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5 Joint distributions and independence

5a Distributions in dimension 2 (and more)

We know from Introduction to Probability, that a random variable has its distribution, but
two random variables have not just two distributions; rather, they have a two-dimensional
distribution.

A pair (X, Y ) of random variables56 X, Y : Ω → R may be treated as a two-dimensional

random variable, (X, Y ) : Ω → R
2. The condition ∀x ∈ R {ω ∈ Ω : X(ω) ≤ x} ∈

F stipulated for one-dimensional random variables (recall 2a3) implies its two-dimensional
counterpart,

(5a1) ∀(x, y) ∈ R
2 {ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y} ∈ F

(think, why). Similarly to 2b3, the joint (cumulative) distribution function of X, Y is the
function FX,Y : R

2 → [0, 1] defined by

(5a2) FX,Y (x, y) = P
(
X ≤ x, Y ≤ y

)
.

5a3 Exercise. Let X ∼ U(0, 1) and Y = X. Calculate FX,Y (that is, FX,X). Is it continu-
ous? Is FX,Y (x, y) equal to FX(x)FY (y) ?

Unfortunately, distribution functions are less illuminating in dim 2 than these in dim
1. Say, continuity of FX,Y is not a natural property of X, Y . Also, FX,Y does not lead to
something like a 2-dim quantile function.

Two-dim counterparts of Conditions 2d8(a–e) and Theorem 2e10, being well-known, are
of little use.57 Distributions (and densities) are more useful.

Propositions 2d1, 2d2 have 2-dim counterparts.

5a4 Proposition. Let X, Y : Ω → R be random variables and B ∈ B2 (that is, B ⊂ R
2 is

a Borel set). Then the set {ω ∈ Ω :
(
X(ω), Y (ω)

)
∈ B} is an event.

(About 2-dim Borel sets, recall 1f9, 1f10.)

5a5 Proposition. Let X, Y : Ω → R be random variables. Then the function PX,Y : B2 →
[0, 1] defined by

(5a6) PX,Y (B) = P
(
(X, Y ) ∈ B

)

is a probability measure on (R2,B2).

5a7 Definition. The probability measure PX,Y defined by (5a6) is called the joint distribu-

tion of random variables X, Y (or the distribution of the two-dimensional random variable
(X, Y )).

56Both are defined on the same probability space (Ω,F , P ).
57You may think about FX,Y (x, y) = xy and FX,Y (x, y) = 1 − (1 − x)(1 − y) for x, y ∈ (0, 1). The former

is possible, but the latter is not. Do you understand, why?



Tel Aviv University, 2006 Probability theory 45

That is similar to 2d4. Note that (R2,B2, PX,Y ) is another probability space. Similarly
to (2d5), 2d6 we have

FX,Y (x, y) = PX,Y

(
(−∞, x] × (−∞, y]

)
,(5a8)

FX,Y = FU,V ⇐⇒ PX,Y = PU,V .(5a9)

5a10 Exercise. Do two equalities PX = PU and PY = PV imply PX,Y = PU,V ? Hint.
Return to 5a3 and consider also FX,−X .

Any probability measure P on (R2,B2) corresponds to some random variables X, Y on
some probability space. Namely, consider the probability space (R2,B2, PX,Y ). The identical
map R

2 → R
2 may be treated as a 2-dim random variable on that probability space, or as

a pair (X, Y ) of (1-dim) random variables X, Y : R
2 → R, X(x, y) = x, Y (x, y) = y. Then

PX,Y = P (think, why).
Here are 2-dim counterparts of 2d14 and 2d15.

5a11 Definition. A point (x, y) ∈ R
2 is called an atom of (the distribution of) a two-

dimensional random variable (X, Y ), if

P
(
(X, Y ) = (x, y)

)
> 0 .

5a12 Definition. The support of (the distribution of) a two-dimensional random variable
(X, Y ) is the set of all points (x, y) ∈ R

2 such that

∀ε > 0 P
(
x− ε < X < x+ ε, y − ε < Y < y + ε

)
> 0 .

Still, the support is the least closed set of probability 1.
By the way (in contrast to dimension one), if FX,Y is strictly increasing in a neighborhood

of a given point, it does not mean that the point belongs to the support.
All said (in Sect. 5a) about dimension 2 holds for all dimensions d = 1, 2, 3, . . . You can

easily formulate such generalizations.
Do we need two-dimensional probability spaces? A discussion follows.

Y: If we restrict ourselves to a 1-dim probability space, say (0, 1), then any 2-dim random
variable (X, Y ) : (0, 1) → R

2 is concentrated on a line. Its distribution is not really 2-dim.
N: Recall Example 2b8 (Y = sinX, X = 0, 1, 2, . . . ). There, X is discrete, it may be

defined on a discrete (0-dim) probability space. Nevertheless, the support of Y is [−1,+1],
a 1-dim set. Similarly, consider Y = sinαX, Z = sin βX, X = 0, 1, 2, . . . for ‘generic’
α, β (I mean, α/π, β/π and α/β are irrational). The support of (Y, Z) is the whole square
[−1,+1] × [−1,+1]. This way we produce dim 2 out of dim 0. Of course, we may also
produce dim 2 out of dim 1. Say, Y = sinαX, Z = sin βX, where the support of X is the
whole R (and again, α/β is irrational).

Y: If a countable set is dense in a square, it does not mean that it is really 2-dim. It is
still 0-dim. Similarly, a line dense in the square is still 1-dim.

N: What is really 2-dim?
Y: The uniform distribution on the square. You cannot reach it by X, Y on (0, 1).
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N: However, I can! Recall 2b6; I use the same idea:

(5a13) (0, 1) ∋ ω =
(
0.β1β2β3 . . .

)

2 ;
X(ω) =

(
0.β1β3β5 . . .

)

2 ,

Y (ω) =
(
0.β2β4β6 . . .

)

2 .

The distribution of (X, Y ) is uniform on the square (0, 1) × (0, 1).
Y: Why?
N: Since the sequence

(
β1, β2, . . .

)
is just infinite coin tossing; therefore

(
β1, β3, . . .

)
is

also infinite coin tossing, as well as
(
β2, β4, . . .

)
, and the two sequences are independent.

Y: Does it mean that the evident distinction between dimensions is an illusion?
N: The interval and the square are different (non-isomorphic) as topological spaces, but

identical (isomorphic) as probability spaces.

Here are 2-dim counterparts of 3d1, 3d3.

5a14 Definition. A function ϕ : R
2 → R is called a Borel function, if

∀z ∈ R {(x, y) ∈ R
2 : ϕ(x, y) ≤ z} ∈ B2

or equivalently, if for every one-dimensional Borel set B ⊂ R its inverse image ϕ−1(B) =
{(x, y) ∈ R

2 : ϕ(x, y) ∈ B} is a two-dimensional Borel set.58

5a15 Exercise. If X, Y : Ω → R are random variables and ϕ : R
2 → R a Borel function then

the function Z : Ω → R defined by ∀ω Z(ω) = ϕ
(
X(ω), Y (ω)

)
is also a random variable.

Prove it. (Hint: recall 3d4; use 5a4 instead of 2d1.)

5a16 Exercise. Every continuous function ϕ : R
2 → R is a Borel function. Prove it. (Hint:

similar to 3d5.)59 Apply it to functions

ϕ(x, y) = x

ϕ(x, y) = y

ϕ(x, y) = x+ y

ϕ(x, y) = xy

and others. Reconsider Proposition 3d9.

5a17 Exercise. Generalize 3d9, 3d10 and 3d11 for dimension 2.

Here are 2-dim counterparts of 3d14 and (4e5).

5a18 Exercise. Let PX,Y = PU,V , and ϕ : R
2 → R is a Borel function. Then random

variables ϕ(X, Y ) and ϕ(U, V ) are identically distributed. Prove it. (Hint: find Pϕ(X,Y ) in
terms of PX,Y .)

5a19 Exercise. For any Borel function ϕ : R
2 → R,

Eϕ(X, Y ) =

∫∫

R2

ϕdPX,Y

(a number, or −∞, or +∞, or ∞−∞). Prove it. (Hint: similar to (4e5).)

58Thus, 5a14 is not only a definition but also a statement (generalizing 3d2).
59It was stated in 1f10 without proof, that all open sets (and all closed sets) in R

2 (and R
d) are Borel sets.

Here is a hint toward a proof. Let U ⊂ R
2 be open. Consider all rectangles (a, b) × (c, d) such that a, b, c, d

are rational numbers, and (a, b) × (c, d) ⊂ U . The set of such rectangles is countable, and their union is
equal to U .
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5b Densities in dimension 2 (and more)

As was said in Sect. 2c, a density is defined in terms of integration. You surely guess that
a 2-dim density will be defined in terms of 2-dim integration. Fortunately, we are now
acquainted with Lebesgue integration; being fairly general, it works also on the plane R

2.
Namely, according to (4d5),

(5b1)

∫∫

B

f(x, y) dxdy =

∫ ∞

0

mes2{(x, y) ∈ B : f(x, y) > z} dz ∈ [0,+∞]

for any Borel set B ⊂ R
2 and any Borel function f : B → [0,∞).

5b2 Exercise. ∫∫

B

f(x, y) dxdy =

∫∫

R2

f(x, y)1B(x, y) dxdy ,

where 1B is the indicator of B. Prove it.

5b3 Definition. A Borel function f : R
2 → [0,∞) is called a density of (the distribution

of) a two-dimensional random variable (X, Y ), or a joint density of X, Y , if

PX,Y (B) =

∫∫

B

f(x, y) dxdy

for all Borel sets B ⊂ R
2.

Here are 2-dim counterparts of 4d14, 4d15 and (4c4).

5b4 Proposition. If a 2-dim distribution P has a density f then
∫∫

R2

ϕdP =

∫∫

R2

ϕ(x, y)f(x, y) dxdy

for any Borel function ϕ : R
2 → R. Both integrals are Lebesgue integrals. The four cases

(a number, −∞, +∞, ∞−∞) for the former integral correspond to the four cases for the
latter integral.60

5b5 Corollary. If X, Y have a joint density fX,Y then

E (XY ) =

∫∫

R2

xyfX,Y (x, y) dxdy

(the four cases correspond. . . )

5b6 Proposition. Let f : R
2 → [0,∞) be a Borel function such that

∫∫

R2 f(x, y) dxdy = 1.
Then the function Pf : B2 → [0, 1] defined by

Pf (B) =

∫∫

B

f(x, y) dxdy

is a probability measure on (R2,B2).

60A hint toward a proof (if you are curious). First, check the equality for ‘simple’ ϕ (that is, taking on
only a finite number of values). Second, a ‘sandwich argument’ extends the equality to bounded ϕ. Last,
use a limiting procedure for unbounded ϕ.
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5b7 Corollary. For every Borel function f : R
2 → R satisfying

∀(x, y) ∈ R
2 f(x, y) ≥ 0 ,

∫∫

R2

f(x, y) dxdy = 1

there is one and only one two-dimensional distribution P such that f is a density of P .

5b8 Exercise. (a) Explain, why 5b7, being formulated as a 2-dim counterpart of 2e12,
results from quite different arguments. (You see, 5b6 is not at all parallel to 2e11 or 2e10.)

(b) Reconsider 2c1 and 2e12 in the light of 5b3 and 5b7. (Be informed that Proposition
5b6 holds not only for the dimension d = 2, but also for d = 1, and in fact for all d =
1, 2, 3, . . . )

5b9 Exercise. Pf (defined in 5b6) determines f uniquely up to (a change on) a set of
measure 0. That is, if

∫∫

B
f1(x, y) dxdy =

∫∫

B
f2(x, y) dxdy for all B ∈ B2 then f1(x, y) =

f2(x, y) for all (x, y) ∈ R
2 except (maybe) for a set of measure 0. Prove it. (Hint: consider

B = {(x, y) : f1(x, y) > f2(x, y)} and show that mes2B = 0; the same for f1(x, y) < f2(x, y).)

5b10 Exercise. Let fX,Y be a density for (X, Y ), B ⊂ R
2 a Borel set, 0 ≤ a ≤ b <∞ and

∀(x, y) ∈ B a ≤ fX,Y (x, y) ≤ b .

Then
ames2B ≤ P

(
(X, Y ) ∈ B

)
≤ bmes2B .

Prove it. (Hint: use monotonicity of Lebesgue integral, stated in Sect. 4d.)

5b11 Exercise. Let fX,Y be a density of (X, Y ). Assume that fX,Y is continuous at a point
(x, y). Then

fX,Y (x, y) = lim
ε→0

1

4ε2
P

(
x− ε < X < x+ ε, y − ε < Y < y + ε

)
.

Prove it. (Hint: use 5b10.) What about disks instead of squares?

5b12 Exercise. Formulate and prove one-dimensional counterparts to 5b10 and 5b11.

All said (in Sect. 5b) about dimension 2 holds for all dimensions d = 1, 2, 3, . . . You can
easily formulate such generalizations.

5c Relations between dimensions 1 and 2 (and more)

These relations will be considered for Borel sets and functions, for distributions, Lebesgue
integrals, and densities.

5c1 Exercise. If B1, B2 ⊂ R are (1-dim) Borel sets then their product

B = B1 ×B2 = {(x, y) ∈ R
2 : x ∈ B1, y ∈ B2}

is a (2-dim) Borel set. Prove it. (Hint: note that B1 ×B2 = (B1 ×R)∩ (R×B2); recall 5a16
for ϕ(x, y) = x and ϕ(x, y) = y.)
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5c2 Exercise. If B ⊂ R
2 is a (2-dim) Borel set then for every x ∈ R the section

Bx = {y ∈ R : (x, y) ∈ B}

is a (1-dim) Borel set.61 Prove it. (Hint: define Borel functions R → R
2; show that the

(continuous) embedding R ∋ y 7→ (x, y) ∈ R
2 is a Borel function.)

5c3 Exercise. If ϕ1, ϕ2 : R → R are Borel functions, then functions

(x, y) 7→ ϕ1(x),

(x, y) 7→ ϕ2(y),

(x, y) 7→ ϕ1(x) + ϕ2(y),

(x, y) 7→ ϕ1(x)ϕ2(y)

are Borel functions R
2 → R. Prove it.

5c4 Exercise. If ϕ : R
2 → R is a Borel function then for every x ∈ R the section

ϕx : R → R , ϕx(y) = ϕ(x, y)

is a Borel function.

We turn to distributions. A 2-dim distribution PX,Y determines uniquely 1-dim distribu-
tions PX , PY by

(5c5) PX(B) = PX,Y (B × R) , PY (B) = PX,Y (R ×B)

(think, why). Thus, PX , PY are marginal distributions, as defined below.

5c6 Definition. Given a two-dimensional distribution P , its marginal distributions P1, P2

are one-dimensional distributions defined by

∀B ∈ B P1(B) = P (B × R) , P2(B) = P (R × B) .

5c7 Exercise. These P1, P2 are indeed distributions (that is, probability measures on (R,B)).
Prove it. (Hint: (B1 ∪ B2) × R = (B1 × R) ∪ (B2 × R), etc.)

5c8 Exercise. Marginal distribution functions FX , FY are determined by the joint distribu-
tion function FX,Y as follows:

FX(x) = FX,Y (x,+∞) = lim
y→∞

FX,Y (x, y) ,

FY (y) = FX,Y (+∞, y) = lim
x→∞

FX,Y (x, y) .

Prove it.

As was noted, a 2-dim distribution is not uniquely determined by its marginal distribu-
tions (see 5a10).

61The converse is wrong. Say, for an arbitrary one-to-one function R → R its graph has single-point
sections (in both variables) but need not be a Borel set.
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5c9 Exercise. If a marginal distribution FX is non-atomic, then a joint distribution FX,Y

is also non-atomic. Prove it. The converse is false. Find a counterexample. What about
supports?

We turn now to integrals. Formula (5b1) is not a practical way of calculating 2-dim
integrals; the integrand mes2{. . . }, usually the area of a domain, is not easy to calculate.
Fortunately, 2-dim integration can be reduced to 1-dim integration (applied twice) by an
important theorem (due to Fubini).

First, note a traditional notation for the integral of a section fx : R → R of a function
f : R

2 → R (you know, fx(y) = f(x, y)):

∫ +∞

−∞

fx(y) dy =

∫ +∞

−∞

f(x, y) dy ;

the integral is a function of x only. Note that

(5c10)

∫ +∞

−∞

f(x, y)g(x) dy = g(x)

∫ +∞

−∞

f(x, y) dy ;

indeed, the section f(x, ·)g(x) is the number g(x) times the function f(x, ·).

5c11 Theorem. (Fubini) For every Borel function f : R
2 → R,

(a)

∫∫

R2

|f(x, y)| dxdy =

∫ +∞

−∞

(∫ +∞

−∞

|f(x, y)| dy
)

dx ∈ [0,∞] ,

the internal integral being a Borel function R → [0,+∞] (of x); if the integral (a) is finite,
then

(b)

∫∫

R2

f(x, y) dxdy =

∫ +∞

−∞

(∫ +∞

−∞

f(x, y) dy
)

dx ∈ R ,

the internal integral coinciding almost everywhere with a Borel function R → R (of x).

Think about the area under a graph. . .

5c12 Exercise. Consider the disk B = {(x, y) : x2 + y2 ≤ 1} ⊂ R
2. For any Borel function

f : R
2 → [0,∞),

∫∫

B

f(x, y) dxdy =

∫ +1

−1

( ∫ +
√

1−x2

−
√

1−x2

f(x, y) dy

)

dx .

Prove it. (Hint: apply Fubini theorem to the function f1B, where 1B is the indicator of B.)
What about f : R

2 → R (rather than [0,∞))?

5c13 Exercise. Let −∞ ≤ a < b ≤ ∞. For every Borel function f : (a, b) → [0,∞),

∫ b

a

f(x) dx = mes2{(x, y) : x ∈ (a, b), 0 ≤ y ≤ f(x)} .

Prove it. (Hint: apply Fubini theorem to the indicator of the two-dimensional set.)
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5c14 Theorem. Let random variables X, Y have a joint density fX,Y . Then X and Y have
densities fX , fY , and

fX(x) =

∫ +∞

−∞

fX,Y (x, y) dy , fY (y) =

∫ +∞

−∞

fX,Y (x, y) dx

almost everywhere.

Proof. We have to prove that PX(B) =
∫

B
fX(x) dx, and the same for Y . We use (5c5), 5b2,

Fubini theorem and (5c10):

PX(B) = PX,Y (B × R) =

∫∫

B×R

fX,Y (x, y) dxdy =

=

∫∫

R2

1B×R(x, y)fX,Y (x, y) dxdy =

∫∫

R2

1B(x)fX,Y (x, y) dxdy =

=

∫ +∞

−∞

( ∫ +∞

−∞

1B(x)fX,Y (x, y) dy

)

dx =

∫ +∞

−∞

1B(x)

( ∫ +∞

−∞

fX,Y (x, y) dy

)

dx =

=

∫

B

fX(x) dx ,

and the same for Y .

All said (in Sect. 5c) about dimensions 1 and 2 holds also for other dimensions. You can
easily formulate such generalizations.

5d Independence

5d1 Definition. Random variables X, Y : Ω → R are independent, if

P
(
X ∈ A, Y ∈ B

)
= P

(
X ∈ A

)
P

(
Y ∈ B

)

for all Borel sets A,B ⊂ R.

For discrete X, Y independence is evidently possible. For continuous X, Y , say, X, Y ∼
U(0, 1), independence can be reached on the ‘one-dimensional’ probability space (0, 1) (recall
the end of Sect. 5a). However, the ‘two-dimensional’ probability space (0, 1)× (0, 1) is much
more natural here. (And do not think that X∗, Y ∗ are independent!)

Given any two increasing functions X∗, Y ∗ : (0, 1) → R, we may construct

X(ω) = X(ω1, ω2) = X∗(ω1) ,

Y (ω) = Y (ω1, ω2) = Y ∗(ω2) ,
(5d2)

then X, Y are random variables on Ω = (0, 1) × (0, 1) (with 2-dim Lebesgue measure, of
course).

5d3 Exercise. Prove that X∗ is a quantile function for X defined by (5d2). The same for
Y . Prove that FX,Y (x, y) = FX(x)FY (y). (Hint: {ω : X(ω) ≤ x} is of the form (0, p1)×(0, 1)
or (0, p1] × (0, 1).)
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We see that X, Y of (5d2) satisfy 5d1 for the special case of A = (−∞, x], B = (−∞, y].
The general case needs a lemma. (Note that in general, the product of two integrable
functions need not be integrable.)

5d4 Lemma. Let f, g : R → R be integrable Borel functions. Then
∫∫

R2

f(x)g(y) dxdy =

( ∫

R

f(x) dx

)( ∫

R

g(y) dy

)

.

Proof. We apply Fubini theorem and (5c10):62

∫∫

R2

f(x)g(y) dxdy =

∫

R

( ∫

R

f(x)g(y) dy

)

dx =

=

∫

R

(

f(x)

∫

R

g(y) dy

︸ ︷︷ ︸

=const

)

dx =

( ∫

R

g(y) dy

)∫

R

f(x) dx .

5d5 Exercise. Prove that mes2(A × B) = (mesA)(mesB) for all Borel sets A,B ⊂ R.
(Hint: use 5d4 and 4d6.)

5d6 Exercise. Prove that X, Y of (5d2) are independent. (Hint: use 5d5.)

5d7 Definition. The tensor product P = P1 ⊗ P2 of one-dimensional probability distribu-
tions P1, P2 is the two-dimensional distribution P satisfying

P (A×B) = P1(A)P2(B)

for all Borel sets A,B ⊂ R.

5d8 Exercise. Prove that the definition is correct, that is, such P exists and is unique.
(Hint: for the existence use (5d2)–5d6; for the uniqueness use (5a9).)

5d9. So, the following conditions are equivalent:

• X, Y are independent;

• PX,Y = PX ⊗ PY ;

• ∀x, y FX,Y (x, y) = FX(x)FY (y).

5d10 Exercise. Prove that random variables X, Y of (5a13) are independent. (Hint:
FX,Y (x, y) = xy for all x, y ∈ [0, 1] of the form k/2n, therefore for all x, y ∈ [0, 1].)

5d11 Theorem. (a) Let random variables X, Y : Ω → R have densities fX , fY . If X, Y are
independent, then the joint density fX,Y exists, and

fX,Y (x, y) = fX(x)fY (y) almost everywhere.

(b) Let random variables X, Y : Ω → R have a joint density fX,Y . If fX,Y (x, y) can be
written in the form g(x)h(y) for some g, h : R → R then X, Y are independent.

62First, we apply Fubini theorem to |f(x)| and |g(y)|, in order to check integrability. After that, we apply
it again, to f(x) and g(y).
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Proof. (a) The function f(x, y) = fX(x)fY (y) is a 2-dim density, since
∫
f(x, y) dxdy =

(∫
fX(x) dx

)(∫
fY (y) dy

)
= 1 (recall 5d4). The corresponding 2-dim distribution Pf satisfies

Pf(A× B) =

∫∫

A×B

f(x, y) dxdy =

∫∫

R2

1A(x)1B(y)fX(x)fY (y) dxdy =

=

( ∫

R

1A(x)fX(x) dx

)( ∫

R

1B(y)fY (y) dy

)

= PX(A)PY (B) ,

which means that Pf = PX ⊗ PY . However, PX ⊗ PY = PX,Y due to independence. So,
PX,Y = Pf , which means that f is a joint density of X, Y .

(b) By 5c14, X and Y have densities fX , fY , and63

fX(x) =

∫

fX,Y (x, y) dy =

∫

g(x)h(y) dy = g(x)

∫

h(y) dy ;

similarly, fY (y) = h(y)
∫
g(x) dx. It follows that

(∫
g(x) dx

)(∫
h(y) dy

)
= 1. Therefore

fX(x)fY (y) = g(x)h(y) = fX,Y (x, y). It follows (as was seen in the proof of (a)) that
∫∫

A×B

fX,Y (x, y) dxdy

︸ ︷︷ ︸

PX,Y (A×B)

= PX(A)PY (B) ,

which means that X, Y are independent.

5d12 Theorem. E (XY ) = (EX)(EY ) for any independent integrable random variables
X, Y .

Proof. Due to 5a18 we may restrict ourselves to the model of (5d2):

(Ω,F , P ) =
(
(0, 1) × (0, 1),B2

∣
∣
(0,1)×(0,1)

,mes2

∣
∣
(0,1)×(0,1)

)
;

X(ω) = X(ω1, ω2) = X∗(ω1) ,

Y (ω) = Y (ω1, ω2) = Y ∗(ω2) .

We apply 5d4:

E (XY ) =

∫

Ω

XY dP =

∫∫

(0,1)×(0,1)

X(ω1, ω2)Y (ω1, ω2) dω1dω2 =

∫∫

(0,1)×(0,1)

X∗(ω1)Y
∗(ω2) dω1dω2 =

( ∫ 1

0

X∗(ω1) dω1

)( ∫ 1

0

Y ∗(ω2) dω2

)

= (EX)(EY ) .

In terms of distributions,
∫∫

xy d(PX ⊗ PY ) =

( ∫

x dPX

)( ∫

y dPY

)

.

63Equalities for densities hold almost everywhere, as usual. Note that g, h are Borel functions, by 5c4.
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In terms of densities, if they exist,
∫∫

xy fX,Y (x, y)
︸ ︷︷ ︸

=fX(x)fY (y)

dxdy =

( ∫

xfX(x) dx

)( ∫

yfY (y) dy

)

;

compare it with 5d4.

5d13 Lemma. Let X, Y be random variables, and ϕ, ψ : R → R Borel functions. If X and
Y are independent then ϕ(X) and ψ(Y ) are independent.

Proof.

P
(
ϕ(X) ∈ A, ψ(Y ) ∈ B

)
= P

(
X ∈ ϕ−1(A), Y ∈ ψ−1(B)

)
=

= P
(
X ∈ ϕ−1(A)

)
P

(
Y ∈ ψ−1(B)

)
= P

(
ϕ(X) ∈ A

)
P

(
ψ(Y ) ∈ B

)
.

5d14 Corollary. E
(
ϕ(X)ψ(Y )

)
=

(
Eϕ(X)

)(
Eψ(Y )

)
for any independent random vari-

ables X, Y and Borel functions ϕ, ψ such that ϕ(X) and ψ(Y ) are integrable.

5d15 Note. If they are not integrable, the formula still holds under appropriate conven-
tions: (+∞) · (+∞) = +∞, (−∞) · (+∞) = −∞, (a positive number) · (+∞) = +∞,
(a positive number) · (∞−∞) = ∞−∞, etc. (Think, however: what about 0 · ∞ ?)

All said (in Sect. 5d) about dimension 2 holds for all dimensions d = 2, 3, . . . You can
easily formulate such generalizations. (Do not confuse independence of X1, . . . , Xn with their
pairwise independence.)

5e Independence of infinite sequences

5e1 Definition. (a) Random variables X1, X2, · · · : Ω → R are independent, if X1, . . . , Xn

are independent for each n.
(b) Events A1, A2, · · · ⊂ Ω are independent, if their indicators 1A1

, 1A2
, . . . are indepen-

dent random variables.

That is, (a) means

P
(
X1 ∈ B1, . . . , Xn ∈ Bn

)
= P

(
X1 ∈ B1

)
. . .P

(
Xn ∈ Bn

)

for all n and all Borel sets B1, . . . , Bn ⊂ R.
Do not think that (b) requires just P

(
A1 ∩ · · · ∩ An

)
= P

(
A1

)
. . .P

(
An

)
for all n. It

requires also, say, P
(
A1 ∩ A2 ∩ A3

)
= P

(
A1

)
P

(
A2

)
P

(
A3

)
, etc. (Of course, A = Ω \ A

and P
(
A

)
= 1 − P

(
A

)
.)

Infinite random sequences often are defined on infinite-dimensional probability spaces,
but they can be defined on (0, 1) by a trick that generalizes (5a13):

(5e2) (0, 1) ∋ ω =
(
0.β1β2β3 . . .

)

2 ;

X1(ω) =
(
0.β1β3β5 . . .

)

2 ,

X2(ω) =
(
0.β2β6β10 . . .

)

2 ,

X3(ω) =
(
0.β4β12β20 . . .

)

2 ,

. . .
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