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3 Polynomials over the white noise

3a Convergence of moments

Measuring devices of Sect. 1 are linear; that is, v/ Y, ¢(ke)7(ke) is a linear function of our
random signs 7(ke). Accordingly, random variables [ ¢(z) dB(z) are linear functions of the
white noise. (Recall, they are linear functions on (R*,~°°).) More general functions are
nonlinear, of course. Say,’

(3al) Lim (ﬁ;go(kew(ks)f ~( [t dB(x))Q;

such a function is quadratic; the right-hand side is a continuous random variable; its distri-
bution is not normal (in fact, it is a Gamma distribution).
The relation

(3a2) LimE (\/Ezk: @(k&)T(kS))Q _E ( / o(z) dB(w))2

does not follow from (3al), since convergence in distribution does not imply convergence of
moments. Though, (3a2) holds anyway:

E (\/EZQ&(kS)T(kE)) = eZw(ks)go(ls)ET(ke)T(le) = EZ(p2(/€8) — /gpz(:c) dz,

]E(/go(x) dB(x))2 - /(p2(x) iz
More generally,

(3a3) LimE (\/Eg go(ks)T(ke)>n =F ( / o(z) dB(x))n

forall n =1,2,3,... Indeed, similarly to 1b, the approximation

E exp(svE Y p(ke)r(ke)) = [ SREVERlke)) T exp(zzvEp(he))

2
k
~ H 1+ 1226902(1{:6) R~ exp 15222@2(/%) A exp l,2*2/g02(ac) dx
. 2 2 P 2
suggests that

LimE exp(2v/z Xk:gp(ke)T(ks)) — exp <%z2 / #(z) d:r) ~E exp (z / o(z) dB(x))

LConvergence in distribution is meant.
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for all complex numbers z (not just z =i\, A € R). That is true, at least, for Riemann inte-
grable (that is, continuous almost everywhere, compactly supported, and bounded) functions
¢. The convergence is uniform on every disk (|z| < const). It follows via contour integration

which means (3a3). A seemingly more general formula

(3a4) le]E(\fngl (ke)T ke) (fz% (ke)T ke)) —

:E</g01(x) dB(x)) (/%(x) dB(:r:))

follows from (3a3) by a simple algebra. You see, ajas is a linear combination of (a; + ay)?
and (a; — ay)?; similarly, a; .. . a, is a linear combination? of 2"~ terms (a; £ ap £---+a,)"
A still more general form of the same fact:

(3a5) L1m1Ef<\/_Z<p1 ke)T(ke), \/_Zgod ke)T (ke > =

:]Ef</g01(x) dB(x),...,/god(:r) dB(x))

for every polynomial function f : R¢ — R (of any degree n).?

The discrete model often helps to guess and prove useful formulas for the continuous
model (while the continuous model often makes formulas simpler). The next result is just
an equality for the multinomial distribution. However, it is instructive to get it by means of
our scaling limit.

3a6 Exercise.

5( [o@as@)( [e@aw)( [wwiae)( [ewase) -

= (@1, P2) (3, Pa) + <901, @3)(%02, ©1) + (91, 01) (P2, ¥3)

for every ¢1, @2, 93, ¢4 € Ly(R); here (o1, 2) = [ p1(z
Prove it. What about 6 factors, and more? What happens for pr=(g=+=7?

Hint. Turn from the continuum to the discrete model (but what about Riemann
integrability?), open the brackets, take the expectation, and note that E(rx77,7,) =
(Enen)E7mm) + (Ee7m)(EnT,) + (E7%7)(E77y,) unless £ = | = m = n; the latter
case disappears in the limit.

2Namely,

1 n !
o0 Z Ti ... Tp(T101 + - - + Than)" =nlay ...ap
T1yenny Tn==%1

(think, why).
30f course, it holds for all bounded continuous functions; however, a polynomial is not bounded.



17

Tel Aviv University, 2002 White noises, black noises and other scaling limits

3b Orthogonal polynomials

For the discrete model we have

(\/5 Ek: 901(/f€)7'(k5)> (\/g%: o(e)( k€)> _

= 52901 (ke)pa(le)T(ke)T(le) +£Zg01 (ke)pa(ke);

k#l
~ ?I: ~"~ < ~ v o
constant

quadratic

interestingly, the second sum (containing only const/e terms) is not small in comparison to
the first sum (containing const/e? terms). You see, terms of the first sum are random and

tend to cancel each other, while terms of the second sum are positive. Further

(\/E;w(/%)ﬂks)> (fz palhe)r(he)) (ﬁ;%(ke)r(ke))

3/2 Z o1(ke)pa(le)ps(me)T(ke)T(le)T(me) +

=¢
k#lLk#m,l#m
chgic
+ \/EZ o1 (ke)T(ke) - € Z pa(me)ps(me) + two similar terms +
k m#k

97237 g (ke)pa (ke ) pa(ke)T (ke)

J/

~ vV
small

etc. That is quite useful, since terms of different degree (constant, linear, quadratic, cubic

.) are uncorrelated (orthogonal) random variables.
Following a physical tradition, we introduce so-called Wick product, denoted :---:, by

(\/_2901 (ke)T /ﬁf) (\/_Zgon (ke)T ke)):

= /2 Z o1(ki€) . . . on(kne)T(kie) .. . T(kne) ,

where the sum (in the right-hand side) is taken over pairwise distinct k1,

3b1l Exercise.

: Us‘/s <= Us‘/s _E(Us‘/s)a
U VW, : =U, : VLW, 2 —E(U V)W, —E (U W)V +0(¢),

U VWX, : =U, : VWX, —
—EU V) : WX, : —EUW,): V. X, : —E(U.X.): V.W, : +O(e)
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whenever U, V,, ... are linear functions of the form /¢ Y ¢(ke)7(ke) each. Here O(¢) stands
for a random variable whose Ly-norm is < const - € for ¢ — 0. (Functions ¢ are bounded.)
Prove it. What about more than 4 factors?
Hint (for U.V.W.X.): the error contains O(1/£?) terms of norm O(g?) each; these terms
are orthogonal (each one contains the product of 2 different 7(ke)).

Thus, we define Wick products over the white noise:
(3b2)
:U: =U,
:UV:=U:V:-EUV),
:UVW e =U:VW: —EUV):W: —E(UW):V: |
:UVWX: =U:VWX: —EUV):WX: —EUW):VX: —EUX):VW: |
and so on. Here U, V... are linear functions of the white noise, that is, random variables of
the form [ ¢(z) dB(z), ¢ € Lao(R).
In particular,
UV=:UV:+EUV);
UVW = :UVW : + E(UV)W +E(UW)V + E(VW)U;

(3b3) UVWX = :UVWX: +EUV): WX: +EUW):VX: +EUX) : VW :+
+E(VW):UX: +E(VX):UW: +EWX):UV : +
+EUV)EWX)+E(UW)E(VX)+EUX)E(VW).

Note that : UVW : = : UWV : = : VUW : = ... in spite of the ‘asymmetric’

definition. In fact, the order of factors does not matter, for any number of factors. The case
U=V=---=X,|X| =1, gives

X =X, X=:X:;

: X% =X?2—1; X?=:X?: +1;
(3b4) 3 3 3 3

: X7 = X7 -3X; X°=:X": +3:X:;

: X*: = X' —6X?+3; X*=:X*: 4+6:X%: +3.
These are well-known Hermite polynomials,
: X" = Hy(X); (||X||:1)

1 d” 1
Hn = (=1 n “2) 7 2 .
() = (—1)"exp <2x )dx" exp ( 5% )
(Be warned: some authors use H,(z+v/2) or 2"/2H, (2+/2), call these functions ‘Hermite poly-
nomials’ and denote them H, (x).) Here are some classical formulas for Hermite polynomials:

d
%Hn(‘r) = an—l(x) ;

(3b6) Hyi1(7) = 2Hy(z) = nHyo(2) = (‘” - %> Hy();

o0
n=0

(3b5)

| <

@) = esp (327 Lo - 7).

2 2

3
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The condition || X || = 1 is essential for (3b4). In general, for || X|| = o € (0, 00), we apply
(3b4) to 2X and get : X?: = X?—0?, : X?: = X*-30°X, : X*: = X*—60°X?+ 30"
and so on. In any case, : X" : is a polynomial of X; coefficients of the polynomial depend
on || X||. More generally, : X;...X, : is a polynomial of X, ..., X,; coefficients depend
on numbers E (X X;). (The continuous model is meant.)

For the discrete model, : U,V : is still a polynomial of U, V,; however, : U, V,W, : is
not a polynomial of U, V., W,, even if U, = V. = W,; that is, : U2 : is not a polynomial
(in fact, not a function) of U,. For example, consider a linear combination of only 3 random
signs, U, = 27, + Ty + 73; then : U2 : = 127y7573 (think, why), which is not a function of
21 + T9 + T3; indeed,

=4+l mn=m=-1 = U,=0, :Us’: =+12;
n=-l,n=m=+1 = U,=0, :U?: =-12.
This effect is caused by terms O(g) present in 3bl but omitted in (3b2). When ¢ — 0, the
effect becomes small, and we get*
:UVW : = f(U,V,IW),
(3b7) U VW, e = f(Usa Ve, Ws) + 0(1) )
in other words, || : U.V.W.: — f(U., V., W.)|| —0;
E—r
here U, = /e >, ¢1(ke)T(ke), U = [ ¢(z) dB(z), and the same for V.,V and W,, W; also,
f is a cubic polynomial.
3b8 Exercise.
Lim]E( : UEV;WE:)(:XEYEZE:) :]E( :UVW:)(:XYZ:);
prove it.
Hint: use (3b7) and 3a5.
Three factors are just an example; the statement holds for all cases; another example:
LmE (:UV.W, :)(: X.Ye: ) =E(:UVW :)(: XY :).
However, : U.V.W.: and : X.Y; : are always orthogonal! Thus, : UVW : and : XY :
are also orthogonal. Generally,

E(:0r...Un )( Vo) =0 ifmzn;
(3b9) here U, =/<Pk( )dB /1/11 B(z), and ¢k, € Ly(R).

The proof works for Riemann integrable functions, but these are dense in Ly(R); the result
extends by continuity. The case Uy = X, V; = X, || X|| = 1 is especially interesting:
EH,(X)H,(X)=0 ifm#nand X ~N(0,1);
3b10 1 +oo 2
( ) that is, —/ H,(2)Hy(x)e */?dz =0 form #n;
V21 J o

the classical orthogonality property of Hermite polynomials.

“Why ‘o(1)’ rather than ‘O(g)’? Well, we may write : U.Vo.W. : = f.(U.,Vz, W.)+O(¢), and coefficients
of f- tend to coefficients of f, but maybe slower than O(g).
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3b11 Exercise.

E(:UVW.:)(:X.Y.Z.:) =E(U.X.)E(V.Y.)E(W.Z.) + E(U. X,)E (V. Z.)E (W.Y:)+
+ E (UEY;)E (VEXE)E (Ws ZE) + E (UE}/;‘)E (‘/EZE)E (W5X€)+
+EU:Z:)E (Vo X )E (WeYe) + E(U: Zo)E (V2 Y E (We Xe) + Ofe) -

Prove it (under the same assumptions as 3bl).
Hint. Open the brackets, take the expectation; now the situation is somewhat similar to
that of (the proof of) 2b2.

Combining 3b11 and (3a5) we get

(3b12) ]E( :UVW . )( 1 XYZ: ) =E(UX)E(VY)EWZ)+E{UX)E(VZ)EWY)+
+EUY)E(VX)EWZ)+EUY)E(VZ)E(WX)+
+EUZ)E(VX)EWY)+E{UZ)E(VY)E(WX)
for all linear functions U, V, W, X, Y, Z of the white noise. (Extended by continuity from the
Riemann integrable case.) Generally, E ( U Uy, e ) ( Vi Ve ) is the sum of n! terms,
each term being the product of n factors of the form E (U V]) each.
The case Uy, = X, V; = X, || X|| = 1 is especially interesting:

EH2(X)=mn! if X ~N(0,1);

(3b13) 1 [t
that is, —
V2T J o

Another interesting case: U, = X, V=Y, | X| =1, ||Y]| =1, E(XY) = p € [-1,+1]; then

H%(z)e **?dz = n!.

(3b14) E (Ho(X)H,(Y)) = nlp".

We see from (3b10) and (3b13) that functions \/—%Hn() are orthonormal in Lo (y!); in

other words, functions z — ﬁHn()\/ (2m)~1/2¢-2*/2 are orthonormal in Ly(R). Whether
they are a basis of the whole Ly, or only a subspace? That is, are polynomials dense in
Ly(y") ? Of course, every continuous function can be approximated by polynomials on any
bounded interval; but these polynomials are large outside the interval.

We have (recall (3b6))

(1)
50 s
(3b15) Z o H,(z) = */?e?
n=0
the convergence is pointwise (in fact, uniform on bounded intervals). On the other hand,
the series converges (to something!) in Lo(v?!), since

2L (A G 1
Z(n!) H,(z) :Z(\/% @), and Y

A2

2
= <0.

(G
Vil
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The two limits must conform (think, why);

(3b16) Z ( )an(x) = 2™ in Ly(v').

n=0

We see that the function z — €** belongs to the subspace (spanned by Hermite polynomials),
for every A\ € R. It follows (think, why) that the subspace is the whole Ly(y!). So,

1
functions ——=H,,(+) are an orthonormal basis of Ly(v') ;

Vn!

(3b17)
1
functions x — ﬁHn(m) \/(27r)—1/2@_ac2/2 are an orthonormal basis of Ly(R).
n!

3b18 Exercise. Let random variables X,Y have a two-dimensional normal distribution
such that X ~ N(0,1), Y ~ N(0,1), E(XY) = p € [-1,+1]. Then®

Cov(f(X),g(Y)) )) < py/Var f(X)y/Varg(Y

for all f,g € Ly(y').
Prove it. Is the equality possible?
Hint. Use (3b14) and (3b17).

3c Wiener chaos

We take some orthonormal basis (@1, @2, ...) of La(R). (It may be the Haar basis, as in 1b,
or (3b17), or whatever.) Linear random variables [ ¢y (z) dB(z) are an orthonormal system
in Ly(Q2, F, P); here (Q,F, P) is the probablhty space supportlng the white noise. On the
other hand, (nonlinear) random variables —= : ([ p1(z)dB(z))": = ﬁHn ([ ¢1(z) dB(z))
are another orthonormal system in Lo(£2, }" P). The two systems have a common element
Joi(x ); except for that, they are orthogonal (recall (3b9)). Clearly, no one is a basis
of the Whole L2 (Q,F, P)

Denote Uy, = [ ¢x(z) . Wehave : U2 : =Uf —1and : UyU;: = UpU; for k < 1
(recall (3b3)). The formula

E(:UV:)(:XY:)=EUX)E(VY)+E(UY)E(VX)

Do not forget, VarU = EU? — (EU)? = E(U — EU)?, and Cov(U,V) = EUV) - E(U)E (V) =
E((U - EU)(V —EV)).
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(similar to (3b12)) gives

2 ifk=1=m=n,
E(:UU ) (:UUp:) =141 ifbk=m<l=n,
0 otherwise

(think, why). It means that the system ( : UpU; e )ksl is orthogonal, and the system

(ﬁ U2 )k U ( : U, : )M - (%(U,f _ 1))k U (UkUl)k<l

is orthonormal. The system depends on the choice of the basis (), but the spanned
subspace does not depend, according to the next result.

3cl Exercise. The following three sets of random variables span the same linear subspace

in LQ(Q,}", P)
H UkUl for k < l;
: ([ o(x) dB(:v))2 for go E LQ(R)
= ple) dB@) ([ (@) dB(w)) « for 0.0 € LoR)
rove it.

The subspace described in 3cl is called the second Wiener chaos.

As you may guess, the first Wiener chaos is spanned by Uy, and consists of all linear ran-
dom variables [ ¢(z)dB(z), ¢ € Ly(R). These two chaoses (first and second) are orthogonal
(recall (3b9)).

A better understanding of the second chaos is gained from the discrete model. Namely,

U.=VEeY olke)r(ke),  Ve=+ve) t(ke)r(ke),

tUVo: =e ) plke)(le)r(ke)r(le) =
k£l

= (p(ke)p(ke) + v(ke)p(le)) Ver(ke)Ver(le),

k<l

which suggests for U = [ ¢(z) dB(z), V = [ ¢(z) dB(z) the equality

= [ / + $(@)e () dB(x)dB(y)

in order to give it a meaning, we should define
[ ¢wwas@asw
<y

for an arbitrary function & € Ly(Ay), where Ay = {(z,y) € R? : z < y}.
An orthonormal basis () of Ly(R) gives us an orthonormal basis (¢ ® ¢;) of Ly(R?);
here

(p®@Y)(z,y) = p(z)Y(y) -
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Thus, every £ € Ly(R?) may be written as

§= ch,l% ® i, Z lekal? = [1€]” < oo,
kel

k,l

and we define

(3C2) / 637 y dB dB chl UkUl

(the right-hand side converges in Ly(2, F, P)).
3c3 Exercise. For all ¢, 9 € Ly(R),

/I @) BB () = - ([e@is@)( [ewasw):
3c4 Exercise. If ¢ is symmetric (that is, £(z,y) = £(y, z)), then

E( / [ ewy dB(x)dB(y>)2 —2 [[ ez, dady.

Prove it. Does it hold for non-symmetric £ 7
Hint:

E(//m e (@)ei(y) dB(x)dB(y)) (// Om () n(y) dB(x)dB(y)) —

= ( UkUl U U ) <90ka Wm)(@pla (Pn> + <90ka §0n><(pl’ Q0m> =

Prove it.

23

// er(@) ey +soz( )2k(y)  Pm(@)en(y) + ¢n(@)om(y) dedy.

2
Given & € Ly(Az), we define

/ &(z,y) dB(z)dB(y / £(z,y) dB(z)dB(y),

if
where &(z, y) = {fgy’z; 11"2 i z’

(that is, € is the symmetric extension of €). We have now

</ £(z,y) dB(z dB) // &(z, )| dady .
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3c5 Exercise. The map
Ly(Ag) € // &(z,y)dB(z)dB(y) € Lo(Q, F, P)
<y

is uniquely determined by two properties:
(a) linearity: for all £;,& € Ly(Ag) and ¢,y € R

//< (C1§1(:E,y) + 02§Q(x,y)) dB(z)dB(y) =
B Cl/ _ Gile,y) dB)dB(y) + 02/ _&lry) dB()IB(Y);

(b) for all ¢, 9 € Ly(R),

[ (eloreta) + vtoret) By = - ([et@is@)( [vwasw):

Prove it.

We see that [[ &(z,y) dB(z)dB(y) does not depend on the choice of a basis (¢y), as far
as the map Ly(R) 3 ¢ — [ ¢(z) dB(z) € Ly(Q, F, P) is given (recall 1b10).

All said about the second chaos can be generalized to the third chaos, and higher. The
n-th Wiener chaos is the subspace of Lo(2, F, P) spanned by Wick products of n linear
random variables (recall 3cl). The map (here A, = {(z1,...,2,) ER* 121 < -+ < 2, })

9§n—>/ /{fxl,..., )dB(z1) ...dB(z,) € Ly(Q, F, P)

may be defined similarly to (3c2), or as the only linear map Ly(A,) — Lo(Q2, F, P) such that

/.“/Z@kl(gjl) - Pk, (Tn) dB(21) ... dB(zy) =

1< <Tp
= : (/gpl(:c) dB(x)) (/cpn(m) dB(CU)) :
where the sum is taken over all permutations (ki,...,k,) of numbers 1,...,n. The map is
isometric,
(/ /gxla-"a dB(xl) dB( ) / /|§$1,..., |2d$1 dxna
1< <Zp 1< <ZTn

and maps Ls(A,) onto the whole n-th chaos.



Tel Aviv University, 2002 White noises, black noises and other scaling limits 25

An example:

(3c6)
/ dB(z1)...dB(z,) = % (/01 dB(:c)) (/OldB(a:)> ;= %HH(B(D);

0<z1 < <xpn <1

1 21
E(—Hn(B(l))> =—= // dz;...dz, .

" 0<z1 < <2p<1
Interestingly, the integral of dB(z)...dB(x,) over pairwise distinct z1,...,2, € (0,1) is
equal to H,, (B(1)) rather than B"(1); the difference is the singular contribution of degenerate

cases.
Here is a general form of a square integrable function over the white noise:

(3¢7) JEX Z/ /5 T1,...,2,)dB(zy) ... dB(z,) € Ly(Q, F, P);

ac1< <Tn
here A = WA, is the disjoint union of all A,, (a single point Ay, a line Ay, a half-plane A, and
so on); each A, is equipped with the n-dimensional Lebesgue measure (for Ay it is the unit
mass at the point), thus, A is equipped with a measure, and Ly(A) = Lo(Ag) @ Lo (A1) 6. ..
is well-defined. The right-hand side converges in Ly; and the map is isometric:

B(3 [ [etonm)anio)...ape) -

ac1< <Tn
—Z/ /|§3;1,..., W dxy ... dz,.

iK1< <ZTn

Does (3c7) cover the whole Lo(£2, F, P)? It depends on the choice of (2, F, P). The
answer is positive for (Q,F, P) = (R*,~*) (recall 1b), which follows from completeness
of Hermite polynomials (recall (3b17)). In general, (3c7) covers Lo(Q2, Fp, P|r,), where
Fp C F is the sub-o-field generated by the white noise (or equivalently, the Brownian
motion).

An example (recall (3¢6) and (3b15)):

PAB() e)\2/2200: (i;l\#[{ (3(1)) *)‘2/2 2)\ / / dB(z1)...dB(zy) ;

n=0 0<z1 << Tp <1

(3¢8) E[¢*B0 = 1 = (/2 Z\Zw” / / dz, ..

0<.Z‘1< <zp<l

—1/n'

All said in 3c till now concerns the continuous model (the white noise). Returning to
discrete models, we may consider nonlinear ‘spin-measuring devices’ of the form

Xemne = Zanﬂ > E(kie, ... kne)T(kie) . . . T(kne) ;

—M/e<k1<<kn<M/e
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a ‘test function’ £ is defined on A = AgW A; WAy ... its restriction to A; = R is nothing
but ¢, the one-dimensional test function introduced in Sect. 1 for the linear case. Similarly
to Sect. 1, the scaling limit stipulates not only € — 0, but also M — 0o and (a new element)
N — 00, which leads to a number of possible setups. I choose

Lim(...) = Mlj{{rgooll_rfé( ).

Similarly to Sect. 1 we assume that the test function £ not only belongs to Ls(A), but
also is locally Riemann integrable; it means Riemann integrability of its restriction to every
bounded domain of every A,; or equivalently, for every n, £|a, must be continuous almost
everywhere and locally bounded. Similarly to 1b6 and 1b12, one can prove that®

LimEf(XE7MaN7§1’ R X57M5N7§d) = ]Ef(X§1 A ’ng)

for every d € {1,2,...}, every bounded continuous function f : R? — R, and every locally
Riemann integrable &1,...,&; € Ly(A); here

ngni%o/---/{—“(ml,...,xn)dB(xl)...dB(:Jcn).

T x1 < <Zn

6However, I do not prove it now.



