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1 White noise as a scaling limit

la A quite informal introduction

Imagine a one-dimensional array of particles situated at a small pitch €.

Each particle has a spin, either ‘up’ or ‘down’.

R S e s e e

These ‘ups and downs’ are random, equiprobable (50%,50%) and independent.
Imagine that we have spin-measuring devices, however, a single spin cannot be measured;
¢ is much smaller than the ‘window’ of a device.

infeasible feasible

Thus, a ‘measurable’ is not a spin 7(ke) situated at ke but a linear combination of many

spins,
D (k)T (ke);

here ¢ is a function that describes a measuring device (its window), called sometimes a test

function.

a window its test function

1b A formalization

Given ¢ € (0,00) and M € (0,00), we introduce the ‘configuration space’
QE,M — {_1,+1}€Zﬂ[—M,M};

here Z = {...,—2,—1,0,1,2,...}; €Z is the infinite lattice {ke : k € Z}; eZ N [—M, M] is
the finite portion of the lattice situated inside the interval [—M, M]; and €, j is the set of

all functions
T: (5Zﬂ [—M, M]) — {-1,+1}

called ‘configurations’; clearly, the number of configurations is

|QE M‘ — 2|5Zﬂ[7M,M}| — 21—|—2entier(M/s) .
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We introduce a probability measure P 5r on 2, s just by letting

PEM(A): |A‘ fOI"ACQEM,
) |QE,M‘ 3
you see, all configurations are equiprobable.

We have a probability space (€2 u, P ar) and random variables 7, for x € eZN[—M, M|;
these are i.i.d (that is, independent, identically distributed) random variables; each one takes
on two values +1 with probabilities 0.5, 0.5.

Given a ‘test function’ ¢ : R — R, we construct a family of random variables

Qe d7 \/EZgo(ks)T(ka) €R,
k

indexed by pairs (¢, M) and defined on different probability spaces (2. s, P ar). Of course,
k runs over Z N [—M/e, M/e]. The normalizing coefficient /¢ should not be unexpected,
if you have at least a slight idea about limit theorems of probability theory. We could use
some version of central limit theorem, but I prefer to use only such a modest argument.

1b1 Proposition. For any random variables X;, X, ... the following conditions are equiv-
alent.
(a) For every a € R,

a
.2
e 2dy .

1
—> -
n—00 /21 »/;oo

(b) For every bounded continuous function f: R — R

P(X,<a)

+o0 1
Ef(X,) — e dg .

x _
n—00 —oo f( ) \ 2
(c) For every A € R

+oo 1
E exp(i\X,) — e e Ty

n—00 J—oo \ 2

—exp(— 1)

Random variables X,, may be defined on different probability spaces. If they satisfy
equivalent conditions (a)—(c), we say that X, are asymptotically normal N(0,1). More
generally, if for some o € (0, 00) random variables ZX,, satisfy these conditions, we say that
X, are asymptotically normal N(0,0?).!

The random variable X = /e )", p(ke)7(ke) being a linear combination of independent
random variables 7(ke), we have

E exp(iAX) = (H exp (Mf(p(ks) (ke))) =
= HIE exp (z)\\/_w(ke (ke) ) Hcos (A\/_go ks))

1Still more generally, if random variables H(X" — a,) satisfy these conditions, we may say that X, are
asymptotically normal N (an,c2).
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(think, why). For small ¢ the approximation
L 2 2 L 2 2
Cos ()\\/Ego(ke)) ~1— 56)\ ©”(ke) ~ exp ( - 55)\ © (ke)) :

H cos (Aﬁgp(ks)) A exp < - %5)\2 Z (p2(k8))

suggests that
+M

Hcos (/\\/E(p(ks)) —5 exp ( - %)\2/ ©* () dx) :

-M
that is true, if the test function ¢ is Riemann integrable on [— M, M]. That is, ¢ is bounded on
[— M, M] and continuous almost everywhere.? In particular, it holds for piecewise continuous
functions. For such ¢ we conclude that v/ Y, ¢(ke)7(ke) is asymptotically normal N (0, 0?)
where o2 = [ ©2(z) da.

In order to escape the finite interval [—M, M| we may use the double limit lim,_, a/—00,
or the iterated limit limps_,o lim,_,, or something like lim,_,o p/=1/.. The iterated limit
gives asymptotical normality N(0,0?%) where o2 = fj;o ©?(x) dx for every locally Riemann
integrable ¢ € Ly(R). Other limits are more demanding to ¢; for example, such a function

0 1 2
makes troubles (think, why).

From now on (till the end of Sect. 1) a test function means an element of a linear space

of functions ¢ : R — R such that every ¢ of the space satisfies fj;o ©*(z) dz < oo and

1., [t
Lim H cos(Aep(ke)) = exp <— 5)\2/ ©*(z) dx) ;
k:ke€[— M, M) >
here and henceforth (till the end of the section) Lim(...) means one of the two limiting
procedures

Lim(...) : either Nljl_r}nooll_rgé() or M_}(lgls_)o(...).

That is, we have some freedom in choosing Lim, and some freedom in choosing the space of
test functions, but the two choices must be compatible.

We may restrict ourselves to compactly supported test functions. In that case there is
no distinction between different choices of Lim (think, why). Continuity of ¢ is sufficient.

/\ P
\/ N_"
2In other words, points of discontinuity of f form a set of Lebesgue measure zero. Note that the indicator
function of the set of rational numbers does not satisfy the condition.
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Piecewise continuity is also sufficient.

fon
7/

Piecewise continuity means a finite set of discontinuity points. Arbitrary discontinuities (not
just jumps) are allowed, as far as ¢ is bounded.

, VVA

A countable set of discontinuity points is also sufficient (together with boundedness). More-
over, it is still sufficient, if the set is of Lebesgue measure zero, that is, ¢ is continuous almost
everywhere (and bounded).

We may also consider ¢ with no compact support. It suffices (for every choice of Lim) if
 is continuously differentiable and

|g0(x)|=0(ﬁ> and |<p'(3:)|=0<%> for |z] = oo
N

A finite set of jumps does not harm.

If we strive to a large class of test functions, we may take Lim(...) = limps oo lim. (... ),
in which case it is sufficient if ¢ is continuous almost everywhere, bounded on [—M, M] for
all M, and [ ?(z) dz < cc.

1b2 Corollary. For every test function ¢ such that fj;o ©*(z) dz = 1, random variables
Ve Y p(ke)T(ke) are asymptotically normal N (0, 1) in the sense of Lim(...).

Two test functions ¢q, ¢, determine two random variables X; = /&Y, ¢1(ke)T(ke),
Xy = /e >, pa(ke)7(ke). Each one is asymptotically normal. However, they are dependent;
what happens in the limit to their joint distribution? Here we need a multidimensional
generalization of Prop. 1bl.

1b3 Proposition. For any d-dimensional random variables X;, X5, ... the following condi-
tions are equivalent.
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(a) For every a € R?,

n—oo

P(X,<a)— (27r)_d/2/ e 1712 4y
r<a

here the inequalities (X, < a, < a) are treated coordinate-wise, and |z| is the usual
(Euclidean) norm of z.

(b) For every bounded continuous function f: R? — R,

Ef(X,) — | flz)@r) #2224y

n—00 R4

(c) For every A € R?,

E exp(i()\, Xn)) — [ &%) (2r)~42e #1712 gy .
n—oo R4

7

-~

=exp(—3 A[?)
here (-,-) is the usual (Euclidean) scalar product.

Note that the density (27)~%2e~1#"/2 describes d independent normal N(0,1) random
variables.

If X, satisfy these conditions we say that X, are asymptotically multinormal N (0, 1)®4.

1b4 Exercise. Let d-dimensional random variables X,, be such that for every A € R,
|A| = 1, one-dimensional random variables (\, X,,) are asymptotically normal N(0,1). Then
X, are asymptotically multinormal N(0,1)®¢.

Prove it.

Hint: look at 1b3(c).

Here is a multidimensional generalization of 1b2.

1b5 Corollary. Let ¢, ..., 4 be orthonormal?® test functions. Then d-dimensional random
variables X, s defined by

(Xew)i = VE Y pilke)T(ke)

are asymptotically multinormal N (0, 1)®4.4

A convenient orthonormal basis of Ly(0, 1) is well-known; I mean the Haar basis:

and so on

3That is, [ ¢k (z)pi(z)dz is equal to 0 for k # I (orthogonality) and 1 for k = I (normalization).
“In the sense of Lim(...).
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Orthogonality is evident. Completeness follows from the fact that the first 2 Haar functions
span all step functions constant on (0,1/2) and (1/2,1); the first 4 Haar functions span all
step functions constant on (0,1/4), (1/4,1/2), (1/2,3/4) and (3/4,1); and so on.

We reproduce the Haar basis on (k, k + 1) for each £ € Z and join them all; thus we get a
countable set of functions (though, with no natural order), and it evidently is an orthonormal
basis of Ly(R), consisting of Riemann integrable functions.

We want to construct a mathematical object that may be called the scaling limit,

Lim(Qs,Ma Ps,M) )

of our discrete model.® It should be some probability space (§2, F, P), and every test function
¢ should determine a random variable on (€2, F, P). Roughly speaking, the random variable
is
Lim (\/g > gp(ks)7(ks)> ,
k:ke€[—M,M)]

which is quite informal, since random variables on different probability spaces cannot con-
verge; rather, we mean convergence of their distributions. It is convenient to denote the
limiting random variable by

[ e an),

but it is just a notation, not yet a definition; and B(x) itself means nothing for now; we only
have a vague idea that B(z + ¢) — B(z) = /e 7(ke) in some sence.5

Consider the Haar basis (¢1, s, . . . ) (no matter how numbered); accordingly to Corollary
1b4, random variables [ ¢;(z) dB(z) should be independent normal N(0,1). Their joint
distribution is a probability measure 7> on the space R* of all (infinite) sequences of real
numbers; it is the product measure

W=7y ®...

where 7! is the same as N (0, 1), the standard normal distribution on R. In other words, for
every d € {1,2,...} and ay,...,aq4 € R,

Y ({(,00,...) o < ag,..., 0 < ag}) =7 ((—o0,a1]) - ... - ¥ ((—o0, ad))

7' ((—00,d]) = J%Tr/io e 2 du.

We may take (Q, F, P) = (R*®,~*); that is, Q = R*®, P = v*, and F is the o-field of all
y*-measurable sets (basically, Borel sets, but also all sets of y*-measure zero). Coordinate
functionals (; : 2 — R defined by

Ci((Ozl,OZQ, .. )) =G,

are independent normal N (0, 1) random variables on (2, F, P). Now we define

[ i) =

5Tt is, however, a misleading notation, for a reason to be explained in next sections.
6However, we’ll see soon that B(-) is nothing but the famous Brownian motion. . .
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1b6 Exercise. For every d € {1,2,...} and every bounded continuous function f : R — R,

lel_I}ﬂ@ll_I)IéEf(\/_Zgol (ke)T(ke), \/_Zgod (ke)T(ke) ) =
:Ef(/gol(x) dB(x),...,/god(x) AB(z)).

That is a correct interpretation of the incorrect relation

(1b7) Lim (\/5 > go(ke)7(ke)> = / +oo<,0(3:) dB(z).

k:ke€[—M,M] >

Prove it.”

Though, these [ ¢(z)dB(z) are of little use for now; the equality is just
(1b8)

LinE (V22 () rihe) . vE 2 pulhe)e )r0e) =EBf (GG = [ Far?,

where v = ! @ --- ® 4! is the standard d-dimensional normal distribution. The specific
form of the Haar basis was not really used; (1b8) holds equally well for any test functions
©1, 9, ... as far as they are orthonormal.

Is it reasonable, to identify ¢; with [ ¢;(z) dB ( ) just for the Haar basis (¢;) ? Well, it
is not essential, but harmless. We do not need f @i(z) dB(z) to be (;; we only need them to
be orthonormal. Fortunately, we can do it at once for all orthonormal systems (¢;).

Namely, we choose an orthonormal basis (¢;) in Ly(R) (you may use the Haar basis or
another; moreover, here ¢; need not be Riemann integrable) and define [ ¢;(z) dB(z) = (,
or rather,

(1b9) / (Y enl) dB@) =Y e

for all ¢y, ¢, ... such that ¢ 4+ ¢+ -+ < oco. Thus we define [ ¢(z)dB(z) for all ¢ € Ly(R)
and the following conditions are satisfied:

[ o) iB@) = ¢ [ o) dba).
[ (6@ +vw) B = [ @ ane) + [ v e,
B( [ et ds) =,
Var ([ oty dia)) = [ (o) de,
cov ([ etwranto). [vw)asw) = [ eyt ds.

"You may also think on more general functions f. What if f is continuous almost everywhere? What if
|f(@)| = O(|2|?) for |z] = 00 ?
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1b10 Exercise. Prove these equalities.

1b11 Exercise. Prove that 1b7 remains true for every orthonormal basis (¢;) consisting of
test functions (not just the basis used in (1b9)).

1b12 Exercise. Prove the same for arbitrary (not just orthonormal) test functions ¢; €
Ly (R).
Hint: non-orthogonal functions are linear combinations of some orthogonal functions.

Till now, the symbol B was well-defined only in expressions of the form [ ¢(z)dB(z).
Now we define B(z) for z € R:

J 10.4(v) dB(y) for z > 0,
0 for x =0,
— [ 1_40(y)dB(y) for z <O0.

B(z) =

Thus, each B(x) is a random variable, distributed normally N(0, |z]).

1b13 Exercise. (“Independent increments”) For every z,y,z € R such that z < y < z,

random variables
B(y) — B(x) and B(z)— B(y)

are independent.
Prove it. What about three or more increments?
Hint. Consider test functions 1, and 1y .

We have a family (B(z)),er of random variables B(z) defined on the same probability
space. Such an object is called a random process.® It is well-known that its sample functions
are continuous® (with probability 1) but nowhere differentiable (with probability 1); however,
that is another story. ..

1c Two-dimensional white noise

Imagine now that we have spin-measuring devices of two types:
VEY o(ke)r(ke) and &Y (—1)Fp(ke)r(ke).
k k

The first type is the same as before, but the second type is new. For every given € and ¢ there
exists ¢ such that ¢ (ke) = (—1)*¢(ke) for all k € Z; for example, 1(x) = cos(rz/e)¢(z). No

8 According to one of several non-equivalent definitions of a random process.
9More exactly: the restriction of a sample function to the dense countable set of (say) rational numbers
z is uniformly continuous in z (with probability 1) and therefore may be extended by continuity.
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essential distinction between the two types for a given €. However, the distinction becomes
essential in the scaling limit, as we’ll see soon.
Test functions and “Lim” are the same as in 1b.

1cl1 Exercise. For every test functions ¢, such that fj;o (¢*(z) + ¢*(z)) dz = 1, random
variables /& 3", (¢(ke) + (—1)¥¢(ke))7(ke) are asymptotically normal N(0,1) in the sense
of Lim(. .. ).

Prove it.

Hint: consider separately the two sublattices of €Z (even and odd).

1c2 Exercise. Let ¢1,...,pq be orthonormal test functions. The 2d-dimensional random
variables formed by

\/_Zgazks (ke), \/_Z Vepi(ke)r(ke) (i=1,...,d)

are asymptotically multinormal N(0,1) ® --- ® N(0, 1).
Prove it.
Hint: similar to 1b4.

The two-dimensional counterpart of (1b7) is such a pair of incorrect relations:

L (Ve Y plartie)) = [ o) dBito).

k:ke€[—M,M)] o0

L (Ve Y 0felberthe)) = [ () dBato),

k:ke€[—M,M)] o0

where B (-), By(-) are two independent Brownian motions. In other words, the pair (B;(-), By(-))
is a 2-dimensional Brownian motion. For every «, the process z — Bi(x) cos a + By(z) sin «

is another Brownian motion, as well as the process z — —Bj(z)sina + By(z) cos a; and
these two new processes are independent (think, why).

1c3 Exercise. Both />, ¢(ke)r(ke) and /€Y, (—1)*¢(ke)T(ke) are special cases of
Ve Y, e p(ke)T(ke) (namely, A = 0 and A = 7). What about arbitrary A? What about

VEY o, cos(Ak)p(ke)T(ke) and /e Y, sin(Ak)p(ke)T(ke) ?



