[i] is the space of all maps (1ZN[s[i], t[s])) — {—1,+1}.%¢
Second, F;4[i] and P[] are defined naturally, and we have the canonical measure preserving
map (], Fli], P[i]) = (s 4[¢], Fs4]7], Ps¢[i]). Third, each A C Q,4[all] has its inverse image
in Q[all]; if the inverse image of A belongs to A then (and only then) A belongs to A,
which is the definition of A ;. It is easy to see that A, is a coarse o-field.

Given coarse time intervals (r, s) and (s,t), we have

(Qr,t[i]a fr,t[i]: P’r,t[i]) = (Qr,s[i]a ‘7:7‘,5[7;]’ Pr,s[i]) X (Qs,t[i]a fs,t[i]a Ps,t[i]) 9
and we may ask, whether A, , is a product, that is, 4,, = A, ; ® A, ,, or not.

3bl Definition. A dyadic coarse factorization is a coarse probability space
(4], Fli], P[i])$,,.A) such that (4], F[i], P[4])$°, is the dyadic coarse sample space, and

-Ar,t = -Ar,s & As,t

whenever r, s, t are coarse instants such that r[i] < s[i] < t[é] for all i; and

A is generated by U Asi,
(s5t)

where the union is taken over all coarse time intervals (s, t).
Every family (A;;)s<; of coarse o-fields A;; on coarse sample spaces (Qs,t (3], Fsilt], Ps s [z’])g’il,

indexed by all coarse time intervals (s, t) and satisfying A, ; = A, ;® A, whenever r < s < ¢,
corresponds to a dyadic coarse factorization.

3b2 Example. Given a coarse time interval (s, t), we consider f;: Q[all] — R,

1 B
foplw) = Vi Z Tisi(w) for w € Qfd].
b pisfi)<k/i<t]i]

Only s[oo], t{oo] matter, in the sense that
(3b3) / JEL =TSO ypr g
afi] 1+ | f[i] — f[4]] im0
15Sometimes a subsequence is used; say, i € {2,4,8,16,...} only; or equivalently, [i] is the space of maps

2717, — {—1,+1}; see 3b6, 3b7.
16Tt may happen that s[i] = t[i], then Q[i] contains a single point.
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if f = f;; and f = f5 is such a function built for a different coarse time interval (3,?)
satisfying §[oo] = s[oc], t[oc] = t[oo]. Moreover, || f[i] — flilll 2o — 0 for © — oo. We choose
a sequence of coarse time intervals, (s,,?,)%,, such that the sequence of their refinements,
(sn]oc), ta[o0]) is dense among all (usual, not coarse) intervals, then the sequence (f;, 1, )5,
satisfies the condition of Lemma 2¢10 and therefore it generates a coarse o-field A. It is easy
to see that A does not depend on the choice of (s,,t,). Clearly, the refinement of f;, is the
increment B(t[oo]) — B(s[oc]) of the usual Brownian motion B(-).

Given three coarse instants r < s < t, we have

fr,t = fr,s + fs,t-

It shows that f,; is coarsely measurable w.r.t. the product of two coarse o-fields A, ; ® A; ¢,
which means A,; = A, s ® As;. So, we have a dyadic coarse factorization. We may call it
the Brownian coarse factorization.

3b4 Example. Let f;;(w) be the same as in 3b2 and in addition,
1

gs,t(w):\7 Y (=Dri(w)  for w e Qi
U kisli<h/i<t]i]

In the scaling limit we get two independent Brownian motions By, By; the refinement of f;
is Bj(t[oc]) — Bi(s[o]), the refinement of g,; is By(t[oc]) — Ba(s[oo]). By the way, (—1)*
cannot be replaced with (—1)*¥=¢; it would violate the condition of 2c10.

We may also consider

fs(g)(w) = i Z exp (271’\/—_1- %)Tk/i(w) for w € Q]

\/Z k:s[i]<k/i<t[i]
forn =1,2,3,... In the scaling limit we get two real-valued Brownian motions B;, By and
infinitely many complex-valued Brownian motion Bs, By, ... All B,, are independent.

Another construction of that kind:
1 k
b pesli)<k/i<ti] v

In the scaling limit, each A € (0, 00) gives a complex-valued Brownian motion By. Any finite
or countable set of numbers A may be used, and leads to independent Brownian motions.
Note that we cannot use more than a countable set of A, since separability is stipulated by
the definition of a coarse probability space.

3b5 Example. For n = 1,2,... we introduce
() 1 - :
fof (W) = \7 Z Tk+m)/i(w)  for w € Q]
b keslil<k/i<tli) m=1

In the scaling limit we get independent Brownian motions B,,.
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Another construction of that kind:

entier(A\v/7)

A 1 .
fs,(,t) (W) = /i Z H Tkmyyi(w)  for w e Q[i];
kis[i|<k/i<tls]] m=1

any finite or countable set of numbers A € (0,00) may be used, and leads to independent
Brownian motions B,.

Note that we cannot take the product over m = 1,... entier(\i); that would destroy
factorizability.

3b6 Example. Here we restrict ourselves to i € {2,4,8,16,...}, thus violating a little our
framework. We let

n—1

14 7i(w 1 — Tkrmy i (w a .
gsp(w) = Z ;/ ) H (k; (@) for w € Q[i], i =2".
k:s[d] <k /i< (k+n—1)fi<t]i] m=1
That is, g5 : Q[all] — {0,1,2,...} counts combinations ‘+ — ... —" of one plus sign and

(n — 1) minus signs in succession. In the scaling limit we get the Poisson process.

3b7 Example. Let f;; be as in Example 3b2 (Brownian), while g,; be as in Example 3b6
(Poisson). Taken together, they generate a coarse o-field. The corresponding scaling limit
consists of two independent processes, Brownian and Poisson.

Let ((Q[i], F[i], P[i])$2,, A) be a dyadic coarse factorization. Being a coarse probability
space, it has a refinement, (2, F, P). For every coarse time interval (s,t) we have a coarse
sub-o-field A, C A and its refinement, a sub-o-field F;; C F. By Lemma 3al,

Frr=Frs®Fs; whenever r <s<t.

3b8 Lemma. If s[oo] = t[oo] then Fj; is degenerate (that is, contains sets of probability 0
or 1 only).

Proof. Consider the coarse instant r,

, s[i] for i even,
rlid =9, .
t[i] for i odd.

For every A € A, ,,
P(4) = lim Pli)(A[]) = lim P[21] (A[2d]) € {0.1},

since F;,[2i] is degenerate. So, A, , is degenerate. Similarly, A, ; is degenerate. However,

As,t = -As,r b2 -Ar,t- O

3b9 Lemma. F;, depends only on s[oo], t[oo].
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Proof. Let (u,v) be another coarse time interval such that u[oc] = s[oo] and v[oo] = t[oo];
we have to prove that F,, = F, ,. Assume that s[oo] < t[oo| (otherwise both F;; and F,,
are degenerate). Assume also that s[i] < v[i] and u[i] < t[i] for all ¢ (otherwise we correct
them on a finite set of indices 7).

Further, we may assume that s < u < v < t; otherwise we turn to sAu < sVu <tAv <
¢tV v, where (s A u)[i] = s[i] A u[i] = min(s[z],u[i]), etc; both F; and F,, are sandwiched
between Fyny rvy and Foyy tap-

Finally, Fs; = Fsu @ Fup @ Fyr = Fup, since F,,, and F,, are degenerate by Lemma
3b8. U

So, a sub-o-field F;; C F is well-defined for every interval (s,t) C R (rather than a
coarse time interval), and

Fri=F s ®Fs; whenever —oo <r <s<t<+00.
3b10 Lemma. The union of sub-o-fields F;,.; . over € > 0 generates F,;.

Proof. Consider F.;. We have to prove that E(z | F.1) converges to z (in Ly(Q), for
e — 0+) for every x € Lo(Fp,1), or for z[oo] where z € Ly(Ap,1). Assume the contrary, then

IE (@foo] | Fep) I < e < [lz[oc]l
for all € small enough, and some constant c. We know that
E (z[oo] | Fep) =LimE (x[i] | F.1[1])

for each £.17 Therefore

1 (2fa] | Feali]) | —— IE(loc] [ Fox) || <e.
We choose a sequence €]i] - 0 such that ||E ( z[d] | Feiali]) || < ¢ for all 4 large enough.
However, LimE ( z[i] | F.3, [z]) = E(z[o0] | Fejoep1) = E(2[oo]| Fo1) = z[oo]; a contra-
diction. 0

3c Scaling limit of Fourier-Walsh coefficients

We still consider a dyadic coarse factorization. The Hilbert space Lo[i] = Lo (3], F[3], P[4])
consists of all functions of random signs 7,,,, m € %Z. The well-known Fourier-Walsh (or-
thonormal) basis of Ls[i] consists of products

=[] 7, MeCl]={MCiZ:Mis finite}.
meM
Every f € Ly[i] is of the form
f ZfMTM_f(D+ Z f{m}Tm Z f{ml,mg}Tmle2+--- ;

me 17 m1,mz€%Z,m1<m2

170r rather, an appropriate coarse instant is meant in JF 1[i].
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coefficients fM are called Fourier-Walsh coefficients of f. We define the spectral measure pi¢
on the countable set C[i] by

= Z |ful? for M C CJi];
MeM

it is a finite positive measure;

prCED) = 1175 wr({0}) = (EF)*; pe(CLET\ {0}) = Var(f).

Let (s,t) be a coarse time interval. We have

E(7ar| Fouli]) = {SM Lfﬂfl‘zerVis[ii],t[i]),

B (f | Foeld]) II? = up({M € Cli] : M C [s[i], 2[i])}) -
We apply it to f = z[i] for an arbitrary z € Ly(.A) and arbitrary i; py becomes pi;) or fiz[d);
alil({M € Cli): M € [sfi, ti)}) = B (] | Fodi]) I} —> [ (lo0] | Furloo] ) |

by (3a6). For every € > 0 we can choose s,t so that ||z[oc]||? — ||E ( x[o0] |.7:s,t[oo]) I <e,
and moreover,

(3c1) (i) ({M € C[i] : M C [s[i], t[i])}) <e foralli.

We consider each p,[i] as a measure on the space C[oo] of all compact subsets of R, equipped
with the Hausdorff metric

(3c2) dist(My, My) = sup
T€R
for nonempty My, My; and dist(, M) = 1 for M # (). Clearly, C[i] C C[oc] for each 7; thus, a
measure on C[i] is also a measure on C[oco]. The set {M € C[oo] : M C [u,v]} is well-known
to be compact, for every [u,v] C R. Thus, (3cl) shows that the sequence of measures f,][i]
on C[oo] is tight.
Let (s1,t1) and (s9,%2) be two coarse time intervals, s; < t; < sp < to. Sub-o-fields
Fsy 1, [7] and Fi, 4,[¢] are independent; they generate a sub-o-field that may be denoted by

min |z — y| — mln |z —y|
yeM:

f(slatl U(52,t2)[z] 51,751 [l] ® FSz,tz[ ] .
We have

v M C [sad] ta[d]) U [sad], tld]),
E (7 ‘ Fovmuieemll) = {O otherwise;
IE (| Fsrnyoeonmli]) 117 = ({M € Cli] - M C [s1[d], t1[4]) U [s2[1], ta[i])}) ;
p[))({M € C[i] : M C [su[i], t1[d]) U [sa]i], 22[3])}) =
= ||E(.’L’[Z] ‘f(sl,tl)U(smb)[i]) ”2 x ||E(I13[OO] ‘ ‘7:(51,751)U(52,t2)) [OO]||25
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where Fs, 11)U(s2,t2)[00] = Fy,4,[00] @ Fsy 1, [00] = Fyoo]ti[o0] @ Frafoc]ta[oc]- A generalization
of (3a6) to the product of more than two spaces was used here.
The same holds for more than two coarse time intervals:

(3¢3) pald)({M €Cli] : M C [s1]i], ta[2]) U ... U [sn[d], tald])}) —

i—
— 1B (#fo0] | Foptrrotontlo0]) [
We have convergence of spectral measures on a special class of subsets of C[oco]. Note that

the intersection of two such subsets is again such a subset. Therefore, the convergence holds
on the algebra of subsets generated by the class. Here is a generic element of the algebra:

(3c4) {M € Cloo] : M C UR_;[sk[d], tx[7]) and M N [sgli], te[i]) # D for k=1,...,n}.

Its diameter (recall the metric (3c2)) does not exceed maxy,(tx[i] — sx[i]). Thus, we get weak
convergence of measures, which proves the following result.

3c5 Theorem. For every dyadic coarse factorization (4], F[i], P[i])%,,.A) and every z €
Ly(A), the sequence (y,[i])$°; of spectral measures converges weakly to a (finite, positive)
measure p;[oo] on the Polish space C[oo].

Convergence of measures pg[i] on a ‘cell’ of the form (3¢3) (or (3c4)) does not ensure
that the limit is p,[oc] on the ‘cell’.'® Rather, the limit lies between p,[oo]-measures of the
interior and the closure of the cell,

(3¢6)  pa[oo]({M € Cloo] : M C (s1]], t1[z]) U ... U (sald], ta[d])}) <
< || (2[00] | Frsytn)uissntay[00] ) [I* <
piz[00] ({M € Cloo] : M C [s1]d], t4[i]] U ... U [sn[d], ta[t]]}) -
3c7 Lemma. For every t € R,
piz[00] ({M € Cloo] : M 3 2}) = 0.

Proof. Lemma 3b10 gives us

I

IE (2[00] | F—oo,—e)ute,+00)[00] ) IIF — [|z[oc]||?,
e—0

therefore
piz[00]) ({M € Cloo] : M C (—o0,e] U [e, +0)}) —2 1a[o] (Cloo]) -
O

Now we see that the boundary of a ‘cell’ is negligible (of measure 0); inequalities (3c6)
are, in fact, equalities.

Applying Fubini theorem we see that p,[oo] is concentrated on compact sets M of
Lebesgue measure 0 (therefore, nowhere dense).

8Think for example about an atom at the point + of R, and ‘cells’ of the form (z, y].
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3d The limiting object

3d1 Definition. A continuous factorization (of probability spaces) (over R) consists of a
probability space (€2, F, P) and a two-parameter family (F;;)s<; of sub-o-fields F,;, C F
such that

Fri=TFrs®Fsy whenever r < s <t

(that is, F,; and F,; are independent, and together generate F,;), and

U Fotet—e generates F,; whenever s < t,
e>0

and

o0
U F_nn generates F .

n=1

The refinement of any dyadic coarse factorization is a continuous factorization (as was
shown in Sect. 3b). Also, every continuous factorization is (isomorphic to) the refinement of
some dyadic coarse factorization. (I omit the proof.)

Given a continuous factorization ((Q,]—", pP), (]:s,t)sgt) and x € Lo(Q2, F,P), we may
define the spectral measure p, of x as the (finite, positive) measure on the space C = C|[o0]
of compact subsets of R such that

/l'w({M S C[OO] M C (Slatl) U...J (Snatn)}) - ||E(~T | F(sl,tl)u...u(sn,tn)) ”2

whenever 51 <) < 59 <--- < 1, 1 < 8, <ty here Fsy 41)u..0(
generated by Fg 1,-.., Fg, .-
The spectral measure is concentrated on (the set of all) nowhere dense compact sets, and

t,) stands for the sub-o-field

Sn,

ps({M e€C:M>t}) =0 foreachteR.

3d2 Example. The refinement of the Brownian coarse factorization (see 3b2) is the Brow-
nian continuous factorization,

Fs. is generated by {B(v) — B(u) : s <u <wv <t},

where B(-) is the usual Brownian motion. Every z € L, admits It6’s decomposition into
multiple stochastic integrals,

z = &(0) +/£({t1}) dB(t1)+//i({t1,t2}) dB(t)dB(ty) + - - =

t1 <t

:g/---/i‘({tl,...,tn})dB(tl)...dB(tn),

1<<tpn
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where Z € Ly(Cnite), Chnite being the space of all finite subsets of R, equipped with the
natural (Lebesgue) measure, making the transform z <+ & unitary, according to the formula

Elzf = |2(0) + / G({t ) der + / @({tr, t2))|? dtrdty +

t1 <t

200:0/ / 2({t1, ..., ta}) P dty ... dt,

11 < <tp

The spectral measure p, of x is

Z / / 2({tr, .. ta PPty .. dty,

M= <o Ltn [t ot }EA

That is an important property of the Brownian continuous factorization: the spectral mea-
sure (of any random variable) is concentrated on the subset Cgpie C C, and absolutely
continuous w.r.t. Lebesgue measure on Cgpite-

In particular, for z = exp(iv/AB(t)) the measure y, is just the distribution of the Poisson
process of rate A on (0, ). Indeed,

exp (iVAB(t) —WZA"/? / / dB(ty) ...dB(t,) .
0<ty <<t <t
3d3 Example. Recall the process Y; of 1b3;

Y.(t) = exp(iB(Int) — iB(ln¢)) .

We define F;; as the o-field generated by ‘multiplicative increments’ Y:( %) for all (u,v) C
(s,1), that is, by (usual) Brownian increments on (In s, Int). The spectral measure iy, () is the
distribution of a non-homogeneous Poisson process on (g,t), the image of the usual Poisson
process (of rate 1) on (Ine,Int) under the map u +— e*. The rate of the non-homogeneous
Poisson process is A(s) = 1/s.

The limiting process Y was discussed in 1b3. It may be treated as the refinement of Y, for
e — 0 (I leave detail to the reader). The spectral measure py () should be the distribution
of a non-homogeneous Poisson process on (0,%), of the rate A(s) = 1/s. Random points
accumulate to 0; we add 0 to the random set, making it compact. However, the equality
uw({M : M > 0}) = 1 does not conform to Lemma 3c7! It happens because the limiting
object is not a continuous factorization. Denote by Fy, ; the o-field generated by U.~oF: 1.
Every Y (1)/Y (¢) for t > 0 is Fy 1-measurable, but Y'(1) is not. The global phase is missing.
Of course, for every ¢ > 0 there exists an independent complement of Fo, ; in F_n; (for
example, the o-field generated by Y (¢)). However, we cannot choose a single complement
(to be denoted by F_ o) for all £ > 0, since the tail o-field NysoF_oo s is degenerate.

3d4 Lemma. For every continuous factorization ((Q, F,P), (fs,t)sgt) and every s < t,

Fs,t = ﬂ fs—s,t—l—s -

e>0
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Proof. The o-field N.50Fo, is degenerate by Kolmogorov’s zero-one law applied to
.7:1,00,.7:1/2,1,.7:1/3,1/2, R Further, .7:70075 = .7:70070 ® .7:(),5 —O> Ffoo,O- Though, the equal-
E—

ity im(AV B,,) = AV (lim B,,) does not hold in general; but for independent A and B; the
equality holds, which is a rather trivial part of Weizsicker’s criteria [16]. The rest of the
proof is left to the reader.

O

3e Time shift; noise

Let ((Q[i], F[i], P[i])$2,, A) be a dyadic coarse factorization. For each 7 the lattice 1Z acts
on Q[i] by measure preserving transformations oy : Q[i] — Q[é] (time shift),

1
a(w)(s) =w(s—1t) forall se -Z.
i
For each coarse instant ¢ = (¢[¢])$°; we have a map oy : Q[all] — QJall],
1
ay(w)[i](s) = wli](s — t[7]) for all s € ZZ'

Such oy is an automorphism of the dyadic coarse sample space, but the coarse o-field A need
not be invariant under a;. We consider such a condition:

(3el) A is invariant under «; for every coarse instant t.

Dyadic coarse factorizations of Examples 3b2, 3b5, 3b6, 3b7 satisfy (3el), but 3b4 does not.
If (3el) is satisfied, then the refinement ay[oo] = lim; ,oo 4 c[i] is an automorphism of
the refinement (2, F, P) of the dyadic coarse factorization. Existence of the limit for every
converging sequence ¢t = (t[i]) implies that a;[oco] depends on ¢[oco] only, and we get a one-
parameter group (a;)wr of automorphisms of (2, F, P). The group is continuous,

P(AAa(A)) — 0 forall Ae F,
t—0

which is ensured by (3el); the proof is left to the reader.

3e2 Definition. A noise ((Q,F, P), (Fs4)s<t, (a)er) consists of a continuous factorization
(2, F, P), (Fsu)s<t) and a one-parameter group of automorphisms o of (Q, F, P) such that

oy (Fps) = Frtsy forallrsteR r<s,
P(AAq;'(A)) —0 forallAe F.
t t—0

Unfortunately, the latter assumption (continuity of the group action) is missing in my
former publications, which opens the door for pathologies.’

19Results of these former publications do not depend on the (missing) continuity condition. But anyway,
a discontinuous group action is a pathology, no doubt. (In particular, it cannot be Borel measurable.)
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3e3 Note. Continuity of the factorization follows from other assumptions, see [7, Lemma
2.1]. For arbitrary factorizations, continuity is restrictive (recall 3d3); waiving it, we get
discontinuity points ¢ € R; they are a finite or countable set. For a noise, however, the set
is invariant under time shifts, therefore it is empty.

3e4 Lemma. For every dyadic coarse factorization satisfying (3el), its refinement is a noise.
The proof is left to the reader.

3e5 Question. Whether every noise is the refinement of some dyadic coarse factorization,
or not? I do not know; I guess that the answer is negative. It would be interesting to find
some special features of such refinements among all noises. It is also unclear, what happens
to the class of such refinements, if subsequences are permitted (like in 3b6).



