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4 Random walks

4a Reflection

Consider the one-dimensional simple random walk: S,, = X;+- - -+ X, (where

X}, are independent random signs, as in la), and let M,, = max(Sy, ..., S,).

We know the distribution of S,,: IP’(Sn = m) = 2_"(nfm) for m = —n,
2

—n + 2,...,n. Interestingly, we can calculate the distribution of M,,, and

moreover, the joint distribution of S,, and M,,.

4al Proposition. For every m > 0,

4a2 Lemma. E (f(S, — m)ly;,>n) = 0 for all m > 0 and every odd (anti-
symmetric) function f.!

In other words, the conditional distribution (if defined) is symmetric
around m.

Proof. For m = 0: trivial. For m > 0: define “first hit” events
Ap={S1<m,...,Sx1<m,Sp,=m} fork=1,...,n;
clearly, Ay W ---w A, = {M, > m}; it is sufficient to prove that
E (f(S, —m)la,) = 0 for all k.
In terms of the corresponding sets B;, C R* defined by

B, = {(:L’l, R ,SL’k) T <M, T1+Te <My ..., X1+ A+ T <M, T+ +Tp = m}

!That is, Vo f(—2) = —f(2).
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we have
E(f(Sp—mly)=2" Y flaat- -tz —m)lp(e,...,5) =
T1,...,kp==1
=27" Z Ip, (x1,...,xk) Z fm4zp+-+x,—m) =0.
T1,...,cp==%1 Tyl Tn==E1

U
4a3 Corollary. E (f(S, — m)1Ly,<m) = E (f(S, —m)) for m > 0 and odd

functions f.
4a4 Lemma. IP’(Mn < m) = IP’(Sn < m) —IP’(Sn > m) for all m > 0.
Proof. Applying a3l to f = sgn and noting that S,, < M,, we get —IP’(Mn <
m):]P’(Sn—m>0)—IP’(Sn—m<O). O
Proof of [4ad]
P(M,=m) =P (M, <m+1) —P(M, <m) =
=P(S,<m+1)=P(Sy>m+1)—P(S, <m)+P(S,>m) =
:IP’(Sn:m)+IP’(Sn:m+1).
O
4a5 Proposition. For every s, m such that m > 0 and m > s,
P(S,=s5M,=m)=P(S,=2m—s) —P(S,=2m—s+2).

4a6 Lemma. P(Sn:m—c,Mn <m) :IP’(Sn:m—c)—IP’(Sn:erc)
for all m > 0 and ¢ > 0.

Proof. For ¢ = 0: trivial. For ¢ > 0: apply Had to f(c) = —1, f(—c) =1,
f(-) = 0 otherwise. O

In other words,
P(Sn =s, M, < m) :P(Sn :s) —IP’(Sn :2m—s)
forallm >0 and s < m.
Proof of [4a3]
P(S,=s5M,=m)=P(S,=s,M, <m+1)—P(S,=s,M,<m) =
= (P(S,=5)-P(S,=2(m+1)—s))—(P(S, =s)—P(S, =2m—s)) =
=P(S,=2m—s) —P(S,=2m—s+2).
U
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4a7 Proposition. !

For every a, b such that a > b > 0,

a—>

]P(51>o,...,5a+b>o\sa+b:a—b):a+b.

The latter is well-known as ‘the ballot theorem’ (1878): “Suppose that
in an election candidate A gets a votes and candidate B gets b votes where
b < a. Then the (conditional) probability that throughout the counting A
always beats B is (a —b)/(a +b).”

4a8 Lemma. ]P’(Sl <0,...,5, <05, = —c) = %]P’(Sn,l = c— 1) -
1P (Sp-1=c+1) for ¢ > 0.

Proof.
P(S1<0,...,5,<0;8,=—c) =
P(S1=-1;8-5<0,...,8 -5 <08 -8 =—-c+1) =
IP(S1<0,...,8,1 <0;8, 1 =—c+1) = 1P (M, < 1; 8,1 = —c+1) =
= L(P(Sr = —c+ 1) ~P(Si1 =21~ (~c+ 1)),
since (52 —Sl,...,Sn —51) ~ (Sl,...,Snfl). O

In other words, IP’(51 >0,...,5,> 0,9, = s) = %P(Sn_l =5 — 1) —
%P(Sn_l = s+1) for all s > 0.

Proof of[4a7 Denoting n =a+ b and s = a — b we have

P(S1>0,...,84>0;Sup=a—b) =P(5, >0,...,5,> 0,5, =s) =

= %P(Sn_l =5— 1) — %P(Sn_l = s+1);

]P)(Sn—l :S—l) _]P)(Sn—l :$+1)

P(S1>0,...,84 > 0]Sery =a—b) =

P(Sn:s)
()~
2-27"(,41,)
n—s|nts| (n—1! ( —1)! _l<n+5_n—s>_£_a—b
n! nos|(nks )l (2 Nzl ) n 2 2/ n a+b’

1[KS, Sect. 6.2, Lemma 6.6], [D, Sect. 3.3].
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Here is another use of reflection. Let us say that k is a point of increase
if
Sp< S, forl=0,....k—1,
S >8, forl=k+1,...,n.

4a9 Proposition. The expected number of points of increase is equal to 1.

However, it is well-known that for large n the walk typically has no points
of increase. A paradox! What do you think? A clue: I tried 1000 paths of
length n = 100 and got the following empirical distribution for the number
of points of increase:

value O 1 2 3 4 5 6 7 8 9 10 11 12 14 19 21
occurs 722 63 45 41 34 24 20 9 14 8 v 1 4 4 2 2

Proof of [4a9 Consider events

Ay ok is a point of increase, that is,
So < Sky .oy Sk—1 < Sky Skg1 = Sky -, S = Sk
By, :  k is the first maximizer, that is,

So < Sky -3 Sk—1 < Sky Skp1 < Sk, ., 5 < Sk

We have IP’(Ak) = IP’(Bk) for each k, since (z1,...,x,) € A if and only

if (x1,...,%, —Tps1,...,—x,) € Bg. The expected number of points of
increase Y P(Ay) is equal to Y P(By) = 1 (exactly one first maximizer).
O

4b Recurrence

The two-dimensional simple random walk is S,, = X;+- - -+ X,, where X, are
independent identically distributed two-dimensional random vectors taking
on the four values (1,0), (—1,0), (0, 1), (0, —1) with equal probabilities (0.25).
(Note that the first coordinate is not a one-dimensional simple random walk.)
The d-dimensional simple random walk is defined similarly.

4b1 Theorem. ! (Polya) The simple d-dimensional random walk returns to
the origin (almost surely) infinitely many times if 1 < d < 2 (recurrence),
but only finitely many times if d > 3 (transience).

LD, Sect. 3.2, Th. (2.3)]; [KS, Sect. 6.1, Th. 6.5].
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‘A drunk man will find his way home but a drunk bird may get lost
forever’ (Kakutani).

The proof uses Propositions [4b2] and [4h3]

Denote by pn ) the probability of the event S, = 0 for the d-dimensional
simple random walk (S, ..., S,). Clearly, pn = 0 for odd n.

1

_on [ 21
=2 ()
n

on 2
2 1 —2n
p§2=<p§2>2=42( );

4b2 Proposition.

n

2n n 2

( 2n

Pan =6 (n) 2 <k,z,m)'
k+l+m=n

Note that p(3) # (pgg) .

A d-dimensional random walk (general, not just simple) is S,, = X;+- - -+
X, where X}, are independent identically distributed d-dimensional random
vectors (their common distribution being arbitrary).

4b3 Proposition. ? The following three conditions are equivalent for every
d-dimensional random walk (.S,,),:

(a) S, = 0 for at least one n > 1, almost surely;

(b) S,, = 0 for infinitely many n, almost surely;

() i P(Sn =0) =

Proof of [4b1] assuming[{b3 and[{d3 Case d = 1: by 1al3, p(l) \/272rﬁ

Thus, Y. pY) = co. Use AD3.

Case d = 2: by[db2 and the above, p ) _ (pgln)) %. Still, a divergent
series.

Case d = 3. First, by [db3lit is sufficient to prove that the series converges.
To this end it is sufficient to prove that

Z K 2<const~g
k,l,m) — n’

k+l+m=n

since pgn) - pgz) 3” an EkJrler n (klm) by m and E 1]7511 < 0.

1D, Sect. 3.2].
2[D, Sect. 3.2, Th. (2.2)]; [KS, Sect. 6.1, Lemma 6.4].
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Second, it is sufficient to prove that

n 3"
max < const - —
k+l+m=n k‘, l, m n

since 35y men (rm) = 3" and 3 (k‘?m)Q < max (1) 32 ()

Third, we may assume n € 3Z, since the maximum is increasing in n;

indeed, ( el )2( " )

k+1,l,m k,l,m
The maximum is reached at k = [

remains to prove that

m = n/3 only (think, why). It

n 3"
< t-— f € 3%,
(n/3,n/3,n/3> = comsbeo s torn
which follows easily from the Stirling formula (check it).
Case d > 3. We take the 3-dimensional projection of the d-dimensional
walk, discard adjacent equal points, and get the 3-dimensional simple random
walk; eventually it leaves the origin forever.! O

Proof of [4b2 Case d = 1: we choose n positions for —1 among the given
2n positions ((*") possibilities).

Case d = 2: let Sy, = (5}, S)), then S;, — S} and S}, + S} are independent
1-dimensional simple random walks.

Case d = 3: we should have a sum like this:

—ey+e3t+este—ester—e —e3=0;

we choose the signs first ((2:) possibilities); then, among the n minus terms,

we choose some k positions for e;, [ positions for e, and m positions for
es ((,., ) possibilities), and the same among the n plus terms (also (, ;' )
possibilities). m

By the way, you may try to do it otherwise: first, choose 2k positions
for ey, 21 positions for +e, and 2m positions for +es3, and then choose the
signs. .. Try it also for d = 2. ..

Toward b3

Given a random walk (S,,) (general, not just simple; n-dimensional), we
define 7,75, : Q — {1,2,...} U{oo}:

rn=inf{n >0:S5,=0}; mn=inf{n>m:S,=0}; and so on.

n fact, p{¥) ~ const(d)/n?/2.
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Can we say that random variables 7,1 — 7,, are independent, identically
distributed? Not quite; it may happen that 7,, = oo, then necessarily 7,11 =
00, and 7,11 — T, is not defined. But still,
(4b4)

IP’(Tl =t, o —T1=1to, ..., T — Th1 = tn) = IP’(Tl = tl) .. .IP’(Tl = tn)

for all n and all ¢1,...,%, € {1,2,...}. (Infinity disallowed!)
Proof of (@b4) for n = 2. Consider sets (here s; = x1 + -+ + ;)

A={(z1,...,xpp1) :51#0,..., 8,170, 8, =0, Sk1 #Z0,...,8k11-1 # 0, Sk =0}
B={(z1,...,2) 151 #0,...,8.1#0, s, =0};
C={(xy,...,21) :51#0,...,5.1#0, s=0}.

We have A = B x C;

]P(Tl =k, 7= k—l—l) = / Nudprtt = / Da(zq, ..o xpp) p(day) . p(dagy) =

Rk+l

= /k l]lB<x17' . 7xk)]10<xk+17 .- .,I‘k+l) :u(dx1> - :u(dkarl) =
Rk+

( /R k ]13(551,...,xk)ﬂ(dxl)...u(dxk)) ( /R Ao@rn, s Tn) fa(daien) M(dxkﬂ))

= (/ﬂBdﬂk)(/ﬂcdu’) =P(n =k)P(rn=1).

O

The proof for any n is similar.
Thus,

Plrp<oo)=>» P(n=kmn=k+tl)=) P(n=FkP(n=1)=

_ (;p(ﬁ =£)) = (P(n < 0))”;
similarly,
(4b5) P(7, <o0) = (P(n1 <o0))".

Proof of [4b3 We reformulate the conditions in terms of 7,,: (a) IP’(Tl <
00) = 1; (b) P(m, < 00) =1 for all n; (¢) Esup{n : 7, < oo} = ooc.
Trivially, (b) implies both (a) and (¢). By (4b3l), (a) implies (b). Finally, (c)
implies (a), since max{n : 7, < oo} cannot be distributed geometrically and
have infinite expectation. O
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