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4 Clashes between discrete and continuous

4a White and Poisson noises: not well together

Imagine again the one-dimensional array of random signs, the same as in 1a and 1b. Assume
that devices of both types are available. These of Sect. 1,

Xop = VEY plke)rke),

and of Sect. 2,

Z(p(ks)1+T(k8)1_T((k+1)8) 1—7((k+m—1)e) .

Yy = :
a4 9 9 9

k

test functions ¢, ¢ are Riemann integrable and compactly supported; k runs over Z, but
only a bounded portion of €Z is relevant; and &, m are related by ¢ = 27™.

In the limit we should get random variables X, Y, on a single probability space; all
these X, should describe the white noise, as in Sect. 1; all Y}, — the Poisson noise, as in
Sect. 2.

Have you any idea about their dependence? Especially: whether the Poisson sample path
is determined uniquely by the Brownian sample path, or not?

4al Exercise.
E(7(0)Yzy) = 27™(1(0) — (=€) = p(=2¢) —--- = (= (m — 1)¢)) .

Prove it.
Hint: open the brackets; nonlinear terms do not contribute.

4a2 Exercise.
E(XepYey) =ve2™ ( > lke)p(ke)=>  p(ke)p((k—1)e)— =Y w(kf)w((k—mﬂ)&)) :

Prove it.
Hint: use 4al.

4a3 Exercise.

B (X, Voy)| < Vam2™ \/Z (k) \/Z v (ke)

Prove it.
Hint: use 4a2.

We have /e), ¢?(ke) — ¢l = /[ ¢?*(z)dz, and the same for . Thus,
VEM2TT ST [T = Veme S = (\/_10g21/5 Ve, 92 (ke) /e Y ¥ (ke) — 0 -

loll2]|¥]]2 = 0. Tt means that

(4ad) E(X,Y,) =0 forall ¢,v
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(provided that the limiting model exists, of course). The white noise and the Poisson
noise appear to be uncorrelated. Does it mean that they are independent? No, it does
not. (It does not contradict even to a functional dependence.) However, we have also
E (X4 Xp,Yy) = E(X,,X,,)E(Yy) for all test functions 1, s, 1, which can be proved
similarly to (4a4). More generally, E (X, ... X, Yy) = E (X, ... X, )E(Yy). Still, it does
not mean independence; it means rather £ ( Yy ‘ X ) =E(Yy). The conditional expectation
of Yy, given the whole Brownian sample path, is equal to the unconditional expectation; it
does not depend on the Brownian path. However, something else, say, E ( Yj ‘ X ) , could
vary. In order to get independence, we need

E(Xyy - X Yo oo Yy) =E(Xy, . Xy JE(Yy, ... Yy, )

Pt

which can be proved by some effort. For now, believe me that it is true, and implies that
the two noises are independent. (We’ll prove a more general fact in 4f.)

Existence of the limiting model is now trivial; it is just the product of two probability
spaces constructed in Sections 1 and 2 respectively.

Usually, probabilists are inclined to say that “Brownian motion is basically an infinites-
imal random walk”. In other words, the white noise is “basically” the collection (7(ke)) of
random signs, € being infinitesimal. If so, then every function of these random signs is a
function of the Brownian sample path. However Y, is not. For adepts of the ‘infinitesimal
random walk’ it is a paradox.

The same paradox is manifested also by models of 1c.

However, the model of 3a does not exhaust possible ideas toward joining the two noises.
In order to get them closer to each other, we may try another model of the white noise, say,

Xeyp = \/EZ o(ke)T(ke)T((k + 1)e),

or even

Xep=VeY olke)r(ke)r((k+1)e)...7((k+m — 1)), e=2"".

On the other hand, we may replace equiprobable random signs 7 by something else, say,
]P(Tk = 2™ — 1) = 27", ]P’(Tk = —1) = 1 — 27", Then the Poisson noise emerges
immediately. Though, the white noise cannot be constructed from such 75 (think, why).
Well, we could try something intermediate. Also, a continuous random variable could serve
better as 7x. You see, possible models are numerous. It would be nice to have a general
theory embracing them all.

4b White and Poisson noises: a one-to-one correspondence?

The white noise is a family of random variables X, = [ ¢(z)dB(z) defined on a proba-
bility space (§21,F1, P1). The Poisson noise is another family of random variables Y, =
[ ¥(z) dlI(z) defined on another probability space (22, F2, P»). Making the Poisson noise a
function of the white noise means finding a measure preserving map « : 2; — €25. Then,
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random variables Yy, o «, defined by (Yy o a)(w1) = Yy(a(wq)) for wy € Oy, are distributed
like Yy,
Ef(Yy oa,...,Ys 0a) =Ef(Yy,,..., V)

(think, why). It means that the family of Y} o a is also the Poisson noise; and, being
defined on (2, F1, P1), it has a joint distribution with the white noise. Moreover, assume
that (21, F1, P1) is the ‘natural’ space of the white noise; then every random variable on
(Q, F1, P1) is a function of the white noise (an in particular, the Poisson noise becomes
a function of the white noise). Indeed, let (1, F1, P1) = (R*®,~7%°) as in 1b, then every
measurable function on 2; is a function of coordinates (on R*), that is, f(Xy,, Xyps---)
where ©1,, o, ... are a basis of Ly(R).

How could we construct a measure preserving map {2; — {25 7 First, we can decompose
(Q4,F1, P1) into a countable collection of random signs. Starting with a sequence (; =
X, = [ ¢i(z) dB(z) of independent normal N(0,1) random variables, we transform these
into uniform U(0, 1) random variables U; = ®((;); their binary digits 5 ;,

= Bij
Ui = Z 2]] ) 51,] € {03 1}5
=1

are independent discrete random variables with two equiprobable values 0,1. Now we rear-
range the two-dimensional array (f;;);,; into a one-dimensional array (), and consider

U=> 3
k=1

U is a random variable on (9, F;, P;) distributed uniformly on (0,1) and possessing a
wonderful property: the map €; > w; — U(wy) € (0,1) is one-to-one! It is an invertible
measure preserving map. We see that the infinite dimension of (0, Fi, P1) = (R*,~y*)
is an illusion; a measure space (in contrast to a topological space) has no dimension; our
probability space is isomorphic to (0,1) (with the Lebesgue measure). Therefore, the whole
white noise (and Brownian motion) may be defined on Q = (0, 1).

In fact, every nonatomic probability space is isomorphic to (0,1) with the Lebesgue
measure. The space (€29, Fo, P») of the Poisson noise is nonatomic (as far as the Poisson
process lives on the whole R; if it is restricted to a bounded interval, then an atom appears;
think, why); it is also isomorphic to (0,1). Combining the two isomorphisms, we get an
isomorphism «a : Q1 — Q. (Sets of measure 0 may be neglected throughout.)

So, the Poisson noise can be represented as a function of the white noise. However, this
is irrelevant! An important requirement is forgotten: locality. For every interval (a,b) C R,
the Poisson noise on (a, b) should be a function of the white noise on the same interval (a, b)
(rather than the whole R).

2|2

k .
)
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4c  White and Poisson noises: locality is prohibitive

We want to represent the Poisson increment II(b) —II(a) as a function of the white noise on
(a,b), which means

(4c1) Z / /§ab$1,...,xn)dB(x1)...dB(xn);

=0 gz <o <an<b

here we use the general form (3c7) of a square integrable function of the white noise (a func-
tion distributed like II(b) —II(a) must be square integrable); integration is restricted to (a, b)
according to the locality requirement. We have to find &, (for all intervals (a,b) C R) such
that the process II defined by (4cl) is (distributed like) the Poisson process. Independence
of increments is ensured by locality. We need the Poisson distribution for (4c1) and, more
important, additivity:

(4c2) I1(c) — I(a) = (IL(b) — I(a)) + (II(c) — I1(b))

whenever a < b < c¢. Thus, we need

(4c3) // Eocl@i, . 20) dB(z1) ... dB(z,) =

a<r1<---<zxp<c

// Eap(T1, ... 2y) dB(z1) ... dB(z,)+

a<z1<<Tn<b

N // €oolrs - 7) dB(z1) . .. dB(zy)

b<z1< - <Tpn<cC

for each n. That is necessary, because integrals for different n are orthogonal.
For n = 0 the stochastic integral is just a number, equal to the value of £ at the sole
point of Ag;

ga,c() - ga,b() + gb,c() .

For n =1 we need

/sac ) dB(x /m ) dB(a /&,c ) dB(x

which means &, .(z) = &(z) + & () (assuming that &, vanishes outside (z,y)), that is,

7) = Eup(z) for x € (a,b),
fute) = {0 e lo

almost everywhere. These functions must be restrictions of a single function,

£un() = {f(w) for z € (a,b),

0 otherwise.
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For n = 2 we need

/ €0 o1, 75) dB(@1)dB(x2) =

a<r1<zr2<C

/ €l 75) dB(21)dB(z5) + / €0e(z1, 22) AB(21)dB(z3)

a<z1<z2<b b<z1<zT2<c
Z2

[

b

a
Z1
a p ¢

which means
§a,b(:ﬁ1,x2) if a < T < Ty < b,
Eac(T1,22) = { & e(T1,m2) ifb<z <29 <o,

0 fa<zi<b<zy<e

However, it cannot hold for all b € (a,c), unless &, .(z1,22) = 0 almost everywhere (think,
why). The quadratic term violates locality, therefore it must disappear!
The same for higher terms (cubic, ...); they all must disappear. So, (4c1) becomes

(4cd) I(b) — = &ap() / §(z) dB(z

Taking the expectation we get &4() = E (II(b) — I(a)) = b — a. Taking the variance we get
fa &(z)[? dz = Var(I1(b) — II(a)) = b — a, therefore £(z) = £1 almost everywhere. So,

I1(b) — [I(a) = b—a+/ o(x)dB(z) ~N(b—a,b—a), o(z) = 1,

which is absurd; the normal distribution is not at all equal to the Poisson distribution,
Poisson(b — a).

So, the Poisson noise cannot be represented as a local function of the white noise. In
contrast, the discrete counterpart of the Poisson process can be represented as a local function
of the random walk.

4d White noise: locality and linearity

What is a better discrete-time counterpart of the white noise: i.i.d. random signs 7%, or
i.i.d. normal N(0, 1) random variables (; 7 Both give the white noise in the (natural) scaling
limit, of course. However, consider local automorphisms, that is, local one-to-one measure
preserving maps to itself. For random signs, these are!

(4d1) 7',;k = CkTk Cp = :|:1;

'Here I treat locality in the most restrictive way: 7} depends on 75 only. It could depend on a larger
number of neighbors.
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here (7;) is another copy of random signs, while ¢; are non-random coefficients.
For normal random variables,

(4d2) Ce = Ju(Ce)

where each f is an invertible map R — R preserving the N(0, 1) distribution; plenty of such
maps exists; the linear case fi((x) = £ is very special.
For the white noise, a local automorphism may be treated as follows:

B*(b) — B*(a) = fus(B

[a,b]) ;
here B(-) is a Brownian motion, B* another (process distributed like) Brownian motion, and
Blia, is the restriction of B to [a, b].

It is just the same situation as in 4c; though, the left-hand side of (4cl) is Poissonian

(rather than Brownian), but locality and additivity requirements are the same, and similarly
to (4cd) we get

B%rimw=gm+/gummm.

Expectation gives &,;() = 0; variance gives £(x) = +1; so,

(4d3) B%%4W®=/¢@MM@, o(z) = £1,

which is similar to (4d1), not (4d2). The transformation B(-) — B*(-) was not assumed
linear, but appeared to be linear! Informally, dB*(z) = ¢(z) dB(z) = £dB(x). We feel that
continuous locality is much more restrictive than discrete locality.

4e White noise: locality and dimension

As noted in 4b, a probability space has no dimension; in particular, (R',') and (R?,~?)
are isomorphic; that is, one can find two functions? f,g such that if ( ~ N(0,1) then
(£(€),9(¢)) ~ N(0,1) ® N(0,1). Not only f(¢) ~ N(0,1) and g(¢) ~ N(0,1), but also

f(¢), g(¢) are independent.
Can we find a local transformation of the (usual, one-dimensional) white noise to the

two-dimensional white noise? In other words,

B*(b) = B*(a) = fap(Bliap)
(4el) B (b) = B™(a) = ap(Blia) »
B*(-), B*™(-) are independent Brownian motions;

is it possible?
As before (see (4d3)), locality implies linearity:

B%rimw=/wwmwux o1(0) = +1,

B*(b) — B*(a) = / oo(@)dB(@),  pa(z) = +1.

2Not continuous, of course; but still, Riemann integrable, if we want.
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Independence of B*(-), B**(-) implies

[ o@et =0

for all a < b (think, why). It follows that ¢;(x)ps(x) = 0 almost everywhere,® which is
absurd: ¢1(z)pe(x) = +1 almost everywhere. So, (4el) is impossible. The 2-dimensional
white noise cannot be represented as a local function of the 1-dimensional white noise.

What about discrete counterparts? Of course, we cannot produce two independent ran-
dom signs out of a single random sign. However, we can approximate 1-dim and 2-dim white
noises by random walks with equal number (say, 3) of possible moves:

A 2-dimensional random walk can be a local function of a 1-dimensional random walk, even

if we treat locality in the most restrictive way. Otherwise, random signs can be used, too;
say,

* k%
Tk—Tk; Tk = TkTk+1 -

4f White and Poisson noises: locality and independence

A single discrete model can produce (in a scaling limit) both noises, white and Poisson; an
example was considered in 4a. Each one of the two noises has independent increments, of
course. However, locality stipulates much more:

the two-dimensional process (B(z),TI(z)) zer has independent increments.

If test functions ¢~ ,1~ are concentrated on (—oo,z), while ¢ ¥* are concentrated on
(x,+00), then

]E(XLP— Y¢—X¢+Y¢+) =E (X(p— Yw—) . E(chJr Y¢+) )
here, as before, X, = [ ¢ dB, Y, = [t dIl. The same for any finite number of test functions,

(41) B(X,- o X, Yy o Yy X X e Vg V) =
== E(XQOI_ ...XQO’;Y,(pI— ...le—) 'E(Xwii- ...Xw$wa- .. .Y,lp;l-),

and any finite number of disjoint intervals (not just (—oo, z) and (z,+00)). In the example
of 4a the two noises appeared to be independent,

E(Xp . Xpo Yo V) =E(X,, ... X)) E(Yy, ... Yy,

P1cNom

but we still do not know, whether their independence is forced by locality, or not. We know
(recall 4c) that functional dependence is impossible. What about some weaker dependence
between B(-) and II(-) ?

3Indeed, the product is orthogonal to all step functions.
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4f2 Exercise.
Cov(B(c)—B(a),II(c)-II(a)) = Cov(B(b)—B(a),I1(b)—II(a)) +Cov (B(c)—B(b), II(c)—IL(b))

whenever a < b < c.

Prove it.

Hint: if you still do not remember what is “Cov”, look at footnote 5 on page 21. If you
do not remember basic properties of “Cov”, just derive them from scratch.

4f3 Exercise. The correlation coefficient* Corr(B(c) — B(a),II(c) — TI(a)) lies between
Cor;(B(b) — B(a),11(b) — I(a)) and Corr(B(c) — B(b),1I(c) — II(b)).
rove it.
Hint: Cov(B(y) — B(z),Il(y) —II(z)) = (y — z) Corr(B(y) — B(z), I1(y) — II(x)); use 4f2.

Now we want to maximize Corr(B(y) — B(z),II(y) — II(z)) for a smally —z = . We
have two distributions, N(0, ¢) and Poisson(¢), with their (cumulative) distribution functions

——
%

Ve Ve
and quantile functions (called also ‘inverse distribution functlons

—ﬁﬁ 1 1 —

The correlation is maximized by the monotone joining

X(w) =+ed ' (w) forwe (0,1),
0 forwe (0,e7°),
1 forwe (e7%, (1+¢e)e™®),

Y(w) = 2 forwe (1+e)e®),(1+e+ce2/2)e ),
Then we have
(1Fe)e™ (14ete?/2)e=
E(XY)=0++e / p)dp + 2\/e / o (p)dp+ ...
(1+e)e—s
4Recall, Corr(X,Y) = ——C(X.Y)

v/ Var(X)4/Var(Y
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However, ®~'(1 — &) ~ 4/2In(1/e) for & — 0. Thus, for p € (7%, (1 + €)e™*) we have

&~ '(p) < v/2In(2/€?), and

(1+e)e~¢
/ <I>_1(p) dp < ev/21n(2/e?),

which is small for small . We feel that E(XY') = o(y/€). Here is a way to a proof.

4f4 Exercise. For every p € [1,2], E(Y?) = O(e) for € — 0.
Prove it.
Hint: Y? < Y% EY =¢, Var(Y) =e¢.

4f5 Exercise. E|XY| = o(¢) for ¢ — 0.
Prove it.
Hint: E[XY| < [|X[l4[[Y]lyys = O(VE) - O(e*).

O(yV_VP;E ;efi rtl;aj LCiV(gi(yt)h;rei(i),H(y) —II(2))| = [E((B(y) — B(x))(M(y) - L(x)))| =
Corr(B(y) — B(z),T(y) —TI(z)) = 0 fory—z —0+ .
Combined with 4f3 it gives us
Corr(B(y) — B(x),(y) — II(z)) = 0

for all z < y.
Does it mean that B(-) and II(-) are independent? No, it does not. They are just
uncorrelated. Maybe, (B(y) — B(x))™ and (II(y) — II(x))™ are correlated for some m,n?

416 Exercise. For any A, u € R the function

f(z,y) = E exp(iX(B(y) — B(z)) + ip((y) — 1I(x)))

satisfies
flz,y)f(y,2) = f(z,2) whenever z <y < z.

Prove it.

417 Exercise. .
f(z,y) =exp ( — 55)\2 +e(e™ — 1)) + o(¢)

when y —z = ¢ — 0+.
Prove it.
Hint: E|e?PE) —1]]e#M1) — 1] < |ePPE) — 1|l — 1|43 < |AB(e)[|all1IL(e) |ajs =

o(¢) similarly to 4f5. Also, Ee*P() = exp(—12A?) and Ee#1(®) = exp(e(e™ — 1)).
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4f8 Exercise. !
f(z,y) =exp ( — EEAQ + (e — 1))

for all y — x = ¢ > 0; that is,

E (exp(iA(B(y) — B(2))) exp(in(Ml(y) - T1(2))) ) =
= (E exp(iA(B(y) - B(x))) ) (B exp(ipu(TI(y) - TI(2))) ) .
Prove it.

4£9 Exercise.
E(exp (i/\ / ' (@) dB(x)) exp (m / (@) dn(x)) _
for all ¢, € Ly(R).

= (]E exp (i)\ /abgo(x) dB(x))) (]E exp (iu /ab¢(af) dH(ﬂﬁ)))
Prove it.

Hint: first, prove it for step functions ¢, 1, using 4{6, 418.

4f10 Exercise. For any ¢,¢ € Ly(R), random variables X, = [ ¢(z)dB(z) and Y, =
J ¥ (z) dIl(z) are independent.

Prove it.

Hint: use 4f9; trigonometric polynomials are dense.

Independence of random variables X, Y, is not yet independence of B and II. We need
independence of random vectors (X,,,..., Xy, ) and (Yy,,..., Y, ). However, 4f9 is enough
for that, since trigonometric polynomials of several variables are also dense.

So, locally dependent white noise and Poisson noise are necessarily independent. (The
result of 4a is a very special case.)

4g 'Two white noises: locality and normal correlation

A single discrete model can produce (in a scaling limit) two independent white noises. Some
examples were given in lc; say,

(4g1) Xep=VEY plke)r(ke) and Y., = e (—1)*p(ke)r(ke).

Two normally correlated white noises can appear; say,>

(4g2) Xep=VEY wke)r(ke) and Y, =V2e)  o(2ke)r(2ke).

®Do you see any relation to the fact noted before 1c3? I mean this fact: if the pair (Bi(-), Ba(+)) is a
2-dimensional Brownian motion, then the process Bj(+) cos @ + Bs(+) sin a is another Brownian motion.
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4g3 Exercise. For (4g2), calculate the correlation, Lim Corr(X, ,, Y; ).

We want to examine two locally dependent white noises, or equivalently, Brownian mo-
tions By (-), Ba(-). Recall that a local functional dependence was examined in 4d; it is always
linear, dBy(z) = ¢(z)dBi(z). What about some weaker dependence between Bj(-) and
By(+) ? Similarly to 4f, locality means that

the two-dimensional process (Bi(z), B2())zer has independent increments.

Note that two-dimensional distributions are not assumed to be normal. Similarly to 4f2, the
function

r(z,y) = Cov(Bi(y) — Bi(z), Bso(y) — Ba(x))

is additive:
r(z,y) +r(y,z) =r(z,2) forz<y<z.

Also,
Ir(z,y)| <y—=x forz <y

(think, why). It follows® that
Y
o) = [ ) du

for some p(-) € Lo(R), |p(-)| < 1. Informally, p(z) = Corr(dB;(z), dBs(z)).
Similarly to 4f6, we introduce the function

7(@.y) =E exp (IM(Buly) - Bi(@)) + i(Ba(y) - Baa))

and note that
flz,y)f(y, 2) = f(z,2) whenever z <y < z.

4g4 Exercise.

flr,y) =1~ %E ()‘(Bl(y) - Bl(x)) + ,U(BQ(ZJ) — Bz(x)))z + o(e)

when y — z = ¢ — 0+.

Prove it.
Thus,
2 ,u2
f(xay) =1- ?8 - 7‘5 - )\/"Lr(x7y) +0(8) =

= exp ( - /: ()\2 ; L + )\,up(u)) du) +o(e)

and, similarly to 4f8, “o(e)” disappears! We see that In f(x,y) is quadratic in A, g, which
means that the joint distribution of B;(y) — Bi(x) and By(y) — Ba(x) is a two-dimensional
normal distribution.

6You see, the function z +— r(0, ) is absolutely continuous.
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So, locally dependent white noises are necessarily jointly normal. They can be represented
as linear combinations” of independent white noises.
Let B(-) be a Brownian motion. Consider the random variable

X, = (BR) + (BE) = BR) +-++ (B - B)”

we have EX,, = 1 and Var(X,) = 2/n (think, why). Due to Central Limit Theorem,
\/g(Xn — 1) is approximately normal, N(0, 1), for large n. Thus, we may introduce a
random process

5= E3 (B -B())'-1)  mr o<,

When n — oo, it converges (in distribution) to a Brownian motion. However, it is a quadratic
function of B(-). In the limit, we should get two locally dependent Brownian motions, one
being a quadratic function of the other. We know that it cannot happen. Think about the
paradox.®

Think also about the scaling limit of the pair

Xop=VEY plke)r(ke), Yoy =vE Y plke)r(ke)r((h +1)e).

"If the correlation coefficient p is not constant, then coefficients of these linear combinations are also not
constant.
8More generally, you may consider

LY (Va(B() - ().

where H,, is the Hermite polynomial.




