
Probability for mathematicians INDEPENDENCE TAU 2013 21

Contents

2 Central limit theorem 21

2a Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2b Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2c The initial distribution does not matter . . . . . . . . . . . . . 24
2d From smooth functions to indicators . . . . . . . . . . . . . . 26

2 Central limit theorem

2a Introduction

Discrete probability spaces are enough here as long as all random variables
are discrete (otherwise Ω = R

n fits); to this end use triangle arrays.
Let X1, X2, . . . be independent identically distributed random variables,

and Sn = X1 + · · ·+Xn.

2a1 Theorem. 1 Let EX1 = 0 and EX2
1 = 1. Then

P
(
a
√
n < Sn < b

√
n
)
→ 1√

2π

∫ b

a

e−x2/2 dx as n→ ∞

whenever −∞ ≤ a ≤ b ≤ ∞.

Clearly, the De Moivre-Laplace Theorem 1a20 is a special case.
More than 10 proofs are well-known. Some use Stirling formula. Some

use Brownian motion. Some prove convergence to the normal distribution.
Some prove first convergence to some distribution, and then identify it.

Moment method: first, find limn E
(
Sn√
n

)
k assuming all moments finite

(otherwise, truncate); then approximate the indicator of an interval by poly-
nomials.

Fourier transform (“characteristic function”): first, limn E exp
(
iλ Sn√

n

)
=

exp
(
−λ2

2

)
; then approximate the indicator of an interval by trigonometric

sums.
Smooth test functions (Lindeberg): first, E f

(
Sn√
n

)
− E f

(
S̃n√
n

)
→ 0 as

n → ∞ for f ∈ C3; then approximate the indicator of an interval by such
smooth functions. This will be done here.

1[KS, Sect. 10.1, Th. 10.5]; [D, Sect. 2.4, Theorem (4.1)].
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2b Convolution

The convolution ν ∗ f of a probability distribution ν on R and a bounded
continuous function f : R → R is a function R → R defined by1

(ν ∗ f)(x) =
∫

f(x+ y) ν(dy) .

For a discrete ν the convolution is a linear combination of shifts. In general
it may be thought of as an integral combination of shifts. Probabilistically,
(PX ∗ f)(a) = E f(a+X).

2b1 Lemma. If f is bounded and continuous2 then also µ∗f is, and ‖µ∗f‖ ≤
‖f‖.

Here and below the norm is supremal (rather than L2):

‖f‖ = sup
x∈R

|f(x)| .

Proof. Boundedness: |E f(a +X)| ≤ sup |f(·)|. Continuity: if an → a then
f(an + x) → f(a + x) pointwise, thus E f(an + X) → E f(a + X) by the
bounded convergence theorem.

For independent X, Y we have PX+Y ∗ f = PY ∗ PX ∗ f (it means,
(
PY ∗

(PX ∗ f)
)
), since

(PX+Y ∗ f)(a) = E f(a+X + Y ) =

∫∫

f(a+ x+ y)PX(dx)PY (dy) =
∫ (∫

f(a+x+y)PX(dx)
)

PY (dy) =

∫

(PX∗f)(a+y)PY (dy) =
(
PY ∗(PX∗f)

)
(a) .

We define the convolution of two probability distributions µ, ν by (µ∗ν)(B) =
(µ × ν)

(
{(x, y) : x+ y ∈ B}

)
, then PX+Y = PX ∗ PY for independent X, Y ,

and we may interpret PY ∗ PX ∗ f as (PY ∗ PX) ∗ f equally well.
Convolution for discrete:

(PX ∗ f)(a) =
∑

x

pX(x)f(a+ x) ;

pX+Y (a) =
∑

(x,y):x+y=a

pX(x)pY (y) =
∑

x

pX(x)pY (a− x) .

1The definition generalizes easily to finite signed measures and bounded Borel functions,
but we do not need it.

2Well, it is required by the definition above. . .
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Convolution for absolutely continuous:

(PX ∗ f)(a) =
∫

pX(x)f(a+ x) dx ;

pX+Y (a) =

∫

pX(x)pY (a− x) dx .

Some examples:

Binom(m, p) ∗ Binom(n, p) = Binom(m+ n, p) , — binomial

N(a1, σ
2
1) ∗N(a2, σ

2
2) = N(a1 + a2, σ

2
1 + σ2

2) . — normal

The latter equality can be checked by integration, or obtained from the former
by a limiting procedure, but better note that the standard two-dimensional
normal distribution N(0, 1)×N(0, 1) has the density1

1√
2π

e−x2/2 · 1√
2π

e−y2/2 =
1

2π
e−(x2+y2)/2

invariant under rotations; thus, X cosα + Y sinα ∼ N(0, 1) for all α.

2b2 Lemma. If f has a bounded and continuous derivative, then also µ ∗ f
has, and (µ ∗ f)′ = µ ∗ f ′.

Proof. We have a bounded continuous g satisfying f(b) = f(a) +
∫ b

a
g(x) dx.

Thus,

(µ ∗ f)(b) =
∫

f(b+ y)µ(dy) =

∫ (

f(a+ y) +

∫ b+y

a+y

g(x) dx
)

µ(dy) =

=

∫

f(a+ y)µ(dy) +

∫ (∫ b

a

g(x+ y) dx
)

µ(dy) =

= (µ ∗ f)(a) +
∫ b

a

(∫

g(x+ y)µ(dy)
)

dx = (µ ∗ f)(a) +
∫ b

a

(µ ∗ g)(x) dx .

The same holds for f ′′ and f ′′′.2

1In addition, integrating it in polar coordinates we get 1

2π

(∫
∞

0
e−r2/2r dr

)(∫
2π

0
dϕ

)
= 1,

which shows that 1/
√
2π is the right coefficient for the density of N(0, 1). (See also Proof

of 1a20.)
2And so on, of course, but we need only three derivatives.
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2c The initial distribution does not matter

Let µ, ν be two probability distributions on R satisfying

∫

xµ(dx) =

∫

x ν(dx) = 0 ,

∫

x2 µ(dx) =

∫

x2 ν(dx) = 1 .

We consider independent random variables X1, . . . , Xn distributed µ, and
independent random variables Y1, . . . , Yn distributed ν. Note that EX1 =
EY1 = 0 and EX2

1 = EY 2
1 = 1.

2c1 Proposition. If f, f ′, f ′′, f ′′′ are continuous and bounded on R then

E f
(X1 + · · ·+Xn√

n

)

− E f
(Y1 + · · ·+ Yn√

n

)

→ 0 as n→ ∞ .

The proof will be given after a corollary.

2c2 Corollary.

E f
(X1 + · · ·+Xn√

n

)

→ 1√
2π

∫ +∞

−∞
f(x)e−x2/2 dx .

Proof of the corollary. Let Y1 be normal N(0, 1), then Y1 + · · · + Yn is also
normal, thus

E f
(Y1 + · · ·+ Yn√

n

)

=
1√
2π

∫ +∞

−∞
f(x)e−x2/2 dx for all n .

We start proving the proposition.
We have

∫
(a+ bx+ cx2)µ(dx) =

∫
(a+ bx+ cx2) ν(dx) for all a, b, c ∈ R.

Similarly,

∫

(a+ bx + cx2)µn(dx) =

∫

(a+ bx+ cx2) νn(dx) ;

here and below µn is the distribution of X1/
√
n, and νn — of Y1/

√
n; that

is,
∫
f
(

x√
n

)
µ(dx) =

∫
f dµn (and the same for ν). These µn, νn are useful,

since

(2c3) E f
(X1 + · · ·+Xn√

n

)

= (µn ∗ · · · ∗ µn ∗ f)(0) = (µ∗n
n ∗ f)(0) ,

and the same for Y and ν.
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2c4 Lemma. There exist εn → 0 such that for every f (as in 2c1) and every
n,

∣
∣
∣

∫

f dµn −
∫

f dνn

∣
∣
∣ ≤ εn

n

(
‖f ′′‖+ ‖f ′′′‖

)
.

2c5 Remark. These εn depend on µ, ν (but not f). If µ, ν have third
moments then moreover

∣
∣
∣

∫

f dµn −
∫

f dνn

∣
∣
∣ ≤ 1

6n1.5
‖f ′′′‖

(
E |X1|3 + E |Y1|3

)
.

Proof of the lemma. We define g by

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + g(x) ;

g is continuous but not bounded;

|g(x)| ≤ ‖f ′′′‖ · 1
6
|x|3 .

We have
∫
(f − g) dµn =

∫
(f − g) dνn, therefore

∣
∣
∣

∫

f dµn −
∫

f dνn

∣
∣
∣ ≤

∫

|g| dµn +

∫

|g| dνn ,

which leads immediately to 2c5, but we need an argument that does not
require the third moments. We note that |1

2
f ′′(0)x2 + g(x)| ≤ 1

2
‖f ′′‖x2,

therefore
|g(x)| ≤ ‖f ′′‖ · |x|2 ,

and split the integral:1

∫

|g| dµn =

∫ ∣
∣
∣g
( x√

n

)∣
∣
∣µ(dx) ≤

≤
∫

|x|≤n1/12

‖f ′′′‖ · 1
6

∣
∣
∣
x√
n

∣
∣
∣

3

µ(dx)

︸ ︷︷ ︸

O(n−7/6)

+

∫

|x|>n1/12

‖f ′′‖ ·
∣
∣
∣
x√
n

∣
∣
∣

2

µ(dx)

︸ ︷︷ ︸

o(1/n)

≤

≤ εn
n

(
‖f ′′‖+ ‖f ′′′‖

)
where

εn = max
( 1

24n1/6
,

∫

|x|>n1/12

x2 µ(dx)
)

;

the same holds for
∫
|g| dνn.

1The exponent 1/12 may be replaced with any other number between 0 and 1/6.
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Proof of Proposition 2c1. By (2c3) it is sufficient to prove that |(µ∗n
n ∗f)(0)−

(ν∗nn ∗ f)(0)| → 0. Applying Lemma 2c4 to a shifted function x 7→ f(a + x)
we get

‖µn ∗ f − νn ∗ f‖ ≤ εn
n

(
‖f ′′‖+ ‖f ′′′‖

)
.

We turn µ∗n
n into ν∗nn gradually:

µ∗n
n ∗ f − ν∗nn ∗ f =

n−1∑

k=0

(
µ∗(n−k)
n ∗ ν∗kn ∗ f − µ∗(n−k−1)

n ∗ ν∗(k+1)
n ∗ f

)
=

=

n−1∑

k=0

µ∗(n−k−1)
n ∗ (µn ∗ fk − νn ∗ fk) ,

where fk = ν∗kn ∗ f . Now, ‖f ′′
k ‖ ≤ ‖f ′′‖, ‖f ′′′

k ‖ ≤ ‖f ′′′‖, and ‖µ∗(n−k−1)
n ∗

(. . . )‖ ≤ ‖(. . . )‖; thus,

‖µ∗n
n ∗ f − ν∗nn ∗ f‖ ≤

n−1∑

k=0

εn
n

(
‖f ′′‖+ ‖f ′′′‖

)
= εn

(
‖f ′′‖+ ‖f ′′′‖

)
→ 0

as n→ ∞.

2d From smooth functions to indicators

2d1 Lemma. There exists a function ϕ : R → R having three bounded
derivatives and such that ϕ(x) = 0 for all x ≤ −1, ϕ(x) = 1 for all x ≥ 0.

Proof. The function ψ(x) = (1 − x2)4 for |x| ≤ 1, otherwise 0, has two (in

fact, three) continuous derivatives. We take ϕ(x) = 1
c

∫ 2x+1

−∞ ψ(t) dt where

c =
∫∞
−∞ ψ(t) dt.

Let X1, . . . , Xn be as in 2c1. By 2c2, for every a ∈ R and ε > 0,

Eϕ

(
1

ε

(X1 + · · ·+Xn√
n

− a
))

→ 1√
2π

∫ ∞

−∞
ϕ
(1

ε
(x− a)

)

e−x2/2 dx

as n→ ∞. Taking into account that

P

(X1 + · · ·+Xn√
n

≥ a
)

≤ Eϕ

(
1

ε

(X1 + · · ·+Xn√
n

− a
))

we get

lim sup
n→∞

P

(X1 + · · ·+Xn√
n

≥ a
)

≤ 1√
2π

∫ ∞

−∞
ϕ
(1

ε
(x− a)

)

e−x2/2 dx .



Probability for mathematicians INDEPENDENCE TAU 2013 27

The right-hand side converges to 1√
2π

∫∞
a

e−x2/2 dx as ε → 0. Thus, lim supP
(
X1+

· · ·+Xn ≥ a
√
n
)
≤ P

(
ξ ≥ a

)
where ξ ∼ N(0, 1); or equivalently, lim inf P

(
X1+

· · · + Xn < a
√
n
)
≥ P

(
ξ < a

)
. Similarly, lim supP

(
−X1 − · · · − Xn ≥

a
√
n
)
≤ P

(
ξ ≥ a

)
, that is, lim supP

(
X1+· · ·+Xn ≤ −a√n

)
≤ P

(
ξ ≤ −a

)
,

or equivalently, lim supP
(
X1 + · · ·+Xn ≤ a

√
n
)
≤ P

(
ξ ≤ a

)
. We have

P
(
ξ < a

)
≤ lim inf P

(
X1 + · · ·+Xn < a

√
n
)
≤

≤ lim supP
(
X1 + · · ·+Xn ≤ a

√
n
)
≤ P

(
ξ ≤ a

)
= P

(
ξ < a

)
,

therefore
lim
n→∞

P
(
X1 + · · ·+Xn < a

√
n
)
= P

(
ξ < a

)
.
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