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7 Some non-smooth stochastic flows: stickiness

7a Poisson process revisited

Here is a very simple discrete model that leads to the Poisson process in the scaling limit
(e = 0):

3 £ €

OO O

1—¢ 1—¢ l—¢

At every instant ke, the process either jumps by 1 (with probability €) or stays (with prob-
ability 1 — ). Jumps at different instants are independent, of course. The process may be
treated as a stochastic flow,

anfl:Z_>Zv f()(.T):.T, fl(x):x'i_]-a

but fy, fi are not at all equiprobable; rather, f; is of probability €, and f; is of probability
1—e.

Here is another model; it leads to the same Poisson process in the scaling limit, but uses
equiprobable maps f., f_:

BN B

fo, f-:Z x{0,e,...,me} - 7Z x{0,¢,...,me};
fi(k,le) = (k,le +¢) 1fl<m,
f+(k,me) = (k+1,0);
f-(k,le) = (k,0) ifl<m,
fo(k,me) = (k+1,0).

The time pitch is € (as before), and (similarly to 2b), the scaling limit is taken for
e=2"MY 50, m— .

The single-point motion may be thought of as a sequence of ezcursions above the ‘ground
level’ Z x {0}. Each excursion consists of several (0,1,...,m) steps upwards and one step
downwards — return to the ground level, either to the starting point (after 0,...,m — 1
steps upwards), or to the next column (after m steps upwards). The latter case may be
called a success. Excursions are independent! and identically distributed. Each excursion is
successful with probability 27™. The first success appears after a random number, N — 1,
of unsuccessful excursions; N is distributed geometrically, G(2=™),

N 1 2 3
probability 27m (1—-2"™)27™ (1 — 2—m)22—m

!The needed ‘no memory’ property of random signs seems evident, but is not so easy to formulate and
prove.
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therefore, EN = 2™. The duration of a single excursion has a truncated geometric distribu-
tion (rescaled by the time pitch €),

duration e 2 ... (m=1)¢e me (m+1)e
probability 2~' 272 ... 2-(m-1) 9-m  9-m

Note that duration (m + 1)e corresponds to success, others — to failure.

The total duration (until the first success) consists of durations of N — 1 unsuccessful
excursions, plus (m + 1)e (the duration of the N-th, successful excursion). Conditionally,
given N = n, the total duration is (m + 1)e plus the sum of n — 1 independent random
variables, each having expectation?

£€-27142:-224 ... 4 me-27™

2-1 49224 ...49m :25(1-{—0(1))

and variance < 2¢2. Thus, the total duration T has expectation (n—1)-2¢(1+0(1)) +(m+1)e
and variance < 2(n — 1)e®. These are conditional values, given N = n. Taking into account
that ¢ = 27(™*1) we see that the total duration T satisfies

E(T|N) :%(1+o(1))+o(1):ﬁ+o(1),

Var(T‘N) §%:o(l>.

Therefore
IT — 2™ N|? = E(T —2"™N)>=E (]E( (T —27™N)?| N)) -
=E((E(T-2"N|N))*+Var (T—2"N|N)) =

=E((E(T|N) =2 "N)?+ Var (T|N) ) = o(E(2 ™N)) = o(1),

o(1) o(2=™N)

that is, || — 27™N|| — 0 when ¢ = 2=(™*1) — 0. In the scaling limit, 2~™N becomes an
exponential Exp(1) random variable, and the same for 7. This is why we get the Poisson
process.

7b Stickiness in discrete time

Here is an interesting hybrid of models considered in Sect. 6 and in 7a:

Ve/2 o 1/2 1/2
1—v/2/2
1/2 1/2 1/2

Being at a point ky/e > 0, the process jumps to (k £ 1)/ with probabilities 50%, 50%.
However, being at 0, it jumps to /¢ with probability 4/, or stays at 0 (with probability

2Recall that geometric distribution G(p) has expectation 1/p and variance (1 — p)/p?.
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1 — 34/€). It is the one-point motion of a stochastic flow built out of three maps:

I+ I+ I-
b f. with probability ¥,
% % &= fr with probability ‘55,
! f— with probability %
S

Note that f_ o f, = f o f, = id. Therefore, in every composition we may concentrate all
f_ at the right end; for example, f, o f o f,of,ofiof = fiof.ofyof . Note also
that f. o f, = f. o f.. Therefore, every composition may be reduced to f* o fﬁr o f™: for

example, frof_ofiofiofiof = fiofiofiof = fiofiofiof . Themaps f_, f1, f,
as well as their compositions &, (defined like (6a2)) belong to a three-parameter family of
maps fop.c: [0,00) = [0, 00),

if 0= <b a,b,c
favbvc(x) = {c ! =T ’ atbl-------- %b,

z4+a ifx>0 cl—e

for b € [0,00), 0 < ¢ < a+b, as we'll see now.

7b1l Exercise.

(a) f- =1 veveos J+=Tve00s [ = Fyzoves
(b) = f—n\/g,n\/E,O; fﬁ = fn\@,0,0; fi= fnﬁ,O,n\/E;
(c) ff o ler o f" = f(k+lfm)\/5,m\/5,k\/5;

(d) fa,b,c = fc,O,c ° fa-l—b—c,0,0 o f—b,b,o ;

Ja1,0,0 © Ja2,00 = Ja1+a2,0,0;
(e) Jb1,61,0 © fb2,52,0 = F-b1—b2,b1+52,03
Jer0,e1 © fer 0,62 = Jerten,0,014¢05
( J-a,0,0 © fa0,0 = id;
J-a,0,0 © fa,00 = 1d;
f) < moreover, f_4400° fa0, = 1d;
fa,000 feo.c = fa0,0 © feo,c = fate0,a+c for e >0;

moreover’ fa2;b2ac2 © fal,b1,01 = fa‘270:a’2 © fal,b1,01 = fa1+a2,b1,c1+a2 fOI’ C1 > b2 ;

Ja—b,0,0 if a > b, fa—b0a— ifa >0,
(&)  fobboo fapo= ” e J=66,0 0 fa0,0 = ” .
fa—bp—ao ifa < b; fa—bp—ao if a < b;

fa27b2502 © falablycl = faabac
(h)

as +c¢; if e > bg,

where a = a; + a3, b=max(b,by —a;,), c= )
Cao otherwise.

Prove it.
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The composition law 7b1(h) shows that ¢ does not influence a, b; also, b does not in-
fluence a. The composition law for (a,b) in 7b1(h) is the same as in 6b3(h). We have
three semigroups G, Gy, G5 (one-dimensional, two-dimensional and three-dimensional, re-
spectively), considered in 6a, 6b and 7a (here) respectively, and canonical homomorphisms
(;3'—)(;2'—)(;ﬁ

(7b2) | oo atb fes o "

— —
b b

We have random maps & = fa(s,)b(s,0).c(s,)- Note that fi = f zo0 and f. = f z, s differ
only in the third parameter (c¢); their first two parameters (a, b) are the same as (a, b) of f,
in 6b. Also, f_ here and in 6b conform in (a, b) parameters. Therefore, the joint distribution
of a(s,t) and b(s,t) here is the same as in 6b, 6¢. Moreover, corresponding two-dimensional
random processes t — (a(O, t), b(0, t)) are identically distributed.

Similarly (but simpler), a(s,t) here (and in 6b) conforms to a(s, t) of 6a, just the random
walk.

Relation 6b4 still holds:

(7b3) a+b

you see, a path of the process a(0,-) determines uniquely the corresponding path of the
process b(0, -).

The third process ¢(0,-) is new, and is not uniquely determined by «a(0,-) and b(0,-),
since the distinction between f, and f, comes into play.

The process ke — & k. is a Markov chain in G3; being at f, ., it jumps to

. |
Joen/e0© fape With probability 3

1- 2

Jz000 fape With probability 5

Ve
2

Jz0.z © fape With probability

The Markov chain is time-homogeneous. The three-dimensional process ke
(a(0, ke), b(0, ke), ¢(0, ke)) also is a time-homogeneous Markov chain. Conditionally, given
paths a(0,-) and b(0,-), the process ¢(0,:) is a time-inhomogeneous Markov chain. If
a(0,ke) = a(0, ke — &) — /e, it means that &. = f_, therefore c(0, ke) = max(0, c(0, ke —
e) — VE). If a(0, ke) = a(0, ke — €) + /£, it means that &, is either fi (with conditional
probability 1 — /¢) or f. (with conditional probability 1/€). These two cases give us

(0, ke) = 0 if ¢(0, ke —e) =0 and &, = f,
"7 1e(0,ke —€) + /& otherwise.
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Similarly to 6¢, we introduce the process X(t) = a(0,t) + b(0,t). However, instead of
Y (t) = b(0,t), we introduce now Z(t) = X (t) — ¢(0, ) Note that 0 < Z(t) < X(t). The
point (X (ke), Z(ke)) is a function of &(ke) and (X (ke —¢), Z(ke —¢)), and we can calculate

the function: . L s f 2 fu

N

7b4 Exercise. Check the figures shown above.
7b5 Exercise.
1—E) for0<lye<X
P(Z(ne) =lWe| X(e),...,X(ne)) = Ve( \l/g) or 0 < ly/e (ne),

Prove it.
Hint: use 7b4;

ZZ

The conditional probability depends only on X (ka) thus,
(7b6) P(Z(ne) =Ive|X(ne)) =P (Z(ne) =1ve| X(e),...,X(ne)) .

Using the distribution of X (ne) found in 6¢12, we get the J01nt distribution of X (ne) and
Z(ne):

P (X (ne) = Z(ne) = kve) = 2_"(:1)(1 — ek,
P (X (ne) = kve, Z(ne) = l\/e) = 2"(77;)\/5(1 —Ve) for0<1<k;

here m is either 2t* (for n+ k even), or 2t£tL (for n + k odd). Moreover, (7b6) means that
the random vector (X(g),...,X(ne —€)) and the random variable Z(ne) are conditionally
independent, given X (ne) (think, why). On the other hand, X(¢),..., X (ne) determine
a(0,¢),...,a(0,ne) uniquely; indeed, a increases (by +/¢) if and only if X increases (by
Ve). Also, a(0,¢),...,a(0,ne) determine b(0,¢),...,b(0, ne) uniquely (recall (7b3)). Thus,
b(0,ne) is a function of X (¢),..., X (ne). Therefore, b(0,ne) and Z(ne) are conditionally
independent, given X (ne). We get

P (b(0, ns)—z\/_ X(ne) = kv/e, Z(ne) = ly/e) =
=P (Z(ne) l\/_|b0ne ) =ive, X(ne) = kve) -P(b(0,ne) = ive, X(ne) = kv/e) =
_]P( l\/_|X ne) = kv/e) iP’( (0,ne) = iv/e, X(ne)—k\f)

7

see 7b5 see the forrnula after 6¢7
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the (3-dimensional) joint distribution of a(0, ne), b(0, ne), ¢(0, ne) is found.

7b7 Exercise. For every n, the joint distribution of a(0, ne), b(0, ne) and ¢(0, ne) is the same
as the joint distribution of a(0, ne), b(0, ne) and max (0, a(0, ne)+b(0, ne) —/e(G—1)), where
G is a random variable independent of the random vector (a(0, ne), b(0, ne)) and distributed
geometrically, G(1/¢).

Prove it.

7c Scaling limit

The scaling limit (for ¢ — 0) of the (3-dimensional) joint distribution of a(s, ), b(s,t) and
c(s,t) results from 7b7 and (6c9). It may be thought of as the joint distribution of a(s,t),
b(s,t) and

(7cl) max(O, a(s,t) + b(s,t) — 77) = (a(s, t) + b(s,t) — 77)+ ,

where 7 is a random variable distributed exponentially, Exp(1), independent of the random
vector (a(s,t),b(s,t)), the vector being distributed (6c9). We have a probability measure
ti—s on the 3-dimensional semigroup G (recall (7b2)).

However, existence of such a 3-dimensional scaling limit is necessary but not sufficient
for existence of scaling limit of our process. We need a limiting probability distribution
on the infinite-dimensional space of functions [0,0c) — G, or equivalently, [0,00) — R?,
t— (a(O,t),b(O,t),c(O,t)). No problem with a(0,-); this one is just the usual Brownian
motion (recall (7b2)). No problem with (0, -), too; this one is the ‘cumulative minimum’ of
the Brownian motion, see (6b5) and the figure after (6¢9). However, ¢(0, -) is a problem.

Postpone infinite dimension, and consider for now dimension 6:

9(0, s) = (a(0, 5),b(0, s), (0, ),
9(0,%) = (a(0,t),b(0,t),c(0,t)) ;

here ¢ > s > 0 are given. What about a scaling limit for these six?
We have a scaling limit of another 6-tuple,

9(0,5) = (a(0, 5), (0, 5), ¢(0, ) ,
9(s,t) = (a(s,1), b(s, 1), c(s, 1))
(think, why). Also, ¢(0,t) is a function of ¢(0,s) and g(s,t), see 7Tbl(h). However, the
(

composition Gz X G3 — (3 is discontinuous (on the surface ¢; = by). We have weak
convergence of measures,

Me,s — Hs s He,t—s — Ht—s for e — Oa

/@due,s%/wdus

for every bounded continuous ¢ : G35 — R. However, what happens if ¢ is discontinuous?
Still convergence, provided that ¢ is continuous ps-almost everywhere.

which means that
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We have
lu’s,s b2 lj's,tfs — s 02y Ht—s ON G3 X G3 )

and the question is, whether the set of continuity, {¢; # by}, contains (us ® p;_s)-almost
all points, or not. The answer is positive, since these ¢; and by are independent, and b, is
nonatomic. The 6-dimensional scaling limit exists!

Similarly, for every n and every 0 < t; < --- < t,, there exists a (3n-dimensional) scaling
limit of ¢(0,t1),...,9(0,t,), that is, of a(0,%),b(0,%1),¢(0,%1),...,a(0,t,),b(0,t,),c(0,t,).
Finite dimensions are done. What happens in the space of functions?

Recall 6b6: the Brownian motion satisfies the Holder condition

|B(t) — B(s)|

< a.s.
o<s<t<1 (t—8)'/3 > ’

and the same for the random walk, uniformly in £.> For a large C, the set of functions
satisfying sup(...) < C, is of high probability, and a continuous function on such a set is
close to a ‘finite-dimensional’ function.

The process b(0, -) satisfies the same Holder condition, since it is the ‘accumulated min-
imum’ of the Brownian motion. Also, the process ¢(0,-) satisfies the condition (both in
discrete time and in continuous time), since

Jnax, 1¢(0, ) — ¢(0, je)| < Jnax, |a(0, ig) — a(0, je)
(think, why). It leads to a proposition similar to 6b6 for the sticky flow.

So, the scaling limit exists. The process a(0, -) is the usual Brownian motion; the process
b(0, ) is a function of a(0,-).* What about ¢(0,-) ? Is it also a function of a(0,-) ? Of course,
in discrete time the answer is negative (because a does not discern f, and f,). So what?
The additional randomness could disappear in the scaling limit. Does it, really?

Recalling (7b6), 7b7 and (7cl), it is easy to guess that the conditional distribution of
¢(0,t), given the whole Brownian past a(0, -)|j0,q (rather than a(0,%)+b(0, t)), is still described
by (7c1) (and therefore ¢(0,-) is not a function of a(0,-)). Is the guess true? Conditioning
by a Brownian path is rather subtle. ..?

We introduce a random variable 7, independent of a. (0, -), distributed such that (n./v/€)+
1 ~ G(y/¢), and a random variable n independent of «(0,-), distributed exponentially,
Exp(1). We have

e 1 in distribution,

that is, E f(n.) — E f(n) for all bounded continuous functions f : R — R. Also,

aE(O, ) [0,1] — a(O, ')|[0’1] in distribution,

e—0

3In discrete time the denominator should be corrected: (t — s + £)'/%.

4T mean, a function of the whole past, not just the current value.
5Recall 4a for a clash between conditioning by Brownian path and conditioning by the path of the random
walk.
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that is, E f(a (0, -)|j0,1) = E f(a(0,-)|j0,1) for all bounded continuous functions f : C[0,1] —
R. It follows that

(aE(O, -)|[0’1],775) — (a(O, -)|[0,1],77) in distribution;

e—0

this time, f : C[0,1] x R — R. That is clear when f is a factorizable function (f = f; ® fa,
fi:C[0,1] - R, fo : R = R), or a linear combination of factorizable functions. Are they
dense (uniformly)? Yes, if spaces are compact, but they are not. .. However, a compact set of
high probability exists for every distribution, and moreover, for every converging (therefore,
precompact) sequence of distributions.

Convergence in distribution is preserved by continuous maps. Thus,

((1,5(0, ')‘[0,1]5 (a's(oa 1) + be(oa 1) - 725)+) — (a(O, ')‘[0,1], (a(oa 1) + b(O, 1) - 77)+) :

e—0

However,
(G,E(O, ')‘[0,1]7 (GE(O: ]-) + bs(oa 1) - 776)+) ~ (aE(Oa ')|[0,1}a 66(0: 1))
by (7b6) and 7b7. Also,

(aE(O’ )
(since a, b, ¢ are the scaling limit of a, b., ¢.). Therefore

(a(0,)lo,u, €(0,1)) ~ (a(0,)[j0,13, (a(0,1) +b(0,1) —n)*),

which was discovered by Jon Warren.® So, (0, -) is a function of a(0, -), but ¢(0, -) is not.

0,1], €= (0, 1)) — (a(O, 0,175 (0, 1)) in distribution

e—0

7d When space becomes time...

Let us look again at the sticky flow in discrete time:

f- T+ f+ P f+ f+ I f+ I= f= f T

(7d1) \////\\/\/ £ (@)
N /\\/ﬁ

For large x we have a(0,-) — & .(x) = const. It is instructive to look at a(0, -) — &;.(z) for all

z:
_{_/‘ a(O,-)
7d2 g
( ) + - a(O,-)*C(O,-)
WV a(0,)—€s,-(2)

6 Jonathan Warren, “Branching processes, the Ray-Knight theorem, and sticky Brownian motion”, Lecture
Notes in Mathematics 1655, 1-15 (1997).
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Given a path (a(O, ks))kzo,_",n of the driver, we consider

on(lvE) = Ve -max{k € {0,...,n} : a(0, ke) = l\/e}
(7d3) for I\/e € [[Iglrlllgl] a(0,-), a(0,ne)].

—_———
=—b(0,ne) i

m

7d4 Exercise.

a(0, ne) — ¢(0, ne) = min(a(0, ne), min{z : &, (o1 ve) = fo}) ;

here x runs over v/¢Z N [—b(0, ne), a(0, ne)).
Prove it.
Hint: use 7b1 and/or look at (7d2), (7d3).

7d5 Exercise. Deduce 7b5 from 7d4.

It is natural to treat such random functions as a(0, -) as random maps from the time to
the space. Then, o,(:) is a random map from the space to the time! Nevertheless, we may
treat it as a random process, which leads to interesting results. However, for a more elegant
theory, we change the construction a little.

Having the random walk

a(0,ke) = Ve(r(e) + - + 7(ke)),
we define

o.(lve) = emin{k : a(0,ke) = I\/e} forl=0,1,2,...

(rd6) |y ]

,,,,,,,,,

Increments o.(v/g) = 0.(v/2) — 0.(0), 0:(2v€) — 0:(v€), 0:(3v/€) — 0.(24/2), ... are inde-
pendent and identically distributed.” The distribution of o.(1/Z) is closely related to the
distribution of b(0, k&) = maxizo,___,k(—a(o, ze)) ~ max;—g,..x (0, 7€), namely,

P (0:(ve) > ke) =P (b(0,ke) =0)

(think, why). The distribution of b(0, k¢) was calculated in 6¢12. It appeared (recall (6b10)),
that

b(0, ke) ~

a(0, ke) + ‘——

thus P (5(0,ke) =0) =P (—/ < a(0,ke) < 0), that is,

27k( k ) for k even,
P (o.(Ve) > ke) = { k2 B
( ) 2 k((kfkl)/Q) =2 k((k+k1)/z) for & odd,

"See Footnote 1 on page 63.
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therefore
0 for k even,

P(0:(Ve) = ke) = {2—(’9—1)L(( 1) for k odd.

(Of course, “0 for k even” is evident; think, why.)

Using the local limit theorem (or just the Stirling formula) we get

k—1 [ 2
2*(1671) ~ 2T .
((k—l)/Z) - or k — 00;

€

(7d7) 3/2
P(o.(vVe) =t) ~ —<¥) fort 00, t€c(2Z+1).

™

The graph of the function

t

(7d8) VELy >z o.(z ++/¢) — 0.(2) I .

Ve
is a random subset of (\/eZ.) x (¢Z,). Assigning measure 1 to each point of the subset we
get a random measure II, such that

[[ = [[ om0 - Ejjsowa 0u(IVE + VE) — 0u(IVE))

Note that
(7d9) ag(l\/g) = // tdIl, .
[0,1v/E)x[0,00)

Let ¢ : [0,00) x [0,00) = R be a Riemann integrable function, concentrated on [0, Zmax] X
[tmins tmax] TOr some tmin > 0, tmax < 00, Tmax < 00, then

[ e = g ]

We may guess that the scaling limit of 11, is a Poisson process Il satisfying

[
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True, events Ay; = {0:(I\/e + V) — 0.(l\/e) = ke} are not independent; rather,

P (Akl,ll) if kl = k?; ll = l27
P (Akl,ll N Ak2712 ) = P (Ak1,l1 ) -P (Ak27l2 ) if ll 7é lZa
0 if ky # ko, Iy = lo;

but we saw a similar situation in 2b, and it did not prevent the scaling limit from being
a Poisson process. The same argument works here. Note also that the construction of
the Poisson process, given in 2b, works over any measure space, not just R with Lebesgue

measure. Here, we use it over the measure space [0,00) X [0, 00) with the measure ﬁ%.

() L]
[ ]
® [ ]
° [ ]
. . o [}
[ ]
®e ¢ . . .
RS TR A R 5 X

The random variable [[ dIl is well-defined for every measurable function ¢ such that
[ le(z,t)| %% < oo. (If ¢ takes on two values 0,1 only, then the random variable has a
Poisson distribution, of course.) Especially, the random process

o(x) = // tdll
[0,2) % (0,00)

is the scaling limit of o; it is related to the Brownian motion a(0,-) by
o(z) = inf{t € [0,00) : a(0,t) = x}.

The process o(+) is an increasing process with stationary independent increments.®

7e Another discrete model

Two models converging to Poisson process were considered in 7a, but only one sticky model
— in 7b. Here is the other:

O

The first m points form a trap. Being outside the trap, at k/c where k > m, the process
jumps to (k £ 1)y/e with probabilities 50%,50%. Being inside the trap, at k./e where
k €{0,1,...,m}, the process jumps either to 0 or to (k + 1),/¢; probabilities are 50%, 50%.
That is the one-point motion of a stochastic flow built out of two maps:

g+($) =T+ \/ga
(z) = x —+/e forx >m/e,
=0 for z < m/z;

é_ N g+ lf T(kS) == +1,
e g- if 7(ke) = —1.

8Such processes are called ‘subordinators’.
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The space pitch is 1/, the time pitch is £, and the scaling limit will be taken for e = 27™ — 0,
m — 0.
In terms of f,, fi, f_ of 7Tb we have

m—1

9+ = [e = [ 9- =11 o2 = famyeo-

All maps belong to the 3-parameter semigroup G5 introduced in 7b;

fs,t = fa(s,t),b(s,t),c(s,t) .

A path of the driver, a(0,-), is the same function of random signs 7(-) as before, and it
determines uniquely these random signs; therefore, b(0, -) and ¢(0, -) are functions of a(0, -).°
Our old formula b(0,t) = —minp 4 a(0, -) is too simple for the new model; however, we have
b(0,ne) =m —1— klr(}in a(0,ke) if kggin a(0,ke) <0,
b(0,ne) € [0,m — 1] if klrolin a(0,ke) =0
(think, why). That is enough for the scaling limit of b(0, -); it is the same as before. In order
to understand ¢(0, -) we use the approach of 7d. Here are modified versions of (7d1), (7d2):

9-9-9—- 9+ 9+ 9— 9— 9+ 9+ 9+ 9+ 9+
W 0,)
/ fs,-(w)
7

We restrict ourselves to the case miny 4 a(0,-) < 0, since the case min(...) = 0 disappears in
the scaling limit. In order to escape the trap at (ke, /) we need (m + 1) positive steps of
a(0, ) in succession, a(0, (k —i)e) = (I —4)\/e for i = 0,1,...,m. In order to remain outside
the trap until ne, we need o, ((I — i)/€) = (k — i)e for i = 1,...,m.!° Thus, instead of 7d4
we get

a(0,ne) — ¢(0,ne) = min{z : 0, (z — V) — on(x — my/e) = (m — 1)e},

if such « exists in the set \/eZ N [ming . a(0, ) + my/c,a(0,ne)]. Otherwise, c¢(0,ne) €

[—m+/E, 0].

We turn to o, as defined by (7d6), and consider the random variable

(7el) X, =+Vemin{l : 0.(I/e) — o.((l — m + 1)y/e) = (m — 1)&}.

In terms of the random set (7d8), X locates the first occurrence of m—1 points, in succession,
in the bottom row. The distribution of X, converges (in the scaling limit ¢ = 2=™ — 0) to

9n discrete time, of course.
10Tt need not hold for i = 0; think, why.
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the exponential distribution, X ~ Exp(1), by the same argument as in 7a. In order to check
that models of 7b and 7d have the same scaling limit, we’ll prove that X is independent of
a(0,) in the scaling limit.!!

In fact, we’ll prove a much stronger statement — weak dependence between ‘upper’ and
‘lower’ parts of the random subset of [0,00) X [0,00).}? By the ‘upper’ part I mean its
intersection with [0, 00) X [ta, 00); by the ‘lower’ part — its intersection with [0, cc) x [0, 1);
and t; < t9. ¢

7e2 Exercise.

‘Corr(go(min(as(\/g), t1)), Y(max(ty, 0. (e ‘ = \/1 — \/1 — Dy

for every bounded functions ¢,7 : R — R such that the correlation coefficient is well-

defined;'® here p; =P (0.(vE) < t1), p2 =P (0.(vE) > t2).
Prove it.'
Hint:

(o(min(o:(Ve), t1)) — ¢(t1)) (¥ (max(tz, 0. (vE))) — ¥(t2)) =

Corr(...) = _E(p(min(...)) — (1)) E(p(max(...)) — ¢(t2)) .
\/Var(cp(min(...))) \/Var Y(max(...))) ’

find worst functions ¢, 9.

In other words, the so-called mazimal correlation coefficient between two sub-o-fields
does not exceed (in fact, is equal to) ,/%, / 13?023 one sub-o-field is generated by the
random variable Y; = min(o.(1/€),t1)), the other — by Z; = max(tz, 0.(\/€))).

Consider also Y, = min(aE(Q\/E) - 05(\/5),151) and 7, = max(aE(Z\/E) — 05(\/5),752).

Clearly, pairs (Y, Z;) and (Ys, Z3) are independent and identically distributed.

7e3 Exercise.

Corr(p(Va, Ya), (21, Z5))| < -
| Corr(¢(Y1, Ya), (21, Z5))] \/1—]91\/1—]92

here p;,p, are the same as in 7e2, and ¢, : R — R are arbitrary bounded functions.
Prove it.!®
Hint: o(Y1,Y2) = 32, 5 0i(Y1)p;(Y2), where @o, ¢1,... are an orthonormal basis (in the

corresponding Ls), and ¢o(-) = 1. The same for (2, Z5).

15

1Tn spite of functional dependence of X, on a.(0,-) in discrete time.
12Tn the scaling limit these are independent, of course. However, in discrete time some dependence exists.

BCorr(Y, Z) = \/Vac_(;(f/% is well-defined, if Var(Y) # 0, Var(Z) # 0.

You may also recall 4f5.
15Guch that the correlation coefficient is well-defined.
16You may also recall 3b18.
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That fairly general argument is called tensorization of the maximal correlation coefficient.
It works equally well for three and more pairs. We see that the maximal correlation coefficient

between the two parts (‘lower’ and ‘upper’) of our random set does not exceed , /%, /%.
For € — 0 we have (recall 7d7)

D

1—p=P(0.(vVe)>t) ~ W—Z’
D

po =P (0.(vE) > ts) ~ %

2

The scaling limit X of X, (defined by (7el)) is therefore independent of the ‘upper’ part
of the 2-dimensional Poisson process, for every t5. It means that X is independent of the
whole Poisson process. So, models of 7d and 7b give the same scaling limit.'"

17 .. assuming existence of a scaling limit of the model of 7d. Its existence can be proven by combining

arguments of 7e and Tc.



