TAU 2013

Contents

2	Cen	tral limit theorem	21
	2a	Introduction	21
	2b	Convolution	22
	2c	The initial distribution does not matter	24
	2d	From smooth functions to indicators	26

2 Central limit theorem

2a Introduction

Discrete probability spaces are enough here as long as all random variables are discrete (otherwise $\Omega = \mathbb{R}^n$ fits); to this end use triangle arrays.

Let X_1, X_2, \ldots be independent identically distributed random variables, and $S_n = X_1 + \cdots + X_n$.

2a1 Theorem. ¹ Let $\mathbb{E} X_1 = 0$ and $\mathbb{E} X_1^2 = 1$. Then

$$\mathbb{P}\left(a\sqrt{n} < S_n < b\sqrt{n}\right) \to \frac{1}{\sqrt{2\pi}} \int_a^b e^{-x^2/2} dx \quad \text{as } n \to \infty$$

whenever $-\infty \le a \le b \le \infty$.

Clearly, the De Moivre-Laplace Theorem 1a20 is a special case.

More than 10 proofs are well-known. Some use Stirling formula. Some use Brownian motion. Some prove convergence to the normal distribution. Some prove first convergence to some distribution, and then identify it.

Moment method: first, find $\lim_n \mathbb{E}\left(\frac{S_n}{\sqrt{n}}\right)^k$ assuming all moments finite (otherwise, truncate); then approximate the indicator of an interval by polynomials.

Fourier transform ("characteristic function"): first, $\lim_n \mathbb{E} \exp(i\lambda \frac{S_n}{\sqrt{n}}) = \exp(-\frac{\lambda^2}{2})$; then approximate the indicator of an interval by trigonometric sums.

Smooth test functions (Lindeberg): first, $\mathbb{E} f\left(\frac{S_n}{\sqrt{n}}\right) - \mathbb{E} f\left(\frac{\tilde{S}_n}{\sqrt{n}}\right) \to 0$ as $n \to \infty$ for $f \in C^3$; then approximate the indicator of an interval by such smooth functions. This will be done here.

¹[KS, Sect. 10.1, Th. 10.5]; [D, Sect. 2.4, Theorem (4.1)].

TAU 2013

2bConvolution

The convolution $\nu * f$ of a probability distribution ν on \mathbb{R} and a bounded continuous function $f: \mathbb{R} \to \mathbb{R}$ is a function $\mathbb{R} \to \mathbb{R}$ defined by

$$(\nu * f)(x) = \int f(x+y) \, \nu(\mathrm{d}y) \,.$$

For a discrete ν the convolution is a linear combination of shifts. In general it may be thought of as an integral combination of shifts. Probabilistically, $(P_X * f)(a) = \mathbb{E} f(a + X).$

2b1 Lemma. If f is bounded and continuous² then also $\mu *f$ is, and $\|\mu *f\| \le$ ||f||.

Here and below the norm is supremal (rather than L_2):

$$||f|| = \sup_{x \in \mathbb{R}} |f(x)|.$$

Proof. Boundedness: $|\mathbb{E} f(a+X)| \leq \sup |f(\cdot)|$. Continuity: if $a_n \to a$ then $f(a_n+x) \to f(a+x)$ pointwise, thus $\mathbb{E} f(a_n+X) \to \mathbb{E} f(a+X)$ by the bounded convergence theorem.

For independent X, Y we have $P_{X+Y} * f = P_Y * P_X * f$ (it means, $(P_Y * P_X * f)$) $(P_X * f)$), since

$$(P_{X+Y} * f)(a) = \mathbb{E} f(a+X+Y) = \iint f(a+x+y) P_X(dx) P_Y(dy) = \int \left(\int f(a+x+y) P_X(dx) \right) P_Y(dy) = \int (P_X * f)(a+y) P_Y(dy) = \left(P_Y * (P_X * f) \right) (a).$$

We define the convolution of two probability distributions μ, ν by $(\mu * \nu)(B) =$ $(\mu \times \nu)(\{(x,y): x+y \in B\}), \text{ then } P_{X+Y} = P_X * P_Y \text{ for independent } X,Y,$ and we may interpret $P_Y * P_X * f$ as $(P_Y * P_X) * f$ equally well.

Convolution for discrete:

$$(P_X * f)(a) = \sum_x p_X(x)f(a+x);$$

$$p_{X+Y}(a) = \sum_{(x,y):x+y=a} p_X(x)p_Y(y) = \sum_x p_X(x)p_Y(a-x).$$

¹The definition generalizes easily to finite signed measures and bounded Borel functions, but we do not need it.

²Well, it is required by the definition above...

TAU 2013

Convolution for absolutely continuous:

$$(P_X * f)(a) = \int p_X(x)f(a+x) dx;$$
$$p_{X+Y}(a) = \int p_X(x)p_Y(a-x) dx.$$

Some examples:

Binom
$$(m, p) * Binom(n, p) = Binom(m + n, p)$$
, — binomial $N(a_1, \sigma_1^2) * N(a_2, \sigma_2^2) = N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$. — normal

The latter equality can be checked by integration, or obtained from the former by a limiting procedure, but better note that the standard two-dimensional normal distribution $N(0,1) \times N(0,1)$ has the density¹

$$\frac{1}{\sqrt{2\pi}}e^{-x^2/2} \cdot \frac{1}{\sqrt{2\pi}}e^{-y^2/2} = \frac{1}{2\pi}e^{-(x^2+y^2)/2}$$

invariant under rotations; thus, $X \cos \alpha + Y \sin \alpha \sim N(0,1)$ for all α .

2b2 Lemma. If f has a bounded and continuous derivative, then also $\mu * f$ has, and $(\mu * f)' = \mu * f'$.

Proof. We have a bounded continuous g satisfying $f(b) = f(a) + \int_a^b g(x) dx$. Thus,

$$(\mu * f)(b) = \int f(b+y) \,\mu(\mathrm{d}y) = \int \left(f(a+y) + \int_{a+y}^{b+y} g(x) \,\mathrm{d}x \right) \mu(\mathrm{d}y) =$$

$$= \int f(a+y) \mu(\mathrm{d}y) + \int \left(\int_{a}^{b} g(x+y) \,\mathrm{d}x \right) \mu(\mathrm{d}y) =$$

$$= (\mu * f)(a) + \int_{a}^{b} \left(\int g(x+y) \,\mu(\mathrm{d}y) \right) \mathrm{d}x = (\mu * f)(a) + \int_{a}^{b} (\mu * g)(x) \,\mathrm{d}x.$$

The same holds for f'' and f'''.

¹In addition, integrating it in polar coordinates we get $\frac{1}{2\pi} \left(\int_0^\infty e^{-r^2/2} r \, dr \right) \left(\int_0^{2\pi} d\varphi \right) = 1$, which shows that $1/\sqrt{2\pi}$ is the right coefficient for the density of N(0,1). (See also Proof

²And so on, of course, but we need only three derivatives.

2cThe initial distribution does not matter

Let μ, ν be two probability distributions on \mathbb{R} satisfying

$$\int x \,\mu(\mathrm{d}x) = \int x \,\nu(\mathrm{d}x) = 0 \,, \quad \int x^2 \,\mu(\mathrm{d}x) = \int x^2 \,\nu(\mathrm{d}x) = 1 \,.$$

We consider independent random variables X_1, \ldots, X_n distributed μ , and independent random variables Y_1, \ldots, Y_n distributed ν . Note that $\mathbb{E} X_1 =$ $\mathbb{E} Y_1 = 0$ and $\mathbb{E} X_1^2 = \mathbb{E} Y_1^2 = 1$.

2c1 Proposition. If f, f', f'', f''' are continuous and bounded on \mathbb{R} then

$$\mathbb{E} f\left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right) - \mathbb{E} f\left(\frac{Y_1 + \dots + Y_n}{\sqrt{n}}\right) \to 0 \text{ as } n \to \infty.$$

The proof will be given after a corollary.

2c2 Corollary.

$$\mathbb{E} f\left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-x^2/2} dx.$$

Proof of the corollary. Let Y_1 be normal N(0,1), then $Y_1 + \cdots + Y_n$ is also normal, thus

$$\mathbb{E} f\left(\frac{Y_1 + \dots + Y_n}{\sqrt{n}}\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-x^2/2} dx \quad \text{for all } n.$$

We start proving the proposition.

We have $\int (a+bx+cx^2) \mu(dx) = \int (a+bx+cx^2) \nu(dx)$ for all $a,b,c \in \mathbb{R}$. Similarly,

$$\int (a+bx+cx^2)\,\mu_n(\mathrm{d}x) = \int (a+bx+cx^2)\,\nu_n(\mathrm{d}x)\,;$$

here and below μ_n is the distribution of X_1/\sqrt{n} , and ν_n — of Y_1/\sqrt{n} ; that is, $\int f\left(\frac{x}{\sqrt{n}}\right)\mu(\mathrm{d}x) = \int f\,\mathrm{d}\mu_n$ (and the same for ν). These μ_n, ν_n are useful, since

(2c3)
$$\mathbb{E} f\left(\frac{X_1 + \dots + X_n}{\sqrt{n}}\right) = (\mu_n * \dots * \mu_n * f)(0) = (\mu_n^{*n} * f)(0),$$

and the same for Y and ν .

TAU 2013

2c4 Lemma. There exist $\varepsilon_n \to 0$ such that for every f (as in 2c1) and every n,

$$\left| \int f \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\nu_n \right| \le \frac{\varepsilon_n}{n} (\|f''\| + \|f'''\|).$$

2c5 Remark. These ε_n depend on μ, ν (but not f). If μ, ν have third moments then moreover

$$\left| \int f \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\nu_n \right| \le \frac{1}{6n^{1.5}} ||f'''|| \left(\mathbb{E} \, |X_1|^3 + \mathbb{E} \, |Y_1|^3 \right).$$

Proof of the lemma. We define g by

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + g(x);$$

g is continuous but not bounded;

$$|g(x)| \le ||f'''|| \cdot \frac{1}{6}|x|^3$$
.

We have $\int (f-g) d\mu_n = \int (f-g) d\nu_n$, therefore

$$\left| \int f \, \mathrm{d}\mu_n - \int f \, \mathrm{d}\nu_n \right| \le \int |g| \, \mathrm{d}\mu_n + \int |g| \, \mathrm{d}\nu_n \,,$$

which leads immediately to 2c5, but we need an argument that does not require the third moments. We note that $|\frac{1}{2}f''(0)x^2 + g(x)| \leq \frac{1}{2}||f''||x^2$, therefore

$$|g(x)| \le ||f''|| \cdot |x|^2$$

and split the integral:¹

$$\int |g| \, \mathrm{d}\mu_{n} = \int \left| g\left(\frac{x}{\sqrt{n}}\right) \right| \mu(\mathrm{d}x) \leq
\leq \underbrace{\int_{|x| \leq n^{1/12}} \|f'''\| \cdot \frac{1}{6} \left| \frac{x}{\sqrt{n}} \right|^{3} \mu(\mathrm{d}x)}_{O(n^{-7/6})} + \underbrace{\int_{|x| > n^{1/12}} \|f''\| \cdot \left| \frac{x}{\sqrt{n}} \right|^{2} \mu(\mathrm{d}x)}_{o(1/n)} \leq
\leq \frac{\varepsilon_{n}}{n} (\|f''\| + \|f'''\|) \quad \text{where}
\varepsilon_{n} = \max \left(\frac{1}{24n^{1/6}}, \int_{|x| > n^{1/12}} x^{2} \mu(\mathrm{d}x)\right);$$

the same holds for $\int |g| d\nu_n$.

 $^{^{1}}$ The exponent 1/12 may be replaced with any other number between 0 and 1/6.

TAU 2013

Proof of Proposition 2c1. By (2c3) it is sufficient to prove that $|(\mu_n^{*n} * f)(0) (\nu_n^{*n} * f)(0)| \to 0$. Applying Lemma 2c4 to a shifted function $x \mapsto f(a+x)$ we get

$$\|\mu_n * f - \nu_n * f\| \le \frac{\varepsilon_n}{n} (\|f''\| + \|f'''\|).$$

We turn μ_n^{*n} into ν_n^{*n} gradually:

$$\mu_n^{*n} * f - \nu_n^{*n} * f = \sum_{k=0}^{n-1} (\mu_n^{*(n-k)} * \nu_n^{*k} * f - \mu_n^{*(n-k-1)} * \nu_n^{*(k+1)} * f) =$$

$$= \sum_{k=0}^{n-1} \mu_n^{*(n-k-1)} * (\mu_n * f_k - \nu_n * f_k),$$

where $f_k = \nu_n^{*k} * f$. Now, $||f_k''|| \le ||f''||$, $||f_k'''|| \le ||f'''||$, and $||\mu_n^{*(n-k-1)} * (\dots)|| \le ||(\dots)||$; thus,

$$\|\mu_n^{*n} * f - \nu_n^{*n} * f\| \le \sum_{k=0}^{n-1} \frac{\varepsilon_n}{n} (\|f''\| + \|f'''\|) = \varepsilon_n (\|f''\| + \|f'''\|) \to 0$$

as
$$n \to \infty$$
.

From smooth functions to indicators 2d

2d1 Lemma. There exists a function $\varphi:\mathbb{R}\to\mathbb{R}$ having three bounded derivatives and such that $\varphi(x) = 0$ for all $x \leq -1$, $\varphi(x) = 1$ for all $x \geq 0$.

Proof. The function $\psi(x) = (1-x^2)^4$ for $|x| \leq 1$, otherwise 0, has two (in fact, three) continuous derivatives. We take $\varphi(x) = \frac{1}{c} \int_{-\infty}^{2x+1} \psi(t) dt$ where $c = \int_{-\infty}^{\infty} \psi(t) \, \mathrm{d}t.$

Let X_1, \ldots, X_n be as in 2c1. By 2c2, for every $a \in \mathbb{R}$ and $\varepsilon > 0$,

$$\mathbb{E}\,\varphi\bigg(\frac{1}{\varepsilon}\bigg(\frac{X_1+\cdots+X_n}{\sqrt{n}}-a\bigg)\bigg)\to \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\varphi\bigg(\frac{1}{\varepsilon}(x-a)\bigg)\mathrm{e}^{-x^2/2}\,\mathrm{d}x$$

as $n \to \infty$. Taking into account that

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \ge a\right) \le \mathbb{E}\,\varphi\left(\frac{1}{\varepsilon}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} - a\right)\right)$$

we get

$$\limsup_{n \to \infty} \mathbb{P}\left(\frac{X_1 + \dots + X_n}{\sqrt{n}} \ge a\right) \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \varphi\left(\frac{1}{\varepsilon}(x - a)\right) e^{-x^2/2} dx.$$

The right-hand side converges to $\frac{1}{\sqrt{2\pi}} \int_a^\infty e^{-x^2/2} dx$ as $\varepsilon \to 0$. Thus, $\limsup \mathbb{P}(X_1 + \cdots + X_n \ge a\sqrt{n}) \le \mathbb{P}(\xi \ge a)$ where $\xi \sim N(0,1)$; or equivalently, $\liminf \mathbb{P}(X_1 + \cdots + X_n < a\sqrt{n}) \ge \mathbb{P}(\xi < a)$. Similarly, $\limsup \mathbb{P}(-X_1 - \cdots - X_n \ge a\sqrt{n}) \le \mathbb{P}(\xi \ge a)$, that is, $\limsup \mathbb{P}(X_1 + \cdots + X_n \le -a\sqrt{n}) \le \mathbb{P}(\xi \le -a)$, or equivalently, $\limsup \mathbb{P}(X_1 + \cdots + X_n \le a\sqrt{n}) \le \mathbb{P}(\xi \le a)$. We have

$$\mathbb{P}(\xi < a) \leq \liminf \mathbb{P}(X_1 + \dots + X_n < a\sqrt{n}) \leq$$

$$\leq \lim \sup \mathbb{P}(X_1 + \dots + X_n \leq a\sqrt{n}) \leq \mathbb{P}(\xi \leq a) = \mathbb{P}(\xi < a),$$

therefore

$$\lim_{n \to \infty} \mathbb{P}\left(X_1 + \dots + X_n < a\sqrt{n}\right) = \mathbb{P}\left(\xi < a\right).$$