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2 Abstract nonsense of scaling limit

2a More on our limiting procedures

The joint compactification K of €2, Wy W ..., used in lc, is not quite satisfactory. Return
to Example 1d3:

(2al) fulw) = — Z Tk(w) forue[0,1]NQ

(Q being the set of rational numbers). The limiting model is the Brownian motion, restricted
to [0,1] N Q. What about an irrational point, v € [0,1] \ Q? The random variable f, may
be defined on Q as the limit (say, in Ls) of f, for u — v, u € [0,1]N Q. On the other hand,
fo is naturally defined on Q; W Qy W ... (by the same formula (2al)). However, f, is not
a continuous function on the compact space K.* Thus, the weak convergence P, — P is
relevant to f, but not f,. Something is wrong!

The wrong thing is the uniform topology used in (1c4)—(1c7). A right topology should
take measures P, into account. We have two ways, ‘moderate’ and ‘radical’.

Here is the ‘moderate’ way. We choose some appropriate subsets B, C (2; W QW ...),
B, C By C ..., such that

inf P;{(B,NQ;)1+1 forn— oo
and replace in (1¢5)—(1c7) the assumption “f,, € C, f, — f uniformly = f € C” with

(2a2) fn€C, f, = f uniformly on each B, — feC.

2a3 Example. Continuing (2al) we define B,, by

B,NQ,=<we): su ,
n % 7 0§k<rl)§i (d)l/?’ ~

then®
fu(w) = fo(W)| < n-|u—o|'? forwe B, N,

if 7 is large enough (namely, 2/i < |u — v|). The set C (satisfying (2a2)) generated by f, for
all rational u, contains also f, for all irrational w.

4There exist w,, € 2, such that lim,, f,(w,) exists for all u € [0,1] N Q, but lim,, f,(w,) does not exist.

1 A ,

T v — \/Lﬁ 'UU n \/Lﬁ ]
1

50f course, |u — v|® for any a € (0,1/2) may be used, not only |u — v|'/3.
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Similarly to 1c, we may translate (2a2) into the topological language. For each n, the
restriction of C' to B, corresponds to a joint compactification (K, «,) of B, N Q;. Clearly,
K,, C K, for n; < ny, and o, = am\Knl. Thus, we get a joint o-compactification

(o7 “21@&22@...)-—)]<x :IKHLJ}QZU...

We do not need a topology on the union K of metrizable compact spaces K; C K, C ...°

We just define C(K,) as the set of all functions g : K, — R such that g|k, is continuous
(on K,) for each n. We have
C=a"(C(Kx)),

that is, observables f € C are functions of the form

f=goa, thatis, f(w)=g(a(w)), g€ C(Kx).

If measures «(P,) weakly converge (w.r.t. bounded functions of C'(K), recall (1c8), (1c9)),
we get the limiting model (2, P) by taking Q = K, and P = lim,,_, a(P,).

2a4 Example. Continuing 2a3 we see that the limiting measure P exists, and the joint
distribution of all f, (extended to K, by continuity) w.r.t. P is the Wiener measure. The
‘uniform’ metric on K,

dist(z,y) = sup |fu(z) — fu(y)l,

0<u<1

is continuous on each K,. Therefore, every function continuous in the ‘uniform’ metric be-
longs to C'(K ). Our joint o-compactification is another form of the usual weak convergence
of random walks to the Brownian motion.

That was the ‘moderate way’. It requires special subsets B, C (2 W Qs W ...), in
contrast to the ‘radical way’; basically, the latter allows the sequence of sets B, to depend
on a sequence of functions f,,, see (2a2). In other words, instead of uniform (or ‘locally
uniform’) convergence, we introduce a weaker topology by the metric’

(225) dist(f,9) = sup / 1%%}; i(;dgl)‘ dP, ().

If f, € C(K) and dist(f,, f) — 0 then f, converge in probability w.r.t. P; thus, f is naturally
defined P-almost everywhere.

6But if you want, K., may be equipped with the inductive limit topology; that is, U C K is open if
and only if for every n, U N K, is open (in K,). However, the topology usually is not metrizable.

" Alternatively, we may restrict ourselves to bounded functions Q; W Qy & --- — [~1,+1] (applying a
transformation like arctan) and use, say,

dist(f,9) = sup / (@) — ()| dPa(w)

8In fact, every (equivalence class of) P-measurable function can be obtained in that way provided that,
for each n, supports of P, and P do not intersect. It means that every random variable on the limiting
probability space is the scaling limit of some function on ; W Qs W... (see also 2c8).
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Let C be the closure of C'(K) in the metric (2a5), then

[t tiyare— [eth....ppap

for every d, every bounded continuous function ¢ : R? — R, and every f,..., f4 € C. The
joint distribution of fi,..., fg w.r.t. P, converges (weakly) to that w.r.t. P. So, the weak
convergence P, — P is relevant for the whole C' (not only C(K)). That is the idea of the
‘radical way’, presented systematically in next subsections (2b, 2c).

Returning again to Example 1d3 we see that f, (for v € [0,1]) is the limit of f, (for
u € [0,1] N Q) in the metric (2a5); thus, f, € C for all v € [0, 1].

However, much more can be said. Not only

Lim (%ag;bnm(w)) _ / "4B ().

where ‘Lim’ means the scaling limit (as explained above), but also

Lim (nd/2 Z The (w)...de(w)) =
_ // dB(1) ... dB(ty) = %Hd(B(b) ~ B(a),b— a)

a<lty<--<tg<b

where H, is the Hermite polynomial (see for instance [5, IV.3.8]). Taking finite linear com-
binations and their closure in the metric (2a5) we get

(2a6) le(Zn_d/Q > wd(';—l,...,%)Tkl(w)...%(w)>:

0<ky<-<kg<n

i / / a(t, ..., ta)dB(ty) ... dB(tg)

0<ty < <tg<l

provided that functions 14 are Riemann integrable, and vanish for d large enough. The
right-hand side is well-defined for all ¢y € Lo such that Y, ||¢4l|3 < oo; the scaling limit
may be kept by replacing ¢4(&, ..., %) with the mean value of 1 on the 1/n-cube centered
at (%,...,%)  Now, (0,1) may be replaced with the whole R; 14 is defined on A, =
{(z1,...,24) € R? : 2y < -++ < z4}. The right-hand side of (2a6) gives us an isometric
linear correspondence between Lo(Ag W Ay WA, W ... ) and Lo(S2, F, P), where (2, F, P) is
the probability space describing the Brownian motion (on the whole R).

2b Coarse probability space: definition and simple example

2b1 Definition. A coarse probability space (([i], Fli], P[i]),,.A) consists of a sequence
of probability spaces (Q[i], F[i], P[i]) and a set A of subsets of the disjoint union [all] =
Q1) wQ(2)W..., satisfying the following conditions.
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(a) VA € AVi (ANQ[]) € Flil.

(b) VA, Be A(ANBe A, AUB€ A, Qall] \ A € A).

(c) A contains every A C Q[all] such that Vi (AN Qfi]) € F[i] and P[i](ANQ]) — 0
for ¢ — oo.

(d) (UP,Ay) € Afor every pairwise disjoint A;, Ay, - - - € Asuch that >_, sup; P[i](AxN
Qi]) < oo.

(e) lim; P[i](ANQi]) exists for every A € A.

(f) There exists a finite or countable subset A; C A that generates A in the sense that
the least subset of A satisfying (b)—(d) and containing A, is the whole A.

A set A satisfying (a)—(f) will be called a coarse o-field® (on the coarse sample space
(Q[i], F[i], P[i])s2,). Each set A belonging to the coarse o-field A will be called coarsely
measurable (w.r.t. A), or a coarse event.

2b2 Note. Condition 2b1(c) is equivalent to
(c1) Vi F[i] € A. That is, if a set A C Q[all] is contained in some Q[i], and is F[i]-
measurable, then A € A.

Also, Condition 2b1(d) is equivalent to each of the following conditions (d1)—(d4). There,
we assume that A C Qlall], Vi (AN Q[:]) € Fli], and Vk A; € A.

(d1) If Ay 1 A (thatis, A; C Ay C ... and A = Uy Ay) and sup; P[i]((A\A4x)NQL]) — 0
for k — oo, then A € A.

(d2) If sup; P[i]((A A Ax) N Qf]) — 0 for k — oo, then A € A. (Here A A Ay =
(AN Ap) U (A \ A).)

(d3) If Ay 1 A and limsup; P[i]((A \ Ax) N Q[i]) — 0 for k — oo, then A € A.

(d4) If limsup; P[i]((4 A A) NQ[i]) — 0 for k — oo, then A € A.

So, we have 10 equivalent combinations: (c)&(d), (c1)&(d), (c)&(d1), (c1)&(d1), (c)&(d2),
..y (c1)&(d4). (I omit the proof.)
However, “sup,” in (d) cannot be replaced with “lim sup,”.

2b3 Lemma. Let A; be a finite or countable set satisfying 2b1(a,e) and
(b1) VA,B€ A (ANB € A).
Then the least set A containing A; and satisfying 2b1(b,c,d) is a coarse o-field.

The proof is left to the reader.
In such a case we’ll say that the coarse o-field A is generated by the set A;.

2b4 Example. Let Q[i] = {0,%,...,%*}, and P[i] be the uniform distribution on Q[i].
Every interval (s,t) C (0,1) gives us a set A,; C Q[all],

Ay N QL] = (5,8) N Q).

0 s t 1

Tt is not a o-field, unless A contains all sets satisfying 2b1(a).



Boris Tsirelson Scaling limit, noise, stability Saint-Flour, 2002 15

We take a dense countable set of pairs (s, t) (say, rational s,¢) and consider the set A; of the
corresponding A, ;. The set A; satisfies the conditions of Lemma 2b3, therefore it generates a
coarse o-field A. In fact, A consists of all A = A[1]WA[2]W. .. such that sets A[i]+(0,1/7) C
(0, 1) converge in probability to some Afoo] C (0,1); that is, mes(A[oo] A(A[i]+(0,1/7))) — 0
for © — oo. -

e ! *~——

o e———9
[ ] [
0 s t 1

If A= A, then, of course, AJoo] = (s,1).

2b5 Example. Continuing Example 1c1, we take Q[i] = {—1,+1}" with the uniform distri-
bution P[i|. Given n and a = (ay,-...,a,) € {—1,+1}", we consider A, C QJall],

A NQE ={(r,...,m):n=a1,...,Tn =a,} fori>n.

Such sets A, (for all a and n) are a countable collection A, satisfying the conditions of Lemma
2b3, therefore it generates a coarse o-field A. In fact, A consists of all A = A[1]W A[2]W...
such that sets 3; '(4) C (0,1) converge in probability to some A[oco] C (0,1); here j; :
(0,1) — QJé] is such a measure preserving map:

Bi(z) = ((=1)*,...,(~1)%) when z — (% dot g—) e (o, 21) ,

for any c¢i,...,¢; € {0,1}.

You may guess that some limiting procedure produces a (‘true’; not coarse) probability
space out of any given coarse probability space. Indeed, such a procedure (called ‘refinement’)
is described in the next subsection.

2c  Good use of joint compactification

Having a coarse probability space ((Q[i], F[i], P[i])2,,.A4) and its refinement (Q,F, P) (to
be defined later), we may hope that the Hilbert space Ly[oo] = Lo(Q2, F, P) is in some
sense the limit of Hilbert spaces Lo[i] = Ly (Q[i], F[i], P[i]). That is indeed the case in the
framework of joint compactification, as we’ll see. A bad use of the framework, tried in 1c, is
a joint compactification of given probability spaces. A good use, considered here, is a joint
compactification of metric (Hilbert, ...) spaces built over the given probability spaces.

2c1 Definition. A coarse Polish space is ((Si], p[i])22,, ¢), where each (S[i], p[i]) is a Polish
space (that is, a complete separable metric space!?), and ¢ C S[1] x S[2] X ... is a set of
sequences z = (z[1],z[2],...) satisfying the following conditions.

(a) If 1,25 € S[1] x S[2] x ... are such that p[i](z1[i], z2[1]) — O (for i — o0), then
(1 €c) <= (a2 €0).

(b) If ©, 1, @2, - € S[1] x S[2] x ... are such that sup; p[i] (zx[i], z[i]) — 0 (for k — o0),
then (Vk zp €¢) = (z€c).

0Many authors define a Polish space as a metrizable topological space admitting a complete separable
metric. However, I assume that a metric is given.
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(c) limy; p[i] (21[1], z2[t]) exists for every z1,z5 € c.
(d) There exists a finite or countable subset ¢; C ¢ that generates ¢ in the sense that the
least subset of ¢ satisfying (a), (b) and containing ¢; is the whole c.

2c2 Note. Condition 2c1(d) does not change if ‘satisfying (a), (b)’ is replaced with ‘satisfying
(b)’. That is, 2c1(d) is just separability of ¢ in the metric @1, zo — sup; p[i](21[d], z2[i]).

The refinement of a coarse Polish space ((S[i], p[i])$2,,¢) is basically the metric space
(c, ,5), where
p(z1,T2) = ligrlp[i] (331[1],332[1]) :
Though, p is a pseudometric (semimetric), it may vanish for some z; # z5. The equivalence

class, denote it z[oo], of a sequence z € ¢ consists of all z; € ¢ such that p[i](z1[i], z[i]) — 0.
On the set S[oo] of all equivalence classes we introduce a metric p[oo],

ploc (a1 oc]. zafoc]) = im pll (i, i)
thus, (S[oc], ploc]) is a metric space. We write

(S[oc], ploc]) = Lim e (], plil)

and call (S[oo], p[oc]) the refinement of the coarse Polish space ((S[i], p[i])$2;,¢). Also, for
every z = (z[1],z[2],...) € ¢ we denote its equivalence class x[oo] € S[oo| by

z[oo] = Lim; 00 z[7] ,
and call it the refinement of z.
2c3 Lemma. For every coarse Polish space, its refinement is a Polish space.

Proof. Separability follows from (d); completeness is to be proven. Let zi,zs,... be a
Cauchy sequence in (S, p); we have to find z € S such that p(xg,z) — 0. We may assume
that Y, p(zk, xxk41) < 0o. Each zj is an equivalence class; using (a) we choose for each
k=1,2,3,... arepresentative s, € S[1]x S[2] ... of z) such that sup; p[i] (sk[d], sx11[d]) <
2p(k, Tr41). Completeness of (S[i], p[i]) ensures existence of su[i] = limy s[i]. Condition
(b) ensures s, € ¢. The equivalence class z € S of se, satisfies p(zy, z) < sup; pli] (sk[i], Soo[i])
— 0 for k£ — oc. O

Let (S[i], pli])2,,¢) be a coarse Polish space, and (S, p) its refinement. On the disjoint
union (S[1]WS[2]W...) WS we introduce a topology, namely, the weakest topology making
continuous the following functions f; : (S[1] W S[2]W...) WS — [0, 00) for s €

fs(z) = pli] (x, s[z]) for x € S[i],
fs(x) = p(z, s[oo]) forz € S,

and an additional function fo : (S[1]WS[2]W...) W S — [0,00), fo(z) = 1/i for z € S]i],
fo(z) =0 for z € S. On every S|i] separately (and also on S), the new topology coincides
with the old topology, given by pl[i] (or p).
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We may choose a sequence (s;) dense in ¢; the topology is generated by functions f,, (and
s ()

sty
(and fy) maps the disjoint union into the metrizable compact space [0,1]*°, and is a home-
omorphic embedding. Thus, we have a joint compactification of all S[i] and S; and so, we

treat them as subsets of a compact metrizable space K;

fo), therefore it is a metrizable topology. Moreover the sequence of functions (

Silc K, SCK.

2c4 Lemma. Let s, € S, 51 € S[1],s2 € S[2],... Then sy — s in K if and only if
s =(s1,82,...) € cand Limy_, o0 ¢ Sk = Soo-

The proof is left to the reader.

The assumption ‘s, € S’ is essential. Other limiting points (not belonging to S) may
exist; corresponding sequences converge in K but do not belong to c. And, of course, sets
S,S[1],5[2], ... are not closed in K, unless they are compact.

2c5 Lemma. A set ¢; C c generates c if and only if the set of refinements {z[oo] : z € ¢1}
is dense in S[oo].

The proof is left to the reader.

Given continuous functions f[i] : S[i] — R, floo] : S[oc] — R, we write floo] =
Limy o0 f[3] if f[2](x[é]) = floo](z]oo]) whenever z[oo] = Limy; o . x[4]. If functions f[i] are
equicontinuous (say, |f[i](z) — f[i](y)| < p[é](z,y) for all 7 and z,y € S[i]), then it is enough
to check that f[i](zk[i]) — floo](zk[oo]) for some sequence (zx)7,, Tx € ¢, such that the
sequence (zx[00])72, is dense in S[oo].

Given continuous maps f[i] : S[i] = S[i], floo] : S — S, we write f[oo] = Lim; o f[i] if
Lim;_,o0c f[i](z[i]) = f[oo](z[00]) whenever z[oo] = Lim;_,q . [i]. That is, Lim(f[i](z[i])) =
(Lim f[i]) (Limz[i]). If maps f[i] are equicontinuous then, again, convergence may be
checked on zj such that xx[oco] are dense.

Given continuous maps f[i] : S[oo] — S[i], we may ask, whether Lim;_,, . f[i](z) = x for
all x € S[oo], or not. If maps f[i] are equicontinuous then, still, convergence may be checked
for a dense subset of S[oc].

If every S[i] is not only a metric space but also a Hilbert (or Banach) space, and c is
linear (that is, closed under linear operations), then the refinement S is also a Hilbert (or
Banach) space, and linear operations are continuous on (S[1JUS[2]U...) US C K in the
sense that

Lim; o0 c(as1[é] + bsali]) = a Lim; o0 ¢ 51[¢] + b Limy o0 ¢ S2[7]

for all sq, 59 € c.
Consider the case of Hilbert spaces S[i] = H[i], S = H. Given linear!! operators R][i] :
H[i]| — H[i], we may ask about Lim R[:]. If it exists, we get

Lim(R[i]z[i]) = (Lim R[4]) (Lim z[4]) .

If sup, ||R[i]|| < oo, then R[i] are equicontinuous, and convergence may be checked on a
sequence xy, such that vectors zx[oc] span H (that is, their linear combinations are dense in

1 Continuous, of course.
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H). For example, one-dimensional orthogonal projections; if z[oo] = Lim z[i] then Proj
Lim Proj,;.

Given linear operators R[i] : H — HJi], we may ask whether Lim R[i](z) = =z for all
x € H, or not. If sup, ||R[i]|| < oo then convergence may be checked on a sequence that
spans H. Note that such R[i] always exist; moreover, ||R[i]|| < 1 may be ensured. Indeed,
we take zj such that xx[oo] are an orthonormal basis of H. After some correction, xy|i]
become orthogonal (for each 1), and ||zx(7)|| < 1.'? Now we let R[i]zg[oc] = zx[i]-

We return to coarse probability spaces.

Let ((Qd], F[1], P[i])2,,.A) be a coarse probabilty space. For each i the pseudometric
A, B — Pli](AA B) on F[i] gives us the metric space MALGi] = MALG (Q[3], F[i], P[i]) of
all equivalence classes of measurable sets. It is not only a metric space but also a Boolean
algebra, and moreover, a measure algebra (as defined in [3, 17.44]). Treating every coarse
event A € A as a sequence of A[1] € MALGI1], A[2] € MALGJ2],... we get a coarse Polish
space ((MALG[:])$2,,A). Its refinement is a Polish space MALG[oo]. The set A is closed
under Boolean operations (union, intersection, complement). Therefore MALG|oo] is not
only a metric space but also a Boolean algebra. Using Lemma 2c3 it is easy to check that
MALG[o0c] is a measure algebra. Therefore it is (up to isomorphism) of the form

MALG[oo] = MALG(, F, P)

o] —

for some probability space (€2, F, P). In the nonatomic case we may take (2, F, P) = (0,1)
with Lebesgue measure; in general, we may take a shorter interval plus a finite or countable
set of atoms. Such a probability space (2., P) (unique up to isomorphism) will be called
the refinement of the coarse probability space ((Q[i], F[i], P[i])32,, A), and we write

(Q,F, P) = Lim;_,o0,4(Qe], F[i], Pi])

(in practice, sometimes I omit “4 — oo” or “A” (or both) under the “Lim”).
Every sequence A = (A[1], A[2],...) € A has its refinement

Lim;_y0 4 Ali] = A[oc] € MALG(Q, F, P).

2c6 Lemma. A subset A; of a coarse o-field A generates A is and only if the refinement
F of A is generated (mod 0) by refinements A[oo] of all A € A;.

Proof. We apply Lemma 2c5 to the algebra generated by A;. O

In order to define Ly(.A) as a set of functions on [all], we start with indicators 14 for
A € A, form their linear combinations, and take their completion in the metric

| fllz2ca) = sup || f[2]][ 2o 5

where Lo[i] = L(Q[i], F[i], P[i]); the completion is a Banach (not Hilbert) space Ly(A).
Each element f of the completion is evidently identified with a sequence of f[i] € Ls[i], or a
function on Q[all]. We have a coarse Polish space ((L2[i])$2;, L2(A)). It has its refinement,
LQ[OO]

120f course, ||zx[i]]] = 1, but in general we cannot ensure ||z[i]|| = 1. It may happen that dim H[i] < oo
but dim H = oo.



Boris Tsirelson Scaling limit, noise, stability Saint-Flour, 2002 19

2¢7 Lemma. The refinement Ly[oo] of ((Lo[i])$°,, L2(A)) is (canonically isomorphic to)
Ly(Q, F, P), where (Q, F, P) is the refinement of (4], F[1], P[i]);,A).

Proof. We define the canonical map Ly(A) = Lo(§2, F, P) first on indicators by 14 — 14,
and extend it by linearity and continuity to the whole Ly(A). We note that the image of
f € La(A)in Ly (2, F, P) depends only on the refinement f[oo] € Ly[oco] of f, and their norms
are equal (both are equal to limy || f[z]||). We have a linear isometric embedding Ls[oc] —

Ly(Q2, F, P). Its image is closed (since Ly[oo] is complete by Lemma 2c¢3), and contains
indicators 15 for all B € MALG(2, F, P); therefore the image is the whole Ly(Q, F, P). O

2c8 Note. The same holds for L, for each p € (0,00), and for the space Ly of all random
variables (equipped with the topology of convergence in probability). Elements of Ly(A) will
be called coarsely measurable (w.r.t. A) functions (on Qlall]), or coarse random variables;
elements of Ly(A) — square integrable coarse random variables.

Let f be a coarse random variable, then (usual) random variables f[i] : 2[{] — R converge
in distribution (for i — oco) to the refinement floo] : 2 — R. The distribution of f[oo] will
be called the limiting distribution of f. .

It may happen that f € Ls(A) but (sgnf) ¢ Lo(A). An example: f(w) = (—z;)z for
all w € Q[i]. Here, the limiting distribution is an atom at 0, and the function ‘sgn’ is
discontinuous at 0.

2c9 Lemma. (a) Let f : Q[all]l — R be a coarse random variable, and ¢ : R — R a
continuous function, then g o f: Q[all] - R is a coarse random variable.

(b) The same as (a) but ¢ may be discontinuous at points of a set Z C R negligible w.r.t.
the limiting distribution of f.

Proof. If f is a linear combination of indicators, then ¢ o f is another linear combination
of the same indicators. A straightforward approximation gives (a) for uniformly continuous
¢. In general, for every ¢ there exists a compact set K C R\ Z of probability > 1 — ¢
w.r.t. the limiting distribution, and also w.r.t. the distribution of f[i] for all 7 (since all these
distributions are a compact set of distributions). The restriction of f to K is uniformly
continuous. The limit for € — 0 is uniform in 7. O

For a given Polish space S we may define a coarse S-valued random variable as a map
f: Q[all] — S such that (usual) random variables f[i] : 2[i] — S converge in distribution
(for i — oc), and f~'(B) € A for every B C S such that the boundary of B is negligible
w.r.t. the limiting distribution of f.

For S = R the new definition conforms with the old one.

A coarse o-field generated by a given sequence of sets (coarse events) was defined after
Lemma 2b3. Often it is convenient to generate a coarse o-field by a sequence of functions
(coarse random variables). A function f : Q[all] — R is coarsely A-measurable if and only
if A contains sets f~!((—oo,z)) for all z € R except for atoms (if any) of the limiting
distribution of f. A dense countable subset of these x is enough. So, a coarse o-field
generated by a finite or countable set of functions f is nothing but the coarse o-field generated
by a countable set of sets of the form f~!((—o0,z)). More generally, S-valued (coarse)
random variables may be used; they are reduced to the real-valued case by composing with
appropriate continuous functions S — R.
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2¢10 Lemma. A sequence of functions fy : Q[alll — R generates a coarse o-field if and
only if for every n, n-dimensional random variables (fi[i], ..., f,[i]) : Q[¢] — R" converge in
distribution (for i — 00).

2cl11 Note. The same holds for an arbitrary Polish space instead of R.

2c12 Note. Comparing 2¢10 and (1c9) we see that every joint compactification of Q; W
Qo W... (in the sense of 1c, assuming (1c8)) may be upgraded (or downgraded?) to a coarse
probability space. Namely, we take a sequence of functions f; that generates C' and consider
the coarse o-field A generated by (fi). Every f € C is a coarse random variable, since
Lo(A) is closed under all operations used in (1c5), or (1¢6), or (1¢7).'* Therefore A does
not depend on the choice of (f).

30Of course, Lo(A) usually contains no sequence dense in the uniform topology.



