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1 A first look

la Foreword

Functions of many independent random variables are a tenor of probability theory. Some
examples follow.

e (lassical limit theorems investigate linear functions, such as

b+t
S n

for n = oo. Functional limit theorems lead to Brownian motions.

f(gla"'agn)

e Stochastic differential equations represent a given diffusion process as a function of a
Brownian motion, or a white noise. The latter may be treated as an infinitely divisible
reservoir of independent random variables.

e Percolation theory investigates some very special nonlinear functions of independent
two-valued random variables, either in the limit of an infinite discrete lattice, or in the
scaling limit (especially successful nowadays).

Though, percolation is of dual citizenship: probability, and statistical physics. The following
example belongs rather to computer science:

e Stability and sensitivity of Boolean functions, especially, properties of large random
graphs.
We'll see later that stability and sensitivity are quite important for probability theory.
In many cases we have a sequence of “more elementary” probabilistic models, and we
want to construct a “less elementary” model by a limiting procedure. Some examples follow.

e Brownian motion is a scaling limit of random walks.

e Striving to understand turbulence, one may start with a stochastic flow whose correla-
tion function is smoothed out, and look what happens when the smoothing disappears

gradually. /I\ — /N

e Percolation theory strives to a conformally invariant scaling limit for discrete models
of percolation.

The most interesting thing is a scaling limit as a transition from a lattice model to
a continuous model. A transition from a finite sequence to an infinite sequence is much
simpler, but still nontrivial, as we’ll see on simple toy models.

1b Two toy models

Classical theorems about independent increments are exhaustive, but a small twist may
surprise us. I'll demonstrate the twist on two models, ‘discrete’ and ‘continuous’. The
‘continuous’ model is a Brownian motion on the circle. The ‘discrete’ model takes on two
values +1 only, and increments are treated multiplicatively: X (¢)/X (s) instead of the usual
X(t) — X (s). Or equivalently, the ‘discrete’ process takes on its values in the two-element
group Zo; using additive notation we have Zy = {0,1}, 1 + 1 = 0, increments being X (¢) —
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X(s). In any case, the twist stipulates values in a compact group (the circle, Zs, etc.),
in contrast to the classical theory, where values are in R (or another linear space). Also,
the classical theory assumes continuity (in probability), while our twist does not. The
‘continuous’ process (in spite of its name) is discontinuous at a single instant ¢ = 0. The

‘discrete’ process is discontinuous at ¢t = %, n=1,2,..., and also at t = 0; it is constant on
[n—}rl, L) for every n.
1b1l Example. Introduce an infinite sequence of random signs 7y, 7o, . ..; that is,

P(Tk:—l) :]P’(Tk:+1) :% for each £,

T1,To,... are independent.
For each n we define a stochastic process X, (-), driven by 11,...,7,, as follows:
a sample path of X,
(here 1y =79 =14 = —1,73 = +1)
X.t)= [[ = o +—
i<l .
—

For n — oo, finite-dimensional distributions of X, converge to these of a process X(:).
Namely, X consists of countably many random signs, situated on intervals [k%l, %) Almost
surely, X has no limit at 0+. We have

(1b2) X() I =

X(S) k:s<%§t

whenever 0 < s < t < oo. However, it does not hold when s < 0 < t. Here, the prod-
uct contains infinitely many factors and diverges almost surely; nevertheless, the increment
X(t)/X(s) is well-defined. Each X, satisfies (1b2) for all s,¢ (including s < 0 < ¢; of course,
k < n), but X does not. Still, X is an independent increment process (multiplicatively); that
is, X(t2)/X(t1),...,X(tn)/X (tn—1) are independent whenever —oo < t; < --- < ¢, < o0.
However, we cannot describe the whole X by a countable collection of its independent
increments. The infinite sequence of 7, = X(3+)/X(3—) does not suffice since, say,
X (1) is independent of (71,7s,...). Indeed, the global sign change z(-) — —z(-) is a
measure-preserving transformation that leaves all 7, invariant. The conditional distribu-
tion of X(-) given 7y, 7,... is concentrated at two functions of opposite global sign. It
may seem that we should add to (71,7,...) one more random sign 7., independent of
(71,72, ...) such that X(;) is a measurable function of 74, 711,... and 7. However, it is
impossible. Indeed, X (1) = Tl...TkX(%). Assuming X(%) = fu(Thy Tha1, -« -3 Too) We get
fi(r,moy oo 5 To0) = T1 oo T 1 i (Thy Th4 1, - - - 5 Too) Tor all k. It follows that fi(71, 79, ...; Teo) iS
orthogonal to all functions of the form g(m, ..., 7,)h(7) for all n, thus, to a dense (in L)
set among all functions of 71, 7o, ... ; Too; a contradiction.
So, for each n the process X,, is driven by (%), but the limiting process X is not.
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1b3 Example. (See also [1].) We turn to the other, ‘continuous’ model. For any ¢ € (0, 1)
we introduce a (complex-valued) stochastic process

Y. () = exp(iB(Int) — iB(lng)) fort > e,
) otherwise,

where B(-) is the usual Brownian motion; or rather, (B(t))te[o,oo) and (B(_t))te[o,oo)
are two independent copies of the usual Brownian motion. Multiplicative increments
Yo(ta)/Ye(t1), ..., Ye(tn)/Ye(tn1) are independent whenever —oco < t; < -+ < t, < 00,
and the distribution of Y.(¢)/Yz(s) does not depend on ¢ as far as ¢ < s < ¢ (in fact, the
distribution depends on t/s only). The distribution of Y;(1) converges for ¢ — 0 to the
uniform distribution on the circle |z| = 1. The same for each Y.(t). It follows easily that,
when ¢ — 0, finite dimensional distributions of Y. converge to these of some process Y. For
every t > 0, Y (¢) is distributed uniformly on the circle; and Y is an independent increment
process (multiplicatively); and Y (¢) = 1 for ¢ < 0. Almost surely, Y(-) is continuous on
(0,00), but has no limit at 0+. We may define B(-) by

Y (t) =Y(1)exp(iB(Int)) fort € R,
B(-) is continuous on R,

then B is the usual Brownian motion, and

Y(t) _ exp(iB(Int))
Y(s) exp(iB(lns))

for0<s<t<o.

However, Y (1) is independent of B(-). Indeed, the global phase change y(-) — e“y(-) is a
measure preserving transformation that leaves B(-) invariant. The conditional distribution
of Y(-) given B(-) is concentrated on a continuum of functions that differ by global phase
(distributed uniformly on the circle). Similarly to the ‘discrete’ example, we cannot introduce
a random variable B(—oco) independent of B(-), such that Y'(¢) is a function of B(—o0) and
increments of B(r) for —oco < r < Int.

So, for each ¢, the process Y. is driven by the Brownian motion, but the limiting process
Y is not.

1c Our limiting procedures

Imagine a sequence of elementary probabilistic models such that the n-th model is driven by
a finite sequence (7i,...,7,) of random signs (independent, as before). A limiting procedure
may lead to a model driven by an infinite sequence (71,79, ...) of random signs. However, it
may also lead to something else, as shown in 1b. That is an occasion to ask ourselves: what
do we mean by a limiting procedure?

The n-th model is naturally described by the finite probability space 2, = {—1,+1}"
with the uniform measure. A prerequisite to any limiting procedure is some structure able
to join these €2, somehow. It may be a sequence of ‘observables’, that is, functions on the
disjoint union,

fk: : (QlL'UQQL'U) — R.
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1cl Example. Let fy(71,...,7,) = 7 for n > k. Though, fi is defined only on Q& Q1 &
..., but it is enough. For every k, the joint distribution of f;,..., fx on €2, has a limit for
n — oo (moreover, the distribution does not depend on n, as far as n > k). The limiting
procedure should extend each f; to a new probability space €2 such that the joint distribution
of f1,..., fr on €, converges for n — co to their joint distribution on 2. Clearly, we may
take the space of infinite sequences 2 = {—1,41}° with the product measure, and let fy be
the k-th coordinate function.

1c2 Example. Still fy(m,...,7,) = 7 (for n > k > 1), but in addition, the product
fo(r,...,7) = 1 ...7, is included. For every k, the joint distribution of fo, fi1,..., fx on
2, has a limit for n — oo; in fact, the distribution does not depend on n, as far as n > k
(this time, not just n» > k). Thus, in the limit, fo, fi1, f2,... become independent random
signs. The functional dependence fy = fifs... holds for each n, but disappears in the limit.
We still may take 2 = {—1,+1}°, however, f, becomes a new coordinate.

That is instructive; the limiting model depends on the class of ‘observables’.

1c3 Example. Let fi(r,...,7) = T%...7, for n > k > 1. In the limit, f; become
independent random signs. We may define 73 in the limiting model by 7, = fi/ fr+1; however,
we cannot express fj in terms of 7. Clearly, it is the same as the ‘discrete’ toy model of 1b.

The second and third examples are isomorphic. Indeed, renaming f; of the third example
to gr (and retaining fr of the second example) we have

=T f = k50, and fo—ar

i femr’ Gk+1
these relations hold for every n (provided that the same €, = {—1,+1}" is used for both
examples); naturally, they give us an isomorphism between the two limiting models.

That is also instructive; some changes of the class of ‘observables’ are essential, some are
not.

It means that the sequence (f;) is not really the structure responsible for the limiting
procedure. Rather, f; are generators of the relevant structure. The second and third ex-
amples differ only by the choice of generators for the same structure. In contrast, the first
example uses a different structure. So, what is the mysterious structure?

I can describe the structure in two equivalent ways. Here is the first description. In
the commutative Banach algebra [, (€ W QW .. .) of all bounded functions on the disjoint
union, we select a subset C' (its elements will be called observables) such that

(1c4) C is a separable closed subalgebra of [ (€2 ¥ Qs W...) containing the unit.
In other words,

C contains a sequence dense in the uniform topology;
fn€C, fn = funiformly — feC;
(1cb) frgeC a,beR = af+bgeC;
1eC;
fLgeC = fgel
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(here 1 stands for the unity, 1(w) = 1 for all w). Or equivalently,

C contains a sequence dense in the uniform topology;
(1c6) fn€C, fp — funiformly — feC;
f,g€C, ¢ :R* — R continuous = ¢(f,g9)€C.

You see, on one hand, both af +bg and fg (and 1) are special cases of ¢(f, g). On the other
hand, every continuous function on a bounded subset of R? can be uniformly approximated
by polynomials. The same for ¢(fi,..., f,) where fi,...,f, € C, and ¢ : R — R a
continuous function. Another equivalent set of conditions is also well-known:

C contains a sequence dense in the uniform topology;
fn€C, f = f uniformly = feC;
(1c7) f,ge€C,a,beR = af+bgeC;
1eC,;
feC = |fleC;

here | f| is the pointwise absolute value, |f|(w) = | f(w)].

The smallest set C satisfying these (equivalent) conditions (1c4)—(1c7) and containing all
given functions fj is, by definition, generated by these f.

Recall that C consists of functions defined on the disjoint union of finite probability
spaces {2,; a probability measure P, is given on each €2,,. The following condition is relevant:

(1c8) lim f dP, exists for every f € C'.

n—oo 0
n

Assume that C is generated by given functions fz. Then the property (1¢8) of C' is equivalent
to such a property of functions fj:

(1c9)
For each k, the joint distribution of fi,..., fx on €2, weakly converges, when n — co.
Indeed, (1c9) means convergence of [ ¢(fi,..., fx)dP, for every continuous function ¢ :

Rf — R. However, functions of the form f = ¢(fi,..., fx) (for all k, ) belong to C and are
dense in C'.

We see that (1¢9) does not depend on the choice of generators fi of a given C.

The second (equivalent) description of our structure is the ‘joint compactification’ of
Q1,8s,... I mean a pair (K, «) such that

K is a metrizable compact topological space,
(1c10) a: (W w...) = K is a map,
the image a(Q; W Qo W ... ) is dense in K.

Every joint compactification (K, o) determines a set C satisfying (1c4). Namely,

C=a ' (C(K));
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that is, observables f € C' are, by definition, functions of the form

f=goaq, thatis, f(w) = g(a(w)), g€ C(K).

You see, the Banach algebra C is the same as the Banach algebra C'(K) of all continuous
functions on K.

Every C satisfying (1c4) corresponds to some joint compactification. Indeed, C is gener-
ated by some fj, such that | fx(w)| <1 for all k,w. We introduce

a(w) = (fl(w),fg(w), .. ) € [-1,1]*,
K is the closure of a(2; W Qo W...) in [—1,1]%;

clearly, (K, «) is a joint compactification. Coordinate functions on K generate C(K), there-
fore fi generate a~'(C(K)), hence o (C(K)) = C.

Finiteness of each €2, is not essential. The same holds for arbitrary probability spaces
(Q, Fr, Pp). Of course, instead of 1o (21 W QoW ... ) we use Lo (21 W Q8. .. ), and the map
a: (W W...) - K must be measurable. It sends the given measure P, on €, into a
measure a(P,) (denoted also by P, oa™!) on K. If measures a(P,) weakly converge, we get
the limiting model (2, P) by taking Q2 = K and P = lim,, o, a(P,).

1d Examples of high symmetry

1d1 Example. Let Q, be the set of all permutations w : {1,...,n} — {1,...,n}, each
permutation having the same probability (1/n!);

Fr(wQw...) = Ris defined by
flw) =k :w(k) =k};

that is, the number of fixed points of a random permutation. Though, f is not bounded,
which happens quite often; in order to embed it into the framework of 1c, we make it
bounded by some homeomorphism from R to a bounded interval (say, w — arctan f(w)).
The distribution of f(-) on 2, converges (for n — oo) to the Poisson distribution P(1).
Thus, the limiting model exists; however, it is scanty; just P(1).

We may enrich the model by introducing

fulw) = {k <un:w(k) =k} ;

for instance, fos5(-) is the number of fixed points among the first half of {1,...,n}. The
parameter u could run over [0, 1], but we need a countable set of functions; thus we restrict
u to, say, rational points of [0, 1]. Now the limiting model is the Poisson process.

Each finite model here is invariant under permutations. Functions f, seem to break the
invariance, but it survives in their increments, and turns in the limit into invariance of the
Poisson process (or rather, its derivative, the point process) under all measure preserving
transformations of [0, 1].

Note also that independent increments in the limit emerge from dependent increments in
finite models.
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We feel that all these f,(-) catch only a small part of the information contained in the
permutation. You may think about more information, say, cycles of length 1,2,... (and
what about length n/27?)

1d2 Example. Let €, be the set of all graphs over {1,...,n}. That is, each w € €,
is a subset of the set ({1"5’"}) of all unordered pairs (treated as edges, while 1,...,n are
vertices); the probability of w is pil(1 — p,)"®=1/2=1l where |w| is the number of edges.
That is, every edge is present with probability p,, independently of others. Define f(w) as
the number of isolated vertices. The limiting model exists if (and only if) there exists a limit
lim, n(1 — p,)"* = X € [0,00);! the Poisson distribution P()) exhausts the limiting model.

A Poisson process may be obtained in the same way as before.

You may also count small connected components more complicated than single points.

Note that the finite model contains a lot of independence (namely, n(n—1)/2 independent
random variables); the limiting model (Poisson process) also contains a lot of independence
(namely, independent increments); however, we feel that independence is not inherited here.
Rather, the independence of finite models is lost in the limiting procedure, and a new inde-
pendence emerges.

1d3 Example. Let Q, = {—1, +1}" with the uniform measure, and f, : (1 W Y...) > R
is defined by

as before, 71,...,7, are the coordinates, that is, w = (Tl(w), ) ..,Tn(w)); and u runs over
rational points of [0, 1]. The limiting model is the Brownian motion, of course.

Similarly to Example 1d1, each finite model is invariant under permutations. The invari-
ance survives in increments of functions fi, and in the limit, the white noise (the derivative
of the Brownian motion) is invariant under all measure preserving transformations of [0, 1].

le Example of low symmetry

Example 1d3 may be rewritten via the composition of random maps

a oyl —7,
a_(k)=k—-1, ai(k)=Fk+1;

Oy = Or(w) O« - Qg (w) 5

2L
NN

oy

thus, o, (k) = k+7(w)+- - -+7,(w), and we may define f; (w) = ﬁaw(O), which conforms to
1d3. Similarly, f,(w) = ﬁaw,u(O), where a,, is the composition of a;,(,) for & < un. The
order does not matter, since a_, oy commute, that is, a_ o ay = ay o a_. It is interesting
to try a pair of noncommuting maps.

!Formally, the limiting model exists also for A = 0o, since the range of f is compactified.
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lel Example. Define

1 1 3/2a% &

OZ_,CK+3Z+§—)Z+§, 1;28 {/o
a(r)=r—-1, ay(z)=z+1 forze (Z+1)Nn(0,00), :;g . «\\.
a_(—z) =—a_(z), ai(-z)=—ai(x). a- ay

These are not invertible functions; «_ is not injective, a is not surjective; well, we do not
need to invert them, we need their compositions:

[ 4 o o—o A 4
n/q>7o—o o qfe
Q= O (@) © " 0 Oy ) - N AN

QA-0Q+=0(41,-1)  X4OA—Z=C(_1,41)

All compositions belong to a two-parameter set of functions A,

y
r+a for x > b, e Y= (@)
,(x) =hap(z) =<z —a for x < —b, ... m
(=1)>%(a+1b) for —b <z < b /
ba+be (Z+3)N(0,00)={3,3,2,...}.
Indeed, o = h_11.5, @y = hy g5, and hg, p, © hgy b, = hap Where a = a3 +aq, b = max(by, by —

ay). Thus, o, = haw)pw), and we define

fli(QlL'UQQL'U...)—}RZ X{—1,+1},

) = (D259, aproros)
vV

Though, the function is neither bounded nor real-valued; in order to fit into the framework of

1c we take, say, arctan(a(w)/v/n), arctan(b(w)/y/n), and (—1)*@=%5_ The latter is essential

if, say, =, (0.5) is treated as an ‘observable’; you see, —=a,(0.5) = (—1)”(“’)*0'5%(&(@ +

b(w)). The limiting model exists, and is quite interesting. We’ll return to it later. As before,

a random process appears by considering the composition over k < un.

Here, finite models are not invariant under permutations of their independent random
variables (since the maps do not commute), and the limiting model appears not to be in-
variant under measure preserving transformations of [0, 1].

Independence present in finite models survives in the limit, provided that the limit is
described by a two-parameter random process; we’ll return to the point later.

1f Trees, not cubes

1f1 Example. A particle moves on the sphere S2. Initially it is at a given point 2o € S2.
Then it jumps by € in a random direction. That is, Xy = x(, while the next random variable
X, is distributed uniformly on the circle {z € S? : [zy — x| = €}. Then it jumps again,
to X5 such that |X; — Xs| = ¢, and so on. We have a Markov chain (Xj) in discrete
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time (and continuous space). Let €. be the corresponding probability space; it may be
the space of sequences (zg, z1,Zo,...) satisfying |z — xx41| = €, or something else, but in
any case X : Q. — S?. We choose &, — 0 (say, &, = 1/n), take Q, = €.  and define
fu : (Ql&JQQH‘J) — 52 by

fulw) = Xp(w) for2k<u<ei(k+1), weQ,.

Of course, the limiting model is the Brownian motion on the sphere S2.

In contrast to previous examples, here €2, is not a product; the n-th model does not consist
of independent random variables. Though, we can parametrize these Markov transitions by
independent random variables; however, there is a lot of freedom in doing so; no one among
the parametrizations may be called canonical. The same holds for the limiting model. The
Brownian motion on S? can be driven by the Brownian motion on R? according to some
stochastic differential equation, but the latter involves a lot of freedom.

1f2 Example. Consider the random walk on such an oriented graph:

\&\

A particle starts at 0 and chooses at random (with probabilities 1/2, 1/2) one of the two
outgoing edges; and so on (you see, exactly two edges go out of any vertex). Such (Zy, Z,...)
is known as the simplest spider walk. It is a complex-valued martingale. The set €2, of all n-
step trajectories contains 2" elements and carries its natural structure of a binary tree. (It can
be mapped to the binary cube {—1,+1}" in many ways.) We define f, : (2; 4Q4...) - C
by

fulw) = LnZk(w) fork<nu<k+1, wel,.

Vn

The limiting model is a continuous complex-valued martingale whose values belong to the
union of three rays.

The process is known as Walsh’s Brownian motion, a special case of so-called spider martin-
gale.

1lg Sub-o-fields

Every example considered till now follows the pattern of 1c; a joint compactification of
probability spaces €2,, and the limiting 2. Moreover, ), is usually related to a set 7T, (a
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parameter space, interpreted as time or space), and €2 to a joint compactification 7" of these
T,.

Example T, T
1b1 {1,5,.... 2} | {1,5,5,--- U {0}
1b3 e, 1] [0,1]
1d1, 1d2, 1d3, lel, 1f1, 1f2 | {1, 2,...,1} [0,1]

Examples 1b1, 1b3, 1d3 deal (for a finite n) with independent increment processes, taking
on their values in a group, namely, 1d3: R (additive); 1bl: {—1,+1} (multiplicative), 1b3:
the circle {z € C : |z| = 1} (multiplicative). Every ¢ € T, splits the process in two pieces,
the past and the future; in order to keep them independent, we define them via increments,
not values.? In terms of random signs 7, (for 1bl, 1d3) it means simply {—1,+1}" =
{=1,+1}* x {—1,+1}"7*; here k depends on ¢. The same idea (of independent pieces) is
formalized by sub-o-fields Fo (the past) and F;; (the future) on our probability space (€2,
or Q). Say, for the Brownian motion (1d3), Fy; is generated by Brownian increments on
[0,¢], while F;; — on [t,1]. Similarly we may define F; for s < ¢, and we have

Frs @ Fsy = Fpy whenever r < s <t;
it means two things: first, independence,
P(ANB)=P(A)P(B) whenever A€ F,,,B€ Fyy;

and second, F,, is generated by F, s and F, (that is, F,, is the least sub-o-field containing
both F, s and F; ;). Such a two-parameter family (F ;) of sub-o-fields is called a factorization
(of the given probability space). Some additional precautions are needed when dealing with
semigroups (like 1el), and also, with discrete time.
Sub-o-fields F4 can be defined for some subsets A C T more general than intervals,
getting
FiQFg=F- whenever AwB=C.

Models of high symmetry admit arbitrary measurable sets A; models of low symmetry do not.
For some examples (such as 1d1, 1d2), a factorization emerges after the limiting procedure.?
No factorization at all is given for 1f1, 1f2. Still, the past Fy; = F; is defined naturally.
However, the future is not defined, since possible continuations depend on the past. Here
we deal with a one-parameter family (F;) of sub-o-fields, satisfying only a monotonicity
condition
Fs CF; whenever s <t;

such (F) is called a filtration.

2In fact, the process of 1b1 has also independent values (not only increments); but that is irrelevant.
3For 1d2, some factorization is naturally defined for Q,, but is lost in the limiting procedure, and a new
factorization emerges.



