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9 The Brownian web as a black noise

9a The Brownian web as a stochastic flow

We know that a one-dimensional array of random signs can produce various noises in the
scaling limit. However, I still do not know, whether it can produce a black noise,’ or not.
This is why we turn to a two-dimensional array of random signs.
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One-dimensional array of random signs produces a random walk (a) that converges to
Brownian motion (b). Two-dimensional array of random signs produces a system of coalesc-
ing random walks (c) that converges to Brownian web (d).

The Brownian web was investigated by Arratia, Toth, Werner, Soucaliuc, and recently
by Fontes et al.?

For an example of a black noise, we do not need convergence of the discrete model to
the Brownian web, but only the web itself. Also, we treat the web as a collection of random
maps rather than a random geometric configuration on the plane.

In order to keep finite everything that can be kept finite, we consider Brownian motions
in the circle T = R/Z rather than the line R. That is, points x and z + 1 are treated as the
same point. (Equivalently, you may use the circle on the complex plane via e*7®.)

First, we define a pair of coalescing random paths starting from given points X;(0), X2(0) €
T. Namely,

T2 = mln{t € [0, OO) . Xl(O) + Bl(t) = XQ(O) + BQ(t)},
{XQ(O) + By(t) for t < 1o,

Xo(t) =
2(1) Xi(t) for t > T9;

1To be defined in 9d1.
2L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, “The Brownian web”, arXiv:math.PR/0203184.
(Other references may be found therein.)
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here Bji(-), Bs(-) are independent Brownian motions; the equality is treated modZ, that is,
(X1(0) + Bi(712)) — (X2(0) 4+ By(712)) € Z. The construction is asymmetric: when paths
meet, the second one joins the first. But it does not matter; priority does not influence the
distribution of the two-dimensional process (X7, X5).

For a third path, the procedure is a bit more complicated:

715 = min{t € [0, 00) : X1 () = X3(0) + Bs(t)};
To3 = min{t € [0, 00) : X5(t) = X3(0) + Bs(t)};
X3(0) + Bs(t) if t < min(7y3, T23),
X3(t) = { X1 (t) if ¢ > min(7y3, 7e3) = 7135
(

XQ(t) if ¢ > min T13,’7'23) = T23.

And so on. The number 7,,(t) of different points among X (t), . .., X, (¢) is a random process,
integer-valued, decreasing.

9al Exercise. P (nn(%) = n) < e~®" for some absolute constants ¢, ¢y € (0,00).

Prove it.

Hint. Let 0 < X;(0) < --- < X5, (0) < 1.

(a) Before the first coalescence, X (t) = Xy(0) + By(t) for all k£, and processes Xy —
Xi,..., X9, — X9,—1 are independent.

(b) P(X2(0) + By(-) > X1(0) + Bu(+) on [0,#]) = 2 (X2 20) — 1,

(c) The product of probabilities is maximal when X5 (0) — Xl( ) =X4(0)—X3(0) =--- =
X2m(0) - X2m—1(0) = L-

m

9a2 Exercise. P (nn( ) > m) < e~™ for some absolute constants ¢, ¢y € (0, 00).
Prove it.
Hint. 7, (325) — 7 (%) > 1 for all k, except for an event of probability < Y, e~¢".

We may choose an infinite sequence X;(0), X5(0),--- € T and consider 7, (%), the number
of different points among all X ().

9a3 Exercise. P (noo(%) > m) < e ™ for all m; here ¢y, ¢y are the same as in 9a2.
Prove it.
Hint: 7,(t) 1 7eo(t) for n — oo.

9a4 Exercise. P (7(t) < oo for all ¢ > 0) = 1. Moreover, En (t) < oo for all ¢ > 0.
Prove it.

We choose a dense (in T) sequence (X;(0))52,, and after a given time ¢ > 0 we get a finite
number of points, X (t) € {y1,...,yn} for all k. For every I € {1,...,n} the set of X (0) for
all k£ such that X (¢) =y, is dense in an interval, and we get a random step function T — T.

1
Tn
T2
T1

Y15---3Yn . T — 'ﬂ‘)

Lyn, L1y.-9Ln
g L1 <o <xp <y, Y1 <o <Yp <y (cyclically),

ol l® Yo¥n () =Ygy for € (zp, Tppa] -




Tel Aviv University, 2002 White noises, black noises and other scaling limits 93

In fact, the value at z; does not matter; we let it be g, for convenience, but equally well it
could be ¥k, or remain undefined. Points z1, ..., z, will be called left critical points of the
map, while yy, ..., ¥y, are right critical points.

We introduce the set G, consisting of all step functions T — T and in addition, the
identity function. If f,g € G then go f € G, thus G is a semigroup. It consists of
pieces of dimensions 2,4,6,... and the identity. Similarly to G3 (recall 7b), G is not a
topological semigroup, since the composition is discontinuous.

The distribution of the random map is a probability measure y; on G. It can be shown
that p; does not depend on the choice of a dense countable set {X(0)} C T.

Similarly to 8a, the Brownian web may be described by random maps

gs,t Q= Goo ) gs,t = fyl(s,t),m,yn(s’t)(s,t)

T1 (szt),--'zwn(s,t)(sat) ?
and for any r < s < t,

&rs and & are independent,

st © & s = & ¢ almost surely.

Moreover, &, t,,&tst5> - - -3 §tai,t, ar€ independent whenever ¢; < --- < t,. The distribution
of & is the probability measure p;—s on G

9b Nothing in the first chaos

Similarly to 8a we consider the sub-o-field F;; generated by &, , for all (u,v) C (s,t). Again,
Frp = Fps@Fs,, and so, we have a factorization; let us call it the web factorization. Similarly
to 8cl, the web factorization is continuous. Thus, its first chaos is described by 8b6. And
again, we may restrict ourselves to (8¢2):

X=¢,), EX=0 P(-1<X<1)=1;
2"

lim Z]E ( X ‘ Flk—1)2-n k2-n ) is the projection of X to H;(0,1).

As before,
¢(§O,I)|Fs,s+5) :]E( §s+slo§ss+EO§Os ‘fss—f—a) =
— [[ etbogo paudue) = alo).

where g = & ;4.. Note that now the situation on the whole circle looks rather similar to
the situation on the bottom (near 0) of the picture on page 80. We may guess that the first
chaos vanishes!
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However, there (on page 80), co was mostly 0. Now it is not so simple. It is wise to start
with the discrete model. Here, g corresponds to a single column of random signs. Most of
them do not influence h o g o f; that is the key to the problem.

Here are some quite general statements (unrelated to the Brownian web). Roughly they
say that a small subsample is nearly independent of a large sample.

9b1 Exercise. Let 71,...,7, : @ — {—1,+1} be random signs (independent, +1 with
probabilities 50%, 50%), and X : Q@ — {1,...,n} be a random variable independent of
T1,...,T, and distributed uniformly on {1,...,n}. Then

1

COII(@(Xa TX)7 1[)(7—17 st Tn)) S %

for every functions ¢ : {1,...,n} x {-1,41} - R, ¢ : {-1,+1}" — R such that the
correlation coefficient is well-defined (recall 7e2).

Prove it.
Hint. E (gp(X, TX)) = % Zk,a o(k,a), let it vanish; E ( o(X, 7x) | Tl ... ,Tn) =

5 2 ok, 7); lo(X, o)l = 5 g0 @2 (ks a); B (@(X,7x) [ 715,70 ) | = = llo(X 7))
9b2 Exercise. Let 71, ...,7, : Q = {—1,+1} be random signs (as before), and X1,..., X, :

2 — {0,1} random variables such that the two random vectors (r,...,7,) and (X1,...,X,)
are independent. (Dependence between X7, ..., X, is allowed.) Then

Corr(<p(X1,...,Xn;XlTl,...,XnTn), w(ﬁ,...,rn)) < \/m]?x]P’(Xk = 1)

for every functions ¢, v (such that the correlation coefficient is well-defined).
Prove it.
Hint. Consider the linear operator V(T Th) >
E(¢(m,...,7) |X1, o Xy Xam, ..., X7, ) on monomials (71, ..., T) = Thy ... Th-

(2

Check that they remain orthogonal, and their norms decrease at least by \/ maxy P (X F=1 )

We return to the Brownian web, or rather to its discrete counterpart. Recall that ¢
corresponds to a single column of n random signs, or n random lines (recall fig. (c) on page
91). Each line influences h o g o f only if its left endpoint is a right critical point of f, and
its right endpoint is a left critical point of g. These two events are independent. Each one
is of probability O(1/n) = O(y/2). Indeed, the expected number of critical points is O(1),
which follows from 9a4; and the probability is the same for each point, due to symmetry
(invariance w.r.t. rotations of the circle T by 1/n).

All that, combined with 9b2, gives

Corr(p(hogo f),1(g)) = O(Ve).

Therefore ||[E(¢(hogo f)|g) |l = O(VZ), that is, |[E (¢(&,1) | Fssie ) || = O(VE). But...

it does not exclude the first chaos! It is just the same as for the usual Brownian motion.
Well, we must be more clever. Recall that we have not only E|X|* <1 but also P (—1 <

X<l1 ) = 1. Let A C Q) be the event “at least one of the n random signs influences ho go f”
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(that is, at least one right critical point of f is y/e-close to at least one left critical point of
h). We have

X=X -14+X 1ou;
IX - 1all < /P (A) = V/n-O(1/n) - O(1/n) = O(1/V/n) = O(e/*);

X=X-EX=(X 14-E(X -14) + (X 1o —E(X - 1o\4));
IE(X-14]g) —E(X -14)[ = O(Ve) - | X - 1al| = O(¥*).

(9b3)

Indeed, Corr(X - 14,%(g)) = O(v/). Further,

E(X-1oalg) =E(X - 1o\4);
(9b4) E(X|g) =E(X -1a|g) —E(X -14);
IE(X|g) Il =0@E*"),

that is, |E( ¢(&.) | Fesse) | = O(e¥*) = 0(\/€), and so, the first chaos must vanish. ..
provided that our arguments work for continuous time. Do they, really?
First of all we generalize 9b2 from random signs to continuous random variables.

9b5 Exercise. Let (Xi,...,X,) and (Y3,...,Y,) be two independent random vectors, X, :
Q — {0,1}, Y, : Q@ > R, and Yj,..., Y, are independent random variables. (Dependence
between Xj, ..., X, is allowed.) Then

Corr(p(X1, .., Xn; XiYa, .., X Vo), 0(Ya, ..., V) < \/ml?xIP (Xp=1)

for every functions ¢, 1 (such that the correlation coefficient is well-defined).

Prove it. What about Y} taking on values in spaces more general than R?

Hint. Similarly to 9b2, but monomials are of the form t;(Y%,) ... %:(Yx,), Ev;(Yx;) = 0;
recall the hint to 7e3.

In discrete time, values g(z) for different x are independent, but in continuous time they
are not. We feel that g(z1), g(zo) are nearly independent if |x; — z5| > /e; what of it?
Fortunately, the gap between O(3/*) and o(+/€) is at our disposal. We may divide the circle

T into n equal pieces by n equidistant points Xi(s),..., X,(s), n ~ &~7; the constant v will
be chosen later. Corresponding paths Xy (u), u € [s, s + €] do not intersect with probability
>1-n-2(1- @(i/—%)), exponentially close to 1 if v < 0.5, since \1//—235 ~ const - ¢~ (0-5-7)

(and of course, 1 — ® decreases exponentially). Hopefully we may assume that they do
not intersect, and moreover, |Xy(u) — Xi(s)| < 3= for u € [s,s +¢|, k = 1,...,n. These
paths divide g into n conditionally independent pieces. Such a piece influences ho go f
only if it contains both a right critical point of f and a left critical point of h. These two
events are independent, and each one is of probability O(1/n) = O(¢7). In terms of 9b5
it means Corr(...) < 4/0(7) - O(g?) = O(g?). The event A (namely, “at least one piece
influences”) is of probability P (A) < n-O(1/n) - O(1/n) = O(1/n) = O(7). Similarly to
(9b3), (9b4) we get [|X - L4l = O(E"?); [E(X - 14|g) —E(X - 14)| = O(7) - O(e7/?);



Tel Aviv University, 2002 White noises, black noises and other scaling limits 96

IE(X|g)|l = O(*/?). It remains to choose y such that v < 0.5 and 37/2 > 1/2, tha is,
v € (3,3), and we get |[E( X |g) || = o(y/)... though, two problems remain. One problem
is, conditioning on n paths X(-). The other problem is, the (small but positive) probability
of intersections between these paths.

It is possible to get (unconditionally) independent pieces of the Brownian web itself.
However, it is technically simpler to use the construction of the Brownian web out of inde-
pendent Brownian motions. We introduce, for each k£ = 1,...,n, the o-field & generated
by Brownian motions B;(-)|j, for all I such that X;(s) € [zg,Zg41). Then &,... &, are
independent, and g is measurable w.r.t. £, ® - -- ® £,. The dense sequence (Xk(s)),;”;l may
be chosen at will; we choose Xj(s) =z for k =1,...,n (the tail remains arbitrary).

Introduce for k =1,...,n

> i I < L
By(u) = {Bk(U) if max |B(+)| < L,

0 otherwise;
of course, By, is not a Brownian motion, but anyway, we may replace Bi, ..., B, with
By, ..., B, in the construction of g, thus constructing another random map g. The distribu-

tion of g differs from the distribution of g. Especially, |(x) — 2| < 5 with probability 1;

in contrast, |g(zx) — x| exceeds 3~ with a positive (but small) probability.

We consider X = ¢(hogof), treating § as a random variable measurable w.r.t. £,®- - -®&,,
and apply 9b5 (together with estimations outlined before), getting

E(X |60 08) EX)| = ova).
On the other hand,
P(X#X)<P(g#g)=0(P) foreveryp,
since it is O (exp(—~%%977)). Taking into account that |X| < 1,|X| < 1 always, we get

|X — X|| = O(e?) for every p;
IE(X[&@®&) <
<IE(X[&©--©&) —EX)[|+[IX - X -EX - X)|| = o(v2);
IE(X|g) [l = o(Ve).
So,
Hy(0,1) = {0}.

The web factorization admits no LI-decomposable processes (except for 0).

9c Stability and sensitivity

Let (F;,.)s<: be a factorization of a probability space (2, F, P). We have F = F_ 0 ® Fo 0-
As was explained in 5b, 2 may be thought of as the product, Q = Q_, ¢ xQp o (more exactly,
(Q, F, P) is the product...). Each w € Q becomes a pair (wP®, wuture) past € 4
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wiiture € Qg . On the space Q% = Q x Q of pairs (wy,ws) (wi,ws € Q) we have a crossover,
a measure preserving map

B:0?— 2,

B((W{)aSt w{uture) (wgast wguture)) — ((w{mst wguture) (wgast w{uture)) .

- X

9c1 Example. For the Brownian factorization,

Bi(t)o = {Bl(t) fort <0, o5 {BQ(t) for t < 0,

(=] el ]

By(t) fort > 0; By (t) fort>0.

Similarly, a crossover Bz : Q% — Q2 may be defined for an interval E = (s,t) C R,

A X

s t

or the union of a finite number of intervals F = (s1,t1) U« U (Sp, tn)-

XX X X X

S1 t1 §2 to Sn tn

9c2 Example. For the Brownian factorization,
B1(10) 0 B,2yu(5,6) = B1(1)+ B2(2) — By (1) 4+ B1(5) — B1(2) + B2(6) — B2(5) + B1(10) — B1(6) .

Especially, consider

€ 1 1+¢ n—1n—1+¢

Y

n non n n
mes B, , =¢€;
Bs,n = ﬁE‘s,n -

+ H SRR H

9c¢3 Exercise. For the Brownian factorization,
(a) sup,, || B1(t) © Ben — Bi(t)|| — 0 for € — 0;
(b) sup,, || (f (t) dBi(t)) o Be — [ ¢(t) dBi(t)|| — 0 for € — 0;
(c) sup,, || X o ﬁgn X|| —> 0 for every X = [f,,0(s,1) dBl( YdBsy(t).
Prove it. What about hlgher chaos?

Let us try it for the Brownian web. For now, we consider a single path X (-), starting
at a given point X;(0); we compare it with Y;(t) = X (¢) o B, (you see, we deal with two
independent copies of the Brownian web). On each interval of E, ,, the two processes (X
and Y7) move independently; I mean, their increments are independent. On each interval of
[0,1] \ E., the two processes coalesce; namely, they move independently until/unless they
meet; after the meeting (if any), they move together till the end of the time interval. The
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process Z(t) = %(Xl (t) — Yi(t)) is somewhat similar to sticky Brownian motion; outside
the origin it moves like a Brownian motion, but at the origin it is trapped till the end of the
interval of [0,1] \ E,,. We may examine such a process by the approach of 7d:

B(t) - |Z(t)] = min(B(t), inf{z : o(z) € Een}) ;
o(z) = max{t : B(t) = z};

here z runs over [miny 4 B(-), B(t)]; recall 7d4. The problem is that events o(z) € E,,
for different = are not independent. We feel that they are nearly independent if n is large
enough, and x;, z, are not too close. We choose a (small) 6 > 0 and consider

Ty, = o(B(t) — ko),

k =0,1,2,... Increments 7y — T}, are independent identically distributed random vari-
ables.? Their distribution can be found similarly to 7d:

P Tk~ Tisr > u) = P (max B() < 0) :2@(i) —1;

ka_Tk+1(u) = dCi (2(1)(\22> - 1) = 2¢I(%) -0 - %u3/2 = ﬁ exp ( — %) .

We do not need the formula for the density, but we need to know that a density exists. It
follows (using independence) that 77,...,T} have a joint density, for every k. Further, it
follows that there exists a conditional density of 11, ..., T} given that T} > 0, T4, < 0.

9c4 Exercise. Let X be a random variable having a density, and A C R a Borel set,
mes A # 0, such that Vo (z € A <= x4+ 1€ A). Then P(X € cA) — mes(4N (0,1))
for ¢ — 0, and the conditional distribution of X given X € ¢A (that is, 1X € A) converges
(weakly) for e — 0 to the (unconditional) distribution of X.
Prove it. What about arbitrary distributions? Or, arbitrary nonatomic distributions?
Hint. Approximate (in L;(R)) the density by step functions.

In other words, X and 1.4(X) are asymptotically independent (for € — 0).

9c5 Exercise. Let random variables X1, ..., X,, have a joint density, and A is as in 9c4.
Then the random vector (X1, ..., X},) and random variables 1. 4(X1), ..., 1.4(X,) are asymp-
totically independent (for & — 0). Also, lim,,oP (X), € €eA) = mes(AN (0,1)) for each

k.
Formulate it exactly, and prove.

Conditionally, given that T}, > 0, Tj;1 < 0 for a given £, we see that events 11 € E,,,
, Ty, € E,,, are asymptotically independent, of probability (nearly) e each, provided that
n is large enough (for given 6, ¢).

3Here we consider B(-) on (—oo,t] rather than [0,], and o(-) on (—oc, B(t)].
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It follows that min{k : T, € E.,} is distributed approximately geometrically, G(e).
Typically, min{k : T} € E. ,} = O(1/¢). However, we need maximal (rather than minimal)
k, which is similar:

1
max{k: Ty € E.,} = max{k: T >0} — O(g> ;

) 4}
B(t) ~ |2(t)| = min B() + O(7)
with high probability, provided that n is large enough. Note that n tends to infiinity, € stays
constant, and ¢ is arbitrary. In the limit (n — oo) we get B(t) —|Z(t)| = minjy B(-), which
means that the trap becomes ineffective.*

For every € > 0, the effect of the trap tends to 0 for n — oo.

We see that processes X;(-) and Yi(-) = Xi(:) o B, are asymptotically independent for
n — oo. It holds for every ¢ > 0.

Such a behavior is called sensitivity. Random variables X (¢) are sensitive. We may
know, say, 99% of the random data (namely, the Brownian web outside Ej o1 ,,), and strangely
enough, it does not help us, if we need to know the value of a sensitive random variable.
The missing 1% of data is crucial, if it is scattered in time uniformly enough.

In contrast, for the Brownian motion, lack of a small fraction of data causes only a small
error (recall 9¢3), no matter how is it scattered in time. Such a behavior is called stability.

Clearly, a random variable cannot be both stable and sensitive (unless it is constant).

A single path X;(-) of the Brownian web is distributed like the usual Brownian motion
B(+);> nevertheless Xi(-) is sensitive, but B() is stable. A paradox? Note however that
B(t) — B(s) is measurable w.r.t. 7", while X;(t) — Xi(s) is not measurable w.r.t. F
(but only w.r.t. Fo,; think, why).

Well, a single path X (-) is only a small part of the Brownian web. Consider two paths
Xi(-), Xao(-) starting from two different points X;(0), X2(0). We know that each one is
sensitive, but maybe some function of the two (say, their difference) is not sensitive, and
even stable?

We consider four processes, Xi(-), Xa2(-) and Yi(-) = X1(+) 0 Ben, Ya(-) = Xo(+) 0 Ben -
During some time, X;(t) # Xs(t) and Yi(t) # Y5(¢). A trap manifests itself when X;(¢) =
Yi(t), or X1(t) = Ya(t), or Xy(t) = Yi(t), or Xo(t) = Y(t). However, the trap is ineffective
(for n — 00), as we know from the former analysis. A new problem could appear in the
case of multiple collision, say, X;(t) = Yi(t) = Ya(¢). However, it never happens. Three
independent Brownian motions never meet all together. By using this fact, one can show
that the argument about the ineffective trap for two particles remains in force for more
particles. Sometimes X; and X, coalesce, and then we deal with three particles; and so on.

Everything is sensitive in the factorization of the Brownian web. Combined with 9¢3,
it shows that the factorization does not admit a decomposable process distributed like the
Brownian motion (which is already known to us, see 9b).

4And no wonder! An effective trap is given by the model of 7b. There, the fraction of maps f. (releasing
from the trap) is /€, which tends to 0 in the scaling limit. Here, the fraction of points of E. , (releasing
from the trap) is €, for the continuous model (no scaling limit needed), and it does not tend to 0 in the limit
n — oo.

5Mapped to the circle, but is does not matter.
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%f‘V

An illustration. Coalescing walks on the grid 1000 x 30, starting from 4 x 3 = 12 points
(circled). Unperturbed array of random signs (a). Perturbed array: each random sign is
flipped with probability 0.025 (b). Further perturbation of the same type (c). Still further

(d)-

9d Black noises, and all that

9d1 Definition. A noise ((Q, F, P), (Fst)s<t, (at)teR) is called black, if every L3-decomposable
process (X ;)s<; vanishes (that is, || X, || = 0 for all s, ).

It is easy to upgrade the web factorization (introduced in 9b) to a noise, by constructing
the group of time shifts (o), similarly to 8d1. That is the noise of coalescence.

9d2 Theorem. The noise of coalescence is black.
For the proof see 9b.

9d3 Proposition. For every noise, the following four items define one and the same sub-o-
field Fyiape C F.

(a) Fstable is generated by all (real-valued) L3-decomposable processes, in other words,
by the first chaos (recall 8b1).

(b) Fitable is generated by all decomposable processes (not just L3; see 8b1).

(¢) Fitable is generated by all complex-valued multiplicative decomposable processes; these
are (X,;)s<; such that X, : & — C is measurable w.r.t. Fy;, and X, X, = X, as,,
whenever r < s < t.
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I give no proof.5
Why call it “stable”? Wait a little. ..

9d4 Exercise. The noise of coalescence admits no decomposable processes, neither additive
nor multiplicative (in the sense of 9d3(c)), neither square integrable nor non-integrable,
neither real nor complex.

Prove it (using 9d2, 9d3).

9d5 Proposition. The following item may be added to equivalent definitions of Fyapie:
Fstable is generated by all decomposable processes (X;:)s<: that are either Brownian

or Poisson; that is, for each process, either X;; ~ N(0,¢ — s) for all s < ¢, or X;; ~

Poisson (A(¢ — s)) for all s < ¢ (the parameter A € (0, 00) may depend on the process).

I give no proof.”

For example: the main result of 9c¢ shows that Fyape of 9d5 is trivial for the noise of
coalescence; by 9d5, Fgiape of 9d3 is also trivial; the main result of 9b follows.

Every noise has its stable part; it is the noise ((Q, Ftavles P); (Fst N Fitable) s<t (at)teR).
If the stable part is equal to the whole noise, it means a classical noise. If the stable part is
trivial, it means a black noise.

The stable part of a noise is its greatest classical subnoise.

The stable part of the noise of stickiness is Brownian. It is contained in every part of the
noise. The noise is not classical, but contains no black part.

The idea of stability and sensitivity was explained in 9c in terms of losing a small fraction
of data according to a deterministic pattern (the set E, ;). Another approach: each portion
of data is lost with a small probability, independently of others. It works for factorizations,
not only noises. A random variable X is stable if and only if X = E(X | Ftable ) » that is,
X is measurable w.r.t. Fyape (Which motivates the notation). Also, a random variable X is
sensitive if and only if E ( X | Fyaple ) = 0.8

Existence of black noises was proven first (on completely different ideas) by Tsirelson and
Vershik (“Examples...”). The very idea of a nonclassical continuous product (of whatever)
was suggested to me by Anatoly Vershik.

Another kind of a black noise of coalescence was found by Shinzo Watanabe.’

These examples may be called toy models. A really important example of a nonclassical
noise was found recently by Yves Le Jan and Oliver Raimond.!?

6See Theorem 1.7 in:
B.S. Tsirelson and A.M. Vershik, “Examples of nonlinear continuous tensor products of measure spaces and
non-Fock factorizations”, Reviews in Mathematical Physics 10:1 (1998), 81-145.

"See Lemma 2.9 in:
B. Tsirelson, “Unitary Brownian motions are linearizable” , arXiv:math.PR/9806112.
(It is written for the Brownian component, but the idea works also for the Poisson component.) By the way,
Lemma 2.1 there states that the factorization of any noise is continuous.

8See Definition 2.13 in:
B. Tsirelson, “Noise sensitivity on continuous products: an answer to an old question of J. Feldman”,
arXiv:math.PR/9907011.

9S. Watanabe, “A simple example of black noise”, Bull. Sci. Math. 125:6/7, 605-622.

10Y. Le Yan, O. Raimond, “Flows, coalescence and noise”, arXiv:math.PR/0203221.



