2 Abstract nonsense of scaling limit

2a More on our limiting procedures

The joint compactification K of $\Omega_1 \uplus \Omega_2 \uplus \ldots$, used in 1c, is not quite satisfactory. Return to Example 1d3:

(2a1)
$$f_u(\omega) = \frac{1}{\sqrt{n}} \sum_{k \le un} \tau_k(\omega) \quad \text{for } u \in [0, 1] \cap \mathbb{Q}$$

 $(\mathbb{Q} \text{ being the set of rational numbers})$. The limiting model is the Brownian motion, restricted to $[0,1] \cap \mathbb{Q}$. What about an irrational point, $v \in [0,1] \setminus \mathbb{Q}$? The random variable f_v may be defined on Ω as the limit (say, in L_2) of f_u for $u \to v$, $u \in [0,1] \cap \mathbb{Q}$. On the other hand, f_v is naturally defined on $\Omega_1 \uplus \Omega_2 \uplus \ldots$ (by the same formula (2a1)). However, f_v is not a continuous function on the compact space K.⁴ Thus, the weak convergence $P_n \to P$ is relevant to f_u but not f_v . Something is wrong!

The wrong thing is the uniform topology used in (1c4)–(1c7). A right topology should take measures P_n into account. We have two ways, 'moderate' and 'radical'.

Here is the 'moderate' way. We choose some appropriate subsets $B_n \subset (\Omega_1 \uplus \Omega_2 \uplus \dots)$, $B_1 \subset B_2 \subset \dots$, such that

$$\inf_{i} P_i(B_n \cap \Omega_i) \uparrow 1 \quad \text{for } n \to \infty$$

and replace in (1c5)–(1c7) the assumption " $f_n \in C$, $f_n \to f$ uniformly $\Longrightarrow f \in C$ " with

(2a2)
$$f_n \in C, f_n \to f \text{ uniformly on each } B_n \implies f \in C.$$

2a3 Example. Continuing (2a1) we define B_n by

$$B_n \cap \Omega_i = \left\{ \omega \in \Omega_i : \sup_{0 \le k < l \le i} \frac{\left| \frac{1}{\sqrt{i}} \sum_{j=k}^l \tau_j(\omega) \right|}{\left(\frac{l-k}{i}\right)^{1/3}} \le n \right\} ,$$

 $then^5$

$$|f_u(\omega) - f_v(\omega)| \le n \cdot |u - v|^{1/3}$$
 for $\omega \in B_n \cap \Omega_i$

if i is large enough (namely, 2/i < |u-v|). The set C (satisfying (2a2)) generated by f_u for all rational u, contains also f_u for all irrational u.

⁴There exist $\omega_n \in \Omega_n$ such that $\lim_n f_u(\omega_n)$ exists for all $u \in [0,1] \cap \mathbb{Q}$, but $\lim_n f_v(\omega_n)$ does not exist.

⁵Of course, $|u-v|^{\alpha}$ for any $\alpha \in (0,1/2)$ may be used, not only $|u-v|^{1/3}$.

Similarly to 1c, we may translate (2a2) into the topological language. For each n, the restriction of C to B_n corresponds to a joint compactification (K_n, α_n) of $B_n \cap \Omega_i$. Clearly, $K_{n_1} \subset K_{n_2}$ for $n_1 < n_2$, and $\alpha_{n_1} = \alpha_{n_2}|_{K_{n_1}}$. Thus, we get a *joint* σ -compactification

$$\alpha: (\Omega_1 \uplus \Omega_2 \uplus \dots) \to K_\infty = K_1 \cup K_2 \cup \dots$$

We do not need a topology on the union K_{∞} of metrizable compact spaces $K_1 \subset K_2 \subset \dots$ We just define $C(K_{\infty})$ as the set of all functions $g: K_{\infty} \to \mathbb{R}$ such that $g|_{K_n}$ is continuous (on K_n) for each n. We have

$$C = \alpha^{-1} \big(C(K_{\infty}) \big) \,,$$

that is, observables $f \in C$ are functions of the form

$$f = g \circ \alpha$$
, that is, $f(\omega) = g(\alpha(\omega))$, $g \in C(K_{\infty})$.

If measures $\alpha(P_n)$ weakly converge (w.r.t. bounded functions of $C(K_\infty)$, recall (1c8), (1c9)), we get the limiting model (Ω, P) by taking $\Omega = K_\infty$ and $P = \lim_{n \to \infty} \alpha(P_n)$.

2a4 Example. Continuing 2a3 we see that the limiting measure P exists, and the joint distribution of all f_u (extended to K_{∞} by continuity) w.r.t. P is the Wiener measure. The 'uniform' metric on K_{∞} ,

$$dist(x, y) = \sup_{0 \le u \le 1} |f_u(x) - f_u(y)|,$$

is continuous on each K_n . Therefore, every function continuous in the 'uniform' metric belongs to $C(K_{\infty})$. Our joint σ -compactification is another form of the usual weak convergence of random walks to the Brownian motion.

That was the 'moderate way'. It requires special subsets $B_n \subset (\Omega_1 \uplus \Omega_2 \uplus ...)$, in contrast to the 'radical way'; basically, the latter allows the sequence of sets B_n to depend on a sequence of functions f_n , see (2a2). In other words, instead of uniform (or 'locally uniform') convergence, we introduce a weaker topology by the metric⁷

(2a5)
$$\operatorname{dist}(f,g) = \sup_{n} \int \frac{|f(\omega) - g(\omega)|}{1 + |f(\omega) - g(\omega)|} dP_{n}(\omega).$$

If $f_n \in C(K)$ and $\operatorname{dist}(f_n, f) \to 0$ then f_n converge in probability w.r.t. P; thus, f is naturally defined P-almost everywhere.⁸

$$\operatorname{dist}(f,g) = \sup_{n} \int |f(\omega) - g(\omega)| dP_n(\omega).$$

⁷Alternatively, we may restrict ourselves to bounded functions $\Omega_1 \uplus \Omega_2 \uplus \cdots \to [-1, +1]$ (applying a transformation like arctan) and use, say,

⁸In fact, every (equivalence class of) P-measurable function can be obtained in that way provided that, for each n, supports of P_n and P do not intersect. It means that every random variable on the limiting probability space is the scaling limit of some function on $\Omega_1 \uplus \Omega_2 \uplus \ldots$ (see also 2c8).

Let C be the closure of C(K) in the metric (2a5), then

$$\int \varphi(f_1,\ldots,f_d) dP_n \xrightarrow[n\to\infty]{} \int \varphi(f_1,\ldots,f_d) dP$$

for every d, every bounded continuous function $\varphi : \mathbb{R}^d \to \mathbb{R}$, and every $f_1, \ldots, f_d \in C$. The joint distribution of f_1, \ldots, f_d w.r.t. P_n converges (weakly) to that w.r.t. P. So, the weak convergence $P_n \to P$ is relevant for the whole C (not only C(K)). That is the idea of the 'radical way', presented systematically in next subsections (2b, 2c).

Returning again to Example 1d3 we see that f_v (for $v \in [0,1]$) is the limit of f_u (for $u \in [0,1] \cap \mathbb{Q}$) in the metric (2a5); thus, $f_v \in C$ for all $v \in [0,1]$.

However, much more can be said. Not only

$$\operatorname{Lim}\left(\frac{1}{\sqrt{n}}\sum_{an < k < bn} \tau_k(\omega)\right) = \int_a^b dB(t),$$

where 'Lim' means the scaling limit (as explained above), but also

$$\operatorname{Lim}\left(n^{-d/2} \sum_{an < k_1 < \dots < k_d < bn} \tau_{k_1}(\omega) \dots \tau_{k_d}(\omega)\right) =$$

$$= \int \dots \int dB(t_1) \dots dB(t_d) = \frac{1}{n!} H_d(B(b) - B(a), b - a)$$

where H_d is the Hermite polynomial (see for instance [5, IV.3.8]). Taking finite linear combinations and their closure in the metric (2a5) we get

(2a6)
$$\operatorname{Lim}\left(\sum_{d=0}^{\infty} n^{-d/2} \sum_{0 < k_1 < \dots < k_d < n} \psi_d\left(\frac{k_1}{n}, \dots, \frac{k_d}{n}\right) \tau_{k_1}(\omega) \dots \tau_{k_d}(\omega)\right) =$$

$$= \sum_{d=0}^{\infty} \int \dots \int \psi_d(t_1, \dots, t_d) dB(t_1) \dots dB(t_d)$$

provided that functions ψ_d are Riemann integrable, and vanish for d large enough. The right-hand side is well-defined for all $\psi_d \in L_2$ such that $\sum_d \|\psi_d\|_2^2 < \infty$; the scaling limit may be kept by replacing $\psi_d\left(\frac{k_1}{n},\ldots,\frac{k_d}{n}\right)$ with the mean value of ψ_d on the 1/n-cube centered at $\left(\frac{k_1}{n},\ldots,\frac{k_d}{n}\right)$. Now, (0,1) may be replaced with the whole \mathbb{R} ; ψ_d is defined on $\Delta_d = \{(x_1,\ldots,x_d) \in \mathbb{R}^d : x_1 < \cdots < x_d\}$. The right-hand side of (2a6) gives us an isometric linear correspondence between $L_2(\Delta_0 \uplus \Delta_1 \uplus \Delta_2 \uplus \ldots)$ and $L_2(\Omega,\mathcal{F},P)$, where (Ω,\mathcal{F},P) is the probability space describing the Brownian motion (on the whole \mathbb{R}).

2b Coarse probability space: definition and simple example

2b1 Definition. A coarse probability space $((\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}, \mathcal{A})$ consists of a sequence of probability spaces $(\Omega[i], \mathcal{F}[i], P[i])$ and a set \mathcal{A} of subsets of the disjoint union $\Omega[\text{all}] = \Omega(1) \uplus \Omega(2) \uplus \ldots$, satisfying the following conditions.

- (a) $\forall A \in \mathcal{A} \ \forall i \ (A \cap \Omega[i]) \in \mathcal{F}[i].$
- (b) $\forall A, B \in \mathcal{A} \ (A \cap B \in \mathcal{A}, \ A \cup B \in \mathcal{A}, \ \Omega[\text{all}] \setminus A \in \mathcal{A}).$
- (c) \mathcal{A} contains every $A \subset \Omega[\text{all}]$ such that $\forall i \ (A \cap \Omega[i]) \in \mathcal{F}[i]$ and $P[i](A \cap \Omega[i]) \to 0$ for $i \to \infty$.
- (d) $\left(\bigcup_{k=1}^{\infty} A_k\right) \in \mathcal{A}$ for every pairwise disjoint $A_1, A_2, \dots \in \mathcal{A}$ such that $\sum_k \sup_i P[i] \left(A_k \cap \Omega[i]\right) < \infty$.
- (e) $\lim_{i} P[i](A \cap \Omega[i])$ exists for every $A \in \mathcal{A}$.
- (f) There exists a finite or countable subset $A_1 \subset A$ that generates A in the sense that the least subset of A satisfying (b)-(d) and containing A_1 is the whole A.

A set \mathcal{A} satisfying (a)-(f) will be called a coarse σ -field (on the coarse sample space $(\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}$). Each set A belonging to the coarse σ -field \mathcal{A} will be called coarsely measurable (w.r.t. \mathcal{A}), or a coarse event.

2b2 Note. Condition 2b1(c) is equivalent to

(c1) $\forall i \ \mathcal{F}[i] \subset \mathcal{A}$. That is, if a set $A \subset \Omega[\text{all}]$ is contained in some $\Omega[i]$, and is $\mathcal{F}[i]$ -measurable, then $A \in \mathcal{A}$.

Also, Condition 2b1(d) is equivalent to each of the following conditions (d1)-(d4). There, we assume that $A \subset \Omega[\text{all}], \forall i \ (A \cap \Omega[i]) \in \mathcal{F}[i]$, and $\forall k \ A_k \in \mathcal{A}$.

- (d1) If $A_k \uparrow A$ (that is, $A_1 \subset A_2 \subset \ldots$ and $A = \bigcup_k A_k$) and $\sup_i P[i]((A \setminus A_k) \cap \Omega[i]) \to 0$ for $k \to \infty$, then $A \in \mathcal{A}$.
- (d2) If $\sup_i P[i]((A \triangle A_k) \cap \Omega[i]) \to 0$ for $k \to \infty$, then $A \in \mathcal{A}$. (Here $A \triangle A_k = (A \setminus A_k) \cup (A_k \setminus A)$.)
- (d3) If $A_k \uparrow A$ and $\limsup_i P[i]((A \setminus A_k) \cap \Omega[i]) \to 0$ for $k \to \infty$, then $A \in \mathcal{A}$.
- (d4) If $\limsup_{i} P[i]((A \triangle A_k) \cap \Omega[i]) \to 0$ for $k \to \infty$, then $A \in \mathcal{A}$.

So, we have 10 equivalent combinations: (c)&(d), (c1)&(d), (c)&(d1), (c1)&(d1), (c)&(d2), ..., (c1)&(d4). (I omit the proof.)

However, "sup_i" in (d) cannot be replaced with "lim sup_i".

2b3 Lemma. Let A_1 be a finite or countable set satisfying 2b1(a,e) and

(b1) $\forall A, B \in \mathcal{A} (A \cap B \in \mathcal{A}).$

Then the least set A containing A_1 and satisfying 2b1(b,c,d) is a coarse σ -field.

The proof is left to the reader.

In such a case we'll say that the coarse σ -field \mathcal{A} is generated by the set \mathcal{A}_1 .

2b4 Example. Let $\Omega[i] = \{0, \frac{1}{i}, \dots, \frac{i-1}{i}\}$, and P[i] be the uniform distribution on $\Omega[i]$. Every interval $(s, t) \subset (0, 1)$ gives us a set $A_{s,t} \subset \Omega[\text{all}]$,

$$A_{s,t} \cap \Omega[i] = (s,t) \cap \Omega[i].$$

⁹It is not a σ -field, unless \mathcal{A} contains all sets satisfying 2b1(a).

We take a dense countable set of pairs (s,t) (say, rational s,t) and consider the set \mathcal{A}_1 of the corresponding $A_{s,t}$. The set \mathcal{A}_1 satisfies the conditions of Lemma 2b3, therefore it generates a coarse σ -field \mathcal{A} . In fact, \mathcal{A} consists of all $A = A[1] \uplus A[2] \uplus \ldots$ such that sets $A[i] + (0, 1/i) \subset (0,1)$ converge in probability to some $A[\infty] \subset (0,1)$; that is, $\operatorname{mes}(A[\infty] \triangle (A[i] + (0,1/i))) \to 0$ for $i \to \infty$.

If $A = A_{s,t}$ then, of course, $A[\infty] = (s,t)$.

2b5 Example. Continuing Example 1c1, we take $\Omega[i] = \{-1, +1\}^i$ with the uniform distribution P[i]. Given n and $a = (a_1, \ldots, a_n) \in \{-1, +1\}^n$, we consider $A_a \subset \Omega[\text{all}]$,

$$A_a \cap \Omega[i] = \{(\tau_1, \dots, \tau_i) : \tau_1 = a_1, \dots, \tau_n = a_n\} \text{ for } i \ge n.$$

Such sets A_a (for all a and n) are a countable collection \mathcal{A}_1 satisfying the conditions of Lemma 2b3, therefore it generates a coarse σ -field \mathcal{A} . In fact, \mathcal{A} consists of all $A = A[1] \uplus A[2] \uplus \ldots$ such that sets $\beta_i^{-1}(A) \subset (0,1)$ converge in probability to some $A[\infty] \subset (0,1)$; here β_i : $(0,1) \to \Omega[i]$ is such a measure preserving map:

$$\beta_i(x) = ((-1)^{c_1}, \dots, (-1)^{c_i}) \text{ when } x - (\frac{c_1}{2} + \dots + \frac{c_i}{2^i}) \in (0, \frac{1}{2^i}),$$

for any $c_1, \ldots, c_i \in \{0, 1\}$.

You may guess that some limiting procedure produces a ('true', not coarse) probability space out of any given coarse probability space. Indeed, such a procedure (called 'refinement') is described in the next subsection.

2c Good use of joint compactification

Having a coarse probability space $((\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}, \mathcal{A})$ and its refinement (Ω, \mathcal{F}, P) (to be defined later), we may hope that the Hilbert space $L_2[\infty] = L_2(\Omega, \mathcal{F}, P)$ is in some sense the limit of Hilbert spaces $L_2[i] = L_2(\Omega[i], \mathcal{F}[i], P[i])$. That is indeed the case in the framework of joint compactification, as we'll see. A bad use of the framework, tried in 1c, is a joint compactification of given probability spaces. A good use, considered here, is a joint compactification of metric (Hilbert, ...) spaces built over the given probability spaces.

- **2c1 Definition.** A coarse Polish space is $(S[i], \rho[i])_{i=1}^{\infty}, c)$, where each $S[i], \rho[i]$ is a Polish space (that is, a complete separable metric space¹⁰), and $c \in S[1] \times S[2] \times \ldots$ is a set of sequences $x = (x[1], x[2], \ldots)$ satisfying the following conditions.
- (a) If $x_1, x_2 \in S[1] \times S[2] \times \ldots$ are such that $\rho[i](x_1[i], x_2[i]) \to 0$ (for $i \to \infty$), then $(x_1 \in c) \iff (x_2 \in c)$.
- (b) If $x, x_1, x_2, \dots \in S[1] \times S[2] \times \dots$ are such that $\sup_i \rho[i] (x_k[i], x[i]) \to 0$ (for $k \to \infty$), then $(\forall k \ x_k \in c) \implies (x \in c)$.

 $^{^{10}}$ Many authors define a Polish space as a metrizable topological space admitting a complete separable metric. However, I assume that a metric is given.

- (c) $\lim_{i} \rho[i](x_1[i], x_2[i])$ exists for every $x_1, x_2 \in c$.
- (d) There exists a finite or countable subset $c_1 \subset c$ that generates c in the sense that the least subset of c satisfying (a), (b) and containing c_1 is the whole c.

2c2 Note. Condition 2c1(d) does not change if 'satisfying (a), (b)' is replaced with 'satisfying (b)'. That is, 2c1(d) is just separability of c in the metric $x_1, x_2 \mapsto \sup_i \rho[i](x_1[i], x_2[i])$.

The refinement of a coarse Polish space $((S[i], \rho[i])_{i=1}^{\infty}, c)$ is basically the metric space $(c, \tilde{\rho})$, where

$$\tilde{\rho}(x_1, x_2) = \lim_{i} \rho[i] (x_1[i], x_2[i]).$$

Though, $\tilde{\rho}$ is a pseudometric (semimetric), it may vanish for some $x_1 \neq x_2$. The equivalence class, denote it $x[\infty]$, of a sequence $x \in c$ consists of all $x_1 \in c$ such that $\rho[i](x_1[i], x[i]) \to 0$. On the set $S[\infty]$ of all equivalence classes we introduce a metric $\rho[\infty]$,

$$\rho[\infty](x_1[\infty], x_2[\infty]) = \lim_{i \to \infty} \rho[i](x_1[i], x_2[i]);$$

thus, $(S[\infty], \rho[\infty])$ is a metric space. We write

$$(S[\infty], \rho[\infty]) = \operatorname{Lim}_{i \to \infty, c}(S[i], \rho[i])$$

and call $(S[\infty], \rho[\infty])$ the refinement of the coarse Polish space $((S[i], \rho[i])_{i=1}^{\infty}, c)$. Also, for every $x = (x[1], x[2], \ldots) \in c$ we denote its equivalence class $x[\infty] \in S[\infty]$ by

$$x[\infty] = \lim_{i \to \infty, c} x[i],$$

and call it the refinement of x.

2c3 Lemma. For every coarse Polish space, its refinement is a Polish space.

Proof. Separability follows from (d); completeness is to be proven. Let x_1, x_2, \ldots be a Cauchy sequence in (S, ρ) ; we have to find $x \in S$ such that $\rho(x_k, x) \to 0$. We may assume that $\sum_k \rho(x_k, x_{k+1}) < \infty$. Each x_k is an equivalence class; using (a) we choose for each $k = 1, 2, 3, \ldots$ a representative $s_k \in S[1] \times S[2] \times \ldots$ of x_k such that $\sup_i \rho[i] \left(s_k[i], s_{k+1}[i] \right) \leq 2\rho(x_k, x_{k+1})$. Completeness of $\left(S[i], \rho[i] \right)$ ensures existence of $s_\infty[i] = \lim_k s_k[i]$. Condition (b) ensures $s_\infty \in c$. The equivalence class $x \in S$ of s_∞ satisfies $\rho(x_k, x) \leq \sup_i \rho[i] \left(s_k[i], s_\infty[i] \right) \to 0$ for $k \to \infty$.

Let $(S[i], \rho[i])_{i=1}^{\infty}, c)$ be a coarse Polish space, and (S, ρ) its refinement. On the disjoint union $(S[1] \uplus S[2] \uplus \ldots) \uplus S$ we introduce a topology, namely, the weakest topology making continuous the following functions $f_s: (S[1] \uplus S[2] \uplus \ldots) \uplus S \to [0, \infty)$ for $s \in c$,

$$f_s(x) = \rho[i](x, s[i])$$
 for $x \in S[i]$,
 $f_s(x) = \rho(x, s[\infty])$ for $x \in S$,

and an additional function $f_0: (S[1] \uplus S[2] \uplus ...) \uplus S \to [0, \infty), f_0(x) = 1/i$ for $x \in S[i]$, $f_0(x) = 0$ for $x \in S$. On every S[i] separately (and also on S), the new topology coincides with the old topology, given by $\rho[i]$ (or ρ).

We may choose a sequence (s_k) dense in c; the topology is generated by functions f_{s_k} (and f_0), therefore it is a metrizable topology. Moreover the sequence of functions $\left(\frac{f_{s_k}(\cdot)}{1+f_{s_k}(\cdot)}\right)_{k=1}^{\infty}$ (and f_0) maps the disjoint union into the metrizable compact space $[0,1]^{\infty}$, and is a homeomorphic embedding. Thus, we have a joint compactification of all S[i] and S; and so, we treat them as subsets of a compact metrizable space K;

$$S[i] \subset K$$
, $S \subset K$.

2c4 Lemma. Let $s_{\infty} \in S$, $s_1 \in S[1], s_2 \in S[2], \ldots$ Then $s_k \to s_{\infty}$ in K if and only if $s = (s_1, s_2, \ldots) \in c$ and $\lim_{k \to \infty, c} s_k = s_{\infty}$.

The proof is left to the reader.

The assumption $s_{\infty} \in S$ is essential. Other limiting points (not belonging to S) may exist; corresponding sequences converge in S but do not belong to S. And, of course, sets S, S, S, S, S, S, are not closed in S, unless they are compact.

2c5 Lemma. A set $c_1 \subset c$ generates c if and only if the set of refinements $\{x[\infty] : x \in c_1\}$ is dense in $S[\infty]$.

The proof is left to the reader.

Given continuous functions $f[i]: S[i] \to \mathbb{R}$, $f[\infty]: S[\infty] \to \mathbb{R}$, we write $f[\infty] = \lim_{i \to \infty, c} f[i]$ if $f[i](x[i]) \to f[\infty](x[\infty])$ whenever $x[\infty] = \lim_{i \to \infty, c} x[i]$. If functions f[i] are equicontinuous (say, $|f[i](x) - f[i](y)| \le \rho[i](x, y)$ for all i and $x, y \in S[i]$), then it is enough to check that $f[i](x_k[i]) \to f[\infty](x_k[\infty])$ for some sequence $(x_k)_{k=1}^{\infty}$, $x_k \in c$, such that the sequence $(x_k[\infty])_{k=1}^{\infty}$ is dense in $S[\infty]$.

Given continuous maps $f[i]: S[i] \to S[i]$, $f[\infty]: S \to S$, we write $f[\infty] = \operatorname{Lim}_{i \to \infty, c} f[i]$ if $\operatorname{Lim}_{i \to \infty, c} f[i](x[i]) = f[\infty](x[\infty])$ whenever $x[\infty] = \operatorname{Lim}_{i \to \infty, c} x[i]$. That is, $\operatorname{Lim}(f[i](x[i])) = (\operatorname{Lim} f[i])(\operatorname{Lim} x[i])$. If maps f[i] are equicontinuous then, again, convergence may be checked on x_k such that $x_k[\infty]$ are dense.

Given continuous maps $f[i]: S[\infty] \to S[i]$, we may ask, whether $\lim_{i\to\infty,c} f[i](x) = x$ for all $x\in S[\infty]$, or not. If maps f[i] are equicontinuous then, still, convergence may be checked for a dense subset of $S[\infty]$.

If every S[i] is not only a metric space but also a Hilbert (or Banach) space, and c is linear (that is, closed under linear operations), then the refinement S is also a Hilbert (or Banach) space, and linear operations are continuous on $(S[1] \cup S[2] \cup \ldots) \cup S \subset K$ in the sense that

$$\operatorname{Lim}_{i \to \infty, c}(as_1[i] + bs_2[i]) = a \operatorname{Lim}_{i \to \infty, c} s_1[i] + b \operatorname{Lim}_{i \to \infty, c} s_2[i]$$

for all $s_1, s_2 \in c$.

Consider the case of Hilbert spaces S[i] = H[i], S = H. Given linear¹¹ operators $R[i] : H[i] \to H[i]$, we may ask about Lim R[i]. If it exists, we get

$$\operatorname{Lim}(R[i]x[i]) = (\operatorname{Lim} R[i])(\operatorname{Lim} x[i]).$$

If $\sup_i ||R[i]|| < \infty$, then R[i] are equicontinuous, and convergence may be checked on a sequence x_k such that vectors $x_k[\infty]$ span H (that is, their linear combinations are dense in

¹¹Continuous, of course.

H). For example, one-dimensional orthogonal projections; if $x[\infty] = \operatorname{Lim} x[i]$ then $\operatorname{Proj}_{x[\infty]} = \operatorname{Lim} \operatorname{Proj}_{x[i]}$.

Given linear operators $R[i]: H \to H[i]$, we may ask whether $\operatorname{Lim} R[i](x) = x$ for all $x \in H$, or not. If $\sup_i \|R[i]\| < \infty$ then convergence may be checked on a sequence that spans H. Note that such R[i] always exist; moreover, $\|R[i]\| \le 1$ may be ensured. Indeed, we take x_k such that $x_k[\infty]$ are an orthonormal basis of H. After some correction, $x_k[i]$ become orthogonal (for each i), and $\|x_k(i)\| \le 1$. Now we let $R[i]x_k[\infty] = x_k[i]$.

We return to coarse probability spaces.

Let $(\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}, \mathcal{A})$ be a coarse probabilty space. For each i the pseudometric $A, B \mapsto P[i](A \triangle B)$ on $\mathcal{F}[i]$ gives us the metric space $\mathrm{MALG}[i] = \mathrm{MALG}(\Omega[i], \mathcal{F}[i], P[i])$ of all equivalence classes of measurable sets. It is not only a metric space but also a Boolean algebra, and moreover, a measure algebra (as defined in [3, 17.44]). Treating every coarse event $A \in \mathcal{A}$ as a sequence of $A[1] \in \mathrm{MALG}[1], A[2] \in \mathrm{MALG}[2], \ldots$ we get a coarse Polish space $((\mathrm{MALG}[i])_{i=1}^{\infty}, \mathcal{A})$. Its refinement is a Polish space $\mathrm{MALG}[\infty]$. The set \mathcal{A} is closed under Boolean operations (union, intersection, complement). Therefore $\mathrm{MALG}[\infty]$ is not only a metric space but also a Boolean algebra. Using Lemma 2c3 it is easy to check that $\mathrm{MALG}[\infty]$ is a measure algebra. Therefore it is (up to isomorphism) of the form

$$MALG[\infty] = MALG(\Omega, \mathcal{F}, P)$$

for some probability space (Ω, \mathcal{F}, P) . In the nonatomic case we may take $(\Omega, \mathcal{F}, P) = (0, 1)$ with Lebesgue measure; in general, we may take a shorter interval plus a finite or countable set of atoms. Such a probability space $(\Omega.\mathcal{F}, P)$ (unique up to isomorphism) will be called the refinement of the coarse probability space $((\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}, \mathcal{A})$, and we write

$$(\Omega, \mathcal{F}, P) = \operatorname{Lim}_{i \to \infty, \mathcal{A}} (\Omega[i], \mathcal{F}[i], P[i])$$

(in practice, sometimes I omit " $i \to \infty$ " or " \mathcal{A} " (or both) under the "Lim"). Every sequence $A = (A[1], A[2], \dots) \in \mathcal{A}$ has its refinement

$$\lim_{i\to\infty,\mathcal{A}} A[i] = A[\infty] \in \mathrm{MALG}(\Omega,\mathcal{F},P)$$
.

2c6 Lemma. A subset A_1 of a coarse σ -field A generates A is and only if the refinement \mathcal{F} of A is generated (mod 0) by refinements $A[\infty]$ of all $A \in A_1$.

Proof. We apply Lemma 2c5 to the algebra generated by A_1 .

In order to define $L_2(\mathcal{A})$ as a set of functions on $\Omega[\text{all}]$, we start with indicators $\mathbf{1}_A$ for $A \in \mathcal{A}$, form their linear combinations, and take their completion in the metric

$$||f||_{L_2(\mathcal{A})} = \sup_i ||f[i]||_{L_2[i]},$$

where $L_2[i] = L_2(\Omega[i], \mathcal{F}[i], P[i])$; the completion is a Banach (not Hilbert) space $L_2(\mathcal{A})$. Each element f of the completion is evidently identified with a sequence of $f[i] \in L_2[i]$, or a function on $\Omega[\text{all}]$. We have a coarse Polish space $((L_2[i])_{i=1}^{\infty}, L_2(\mathcal{A}))$. It has its refinement, $L_2[\infty]$.

¹²Of course, $||x_k[i]|| \to 1$, but in general we cannot ensure $||x_k[i]|| = 1$. It may happen that dim $H[i] < \infty$ but dim $H = \infty$.

2c7 Lemma. The refinement $L_2[\infty]$ of $((L_2[i])_{i=1}^{\infty}, L_2(\mathcal{A}))$ is (canonically isomorphic to) $L_2(\Omega, \mathcal{F}, P)$, where (Ω, \mathcal{F}, P) is the refinement of $((\Omega[i], \mathcal{F}[i], P[i])_{i=1}^{\infty}, \mathcal{A})$.

Proof. We define the canonical map $L_2(\mathcal{A}) \to L_2(\Omega, \mathcal{F}, P)$ first on indicators by $\mathbf{1}_A \mapsto \mathbf{1}_{A[\infty]}$, and extend it by linearity and continuity to the whole $L_2(\mathcal{A})$. We note that the image of $f \in L_2(\mathcal{A})$ in $L_2(\Omega, \mathcal{F}, P)$ depends only on the refinement $f[\infty] \in L_2[\infty]$ of f, and their norms are equal (both are equal to $\lim_i ||f[i]||$). We have a linear isometric embedding $L_2[\infty] \to L_2(\Omega, \mathcal{F}, P)$. Its image is closed (since $L_2[\infty]$ is complete by Lemma 2c3), and contains indicators $\mathbf{1}_B$ for all $B \in \mathrm{MALG}(\Omega, \mathcal{F}, P)$; therefore the image is the whole $L_2(\Omega, \mathcal{F}, P)$. \square

2c8 Note. The same holds for L_p for each $p \in (0, \infty)$, and for the space L_0 of all random variables (equipped with the topology of convergence in probability). Elements of $L_0(\mathcal{A})$ will be called coarsely measurable (w.r.t. \mathcal{A}) functions (on $\Omega[\text{all}]$), or coarse random variables; elements of $L_2(\mathcal{A})$ — square integrable coarse random variables.

Let f be a coarse random variable, then (usual) random variables $f[i]: \Omega[i] \to \mathbb{R}$ converge in distribution (for $i \to \infty$) to the refinement $f[\infty]: \Omega \to \mathbb{R}$. The distribution of $f[\infty]$ will be called the *limiting distribution* of f.

It may happen that $f \in L_2(\mathcal{A})$ but $(\operatorname{sgn} f) \notin L_2(\mathcal{A})$. An example: $f(\omega) = \frac{(-1)^i}{i}$ for all $\omega \in \Omega[i]$. Here, the limiting distribution is an atom at 0, and the function 'sgn' is discontinuous at 0.

- **2c9 Lemma.** (a) Let $f: \Omega[\text{all}] \to \mathbb{R}$ be a coarse random variable, and $\varphi: \mathbb{R} \to \mathbb{R}$ a continuous function, then $\varphi \circ f: \Omega[\text{all}] \to \mathbb{R}$ is a coarse random variable.
- (b) The same as (a) but φ may be discontinuous at points of a set $Z \subset \mathbb{R}$ negligible w.r.t. the limiting distribution of f.

Proof. If f is a linear combination of indicators, then $\varphi \circ f$ is another linear combination of the same indicators. A straightforward approximation gives (a) for uniformly continuous φ . In general, for every ε there exists a compact set $K \subset \mathbb{R} \setminus Z$ of probability $\geq 1 - \varepsilon$ w.r.t. the limiting distribution, and also w.r.t. the distribution of f[i] for all i (since all these distributions are a compact set of distributions). The restriction of f to f is uniformly continuous. The limit for $\varepsilon \to 0$ is uniform in f.

For a given Polish space S we may define a coarse S-valued random variable as a map $f: \Omega[\mathrm{all}] \to S$ such that (usual) random variables $f[i]: \Omega[i] \to S$ converge in distribution (for $i \to \infty$), and $f^{-1}(B) \in \mathcal{A}$ for every $B \subset S$ such that the boundary of B is negligible w.r.t. the limiting distribution of f.

For $S = \mathbb{R}$ the new definition conforms with the old one.

A coarse σ -field generated by a given sequence of sets (coarse events) was defined after Lemma 2b3. Often it is convenient to generate a coarse σ -field by a sequence of functions (coarse random variables). A function $f:\Omega[\mathrm{all}]\to\mathbb{R}$ is coarsely \mathcal{A} -measurable if and only if \mathcal{A} contains sets $f^{-1}\big((-\infty,x)\big)$ for all $x\in\mathbb{R}$ except for atoms (if any) of the limiting distribution of f. A dense countable subset of these x is enough. So, a coarse σ -field generated by a finite or countable set of functions f is nothing but the coarse σ -field generated by a countable set of sets of the form $f^{-1}\big((-\infty,x)\big)$. More generally, S-valued (coarse) random variables may be used; they are reduced to the real-valued case by composing with appropriate continuous functions $S\to\mathbb{R}$.

2c10 Lemma. A sequence of functions $f_k: \Omega[\text{all}] \to \mathbb{R}$ generates a coarse σ -field if and only if for every n, n-dimensional random variables $(f_1[i], \ldots, f_n[i]): \Omega[i] \to \mathbb{R}^n$ converge in distribution (for $i \to \infty$).

Saint-Flour, 2002

2c11 Note. The same holds for an arbitrary Polish space instead of \mathbb{R} .

2c12 Note. Comparing 2c10 and (1c9) we see that every joint compactification of $\Omega_1 \uplus \Omega_2 \uplus \ldots$ (in the sense of 1c, assuming (1c8)) may be upgraded (or downgraded?) to a coarse probability space. Namely, we take a sequence of functions f_k that generates C and consider the coarse σ -field \mathcal{A} generated by (f_k) . Every $f \in C$ is a coarse random variable, since $L_0(\mathcal{A})$ is closed under all operations used in (1c5), or (1c6), or (1c7).¹³ Therefore \mathcal{A} does not depend on the choice of (f_k) .

¹³Of course, $L_0(A)$ usually contains no sequence dense in the *uniform* topology.