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A theory of classification is interesting and deep. In addition, it helps to
prove that all knots are a Borel set, not just an analytic set.

7a From classification problems to Borel equivalence
relations

A natural starting point for a systematic theory of classification.

Here are examples of classification problems in different branches of math-
ematics. Do not worry if some examples are not quite clear to you.

7a1 Example. (Already mentioned in Sect. 5d.) Classification of tame
knots. The set of tame knots was introduced and endowed with an equiva-
lence relation “of the same type”.

7a2 Example. The same but for all knots (tame, wild).

7a3 Example. (Lurked in the end of Sect. 5d.) The set of all compact
subsets of R3 (say), up to homeomorphism (that is, with the equivalence
relation “homeomorphic”).

7a4 Example. The class of all countable compact metrizable spaces, up to
homeomorphism.1

1Example 0.5 in: G. Hjorth, “Classification and orbit equivalence relations”, AMS
2000.
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7a5 Example. The set of all unitary operators in Cn (just matrices), with
the equivalence relation “unitarily equivalent” (that is, “conjugate”): U ∼ V
if and only if V = W−1UW for some unitary W .1

7a6 Example. The same, but in an infinite-dimensional separable Hilbert
space.2

7a7 Example. The class of all separable Banach spaces, with the equivalence
relation “linearly homeomorphic”.

7a8 Example. The set of all von Neumann algebras of operators on a given
infinite-dimensional separable Hilbert space, up to unitary equivalence.

7a9 Example. The class of all separable C∗-algebras, up to isomorphism.3

7a10 Example. The class of all finite graphs, up to isomorphism.

7a11 Example. The class of all countable graphs, up to isomorphism.

Each example specifies a class of objects endowed with an equivalence
relation. In some examples (7a1, 7a2, 7a3, 7a5, 7a6, 7a8) the class is a set,
in others (7a4, 7a7, 7a9, 7a10, 7a11) it is not, but it is possible to choose a
set Z of these objects that intersects every equivalence class.4 Moreover, the
cardinality of continuum is enough for Z in all these examples. Sometimes
(in 7a1, 7a10) a countable Z is enough, but this is not typical.

Thus we have a set Z of cardinality (at most) continuum, endowed with an
equivalence relation “∼”, and the quotient set Z/∼ (of equivalence classes5).
According to the cardinality, there must exist a one-to-one map Z/∼ → R;
the composition map Z → Z/∼ → R is a complete invariant. It means that
two objects are equivalent if and only if the corresponding real numbers are
equal. However, this is not a satisfactory solution of the classification prob-
lem, since this complete invariant is utterly nonconstructive. Existence of
such a map Z → R, ensured by the choice axiom, gives us no new informa-
tion about the given equivalence relation. Quite useless!6

1Hjorth, Example 0.2.
2Hjorth, Sect. 1.1.
3See also: I. Farah, A.S. Toms, A. Törnquist, “Turbulence, orbit equivalence, and the

classification of nuclear C∗-algebras”, J. für die reine und angew. Math. (online 2012).
4For example: in 7a4, countable compact subsets of R may be used (due to

Mazurkiewicz-Sierpinski theorem). Or alternatively, compact metrics on {1, 2, . . . }.
5These are traditionally called classes, but they are sets, of course.
6“Therefore the notion of Borel reducibility provides a natural starting point for a

systematic theory of classification which is both generally applicable, and manages to ban
the trivialities provided by the Axiom of Choice.” (Farah, Toms and Törnquist, p. 2.)
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Here is a useful approach.1 One invents a parametrization of the given
classification problem, — a pair (X, f) of a Borel space X and a map f from
X to the given class such that f(X) intersects every equivalence class.2 It
does not matter whether f is one-to-one or not; the relation f(x) ∼ f(y)
is relevant, the relation f(x) = f(y) is not. One introduces an equivalence
relation Ef on X:

x Ef y ⇐⇒ f(x) ∼ f(y) .

Let (X, f) and (Y, g) be two parametrizations of the same classification prob-
lem. A morphism from (X, f) to (Y, g) is a map ϕ : X → Y such that
f(x) ∼ g(ϕ(x)) for all x ∈ X. Then

∀x, y ∈ X
(
x Ef y ⇐⇒ ϕ(x) Eg ϕ(y)

)
(think, why). A morphism is usually highly non-unique; at least one mor-
phism must exist (think, why). Let ψ be a morphism from (Y, g) to (X, f),
then

∀x ∈ X x Ef ψ(ϕ(x)) ; ∀y ∈ Y y Eg ϕ(ψ(y)) .

A clever choice of a parametrization respects the structure of the given clas-
sification problem. This is an informal idea, of course. Here are some indi-
cations of a “clever” parametrization.

First, for a “clever” (X, f), X should be “nice” (standard is very nice;
analytic is less nice), and the set Ef ⊂ X × X should be “nice” (Borel
measurable is very nice, analytic is less nice).

Second, for “clever” (X, f) and (Y, g), “nice” morphisms ϕ : X → Y ,
ψ : Y → X should exist (Borel measurable is very nice).

7b Measurable parametrizations

A new kind of space, more general than measurable space, is appropriate for
a set of equivalence classes.

Replacing Z with Z/∼ we may assume that the given equivalence relation
on Z is just the equality.

7b1 Definition. (a) A measurable parametrization of a set Z is a pair (X, f)
of a measurable space X and a map f from X onto Z.

1Farah, Toms and Törnquist, Sect. 2.
2See Kechris, Sect. 12.E, for parametrizations of (a) Polish spaces, (b) Polish groups,

(c) separable Banach spaces as in 7a7, (d) von Neumann algebras as in 7a8; all these are
parametrized by standard Borel spaces.
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(b) A measurable parametrization (X1, f1) of Z is finer than a measurable
parametrization (X2, f2) of Z if f1 = f2 ◦ ϕ for some measurable map ϕ :
X1 → X2.

(c) Measurable parametrizations (X1, f1), (X2, f2) of Z are equivalent if
(X1, f1) is finer than (X2, f2) and (X2, f2) is finer than (X1, f1).

(d) A measurably parametrized space is a set endowed with a measurable
parametrization.1

(e) A measurably parametrizable space is a set endowed with an equiva-
lence class2 of measurable parametrizations.

I often drop the word “measurably” before “parametrized” or “parametriz-
able”.

Note some similarity between 7b1 and 3a1. In 3a1(c) equivalence classes
may be avoided using topological spaces. I wonder, is there something like
that for 7b1(e)?

7b2 Definition. Let (X, f) be a measurable parametrization of Z, and (Y, g)
a measurable parametrization of W .

(a) A morphism from the measurably parametrized space (Z,X, f) to
the measurably parametrized space (W,Y, g) is a map α : Z → W such that
α ◦ f = g ◦ ϕ for some measurable map ϕ : X → Y .

X
ϕ +3

f
��

Y

g
��

Z α //W

(b) A morphism α : Z → W is an isomorphism if α is invertible and α−1 :
W → Z is a morphism from (W,Y, g) to (Z,X, f).

(c) Two measurably parametrized spaces are isomorphic if there exists
an isomorphism between them.

Thus, a parametrization (X1, f1) of Z is finer than (X2, f2) if and only if
idZ is a morphism from (Z,X1, f1) to (Z,X2, f2). The two parametrizations
are equivalent if and only if idZ is an isomorphism.

The composition of morphisms is a morphism (similarly to 1d4). “Iso-
morphic” is an equivalence relation (similarly to 1d6). The following lemma
shows that morphisms (and isomorphisms) are well-defined also between
parametrizable spaces.

1Items (d), (e) are not a standard terminology.
2Class indeed, not a set, which is problematic in ZFC. We restrict ourselves to such

statements about measurably parametrizable spaces that can be evidently reformulated in
terms of measurably parametrized spaces. (Beyond that, one can use ZGC, the Zermelo set
theory with global choice known as Hilbert’s global choice operator and used by Bourbaki.)
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7b3 Lemma. Let (X1, f1) and (X2, f2) be equivalent measurable parametriza-
tions of Z; (Y1, g1) and (Y2, g2) equivalent measurable parametrizations of W ;
and α : Z → W a morphism from (Z,X1, f1) to (W,Y1, g1). Then α is also a
morphism from (Z,X2, f2) to (W,Y2, g2).

Proof.
X1

//

f1

��

gg
''

Y1

g1

��

gg
''

X2
+3

f2��

Y2

g2
��

Z
α //W

The same holds if (X2, f2) is finer than (X1, f1) and (Y1, g1) is finer than
(Y2, g2).

Let (Z, P1) and (Z, P2) be parametrizable spaces (P1, P2 being equivalence
classes of parametrizations). We say that P1 is finer than P2 if and only if
idZ is a morphism from (Z, P1) to (Z, P2). That is, (X1, f1) is finer than
(X2, f2) for some (therefore all) (X1, f1) ∈ P1, (X2, f2) ∈ P2.

7b4 Core exercise. 1 P2 is finer than P1 if and only if there exist ((X,A1), f) ∈
P1 and ((X,A2), f) ∈ P2 such that A1 ⊂ A2.

Prove it.

Given a σ-algebra A on Z, we have a parametrization
(
(Z,A), idZ

)
on

Z; such a parametrization will be called trivial. A measurable space may
be treated as a (trivial) parametrized space. Then, a morphism between
measurable spaces is just a measurable map (and isomorphism is what it
should be).

7b5 Core exercise. A parametrization (X, f) of Z is equivalent to some
trivial parametrization if and only if there exist a σ-algebra A on Z and a
map ϕ : Z → X such that f ◦ ϕ = idZ and f, ϕ are measurable (when Z is
endowed by A).

Prove it.

7c A parametrization not equivalent to trivial

A non-Borel analytic set may be treated as a nonstandard Borel space. How-
ever, being parametrized by a Borel set, it becomes something different.

1Using the axiom of choice.
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Let Z ⊂ R be a set (endowed with its Borel σ-algebra), ψ : Z → R a
Borel function, and B ⊂ R2 a Borel set. Then A = {x ∈ Z : (x, ψ(x)) ∈ B}
is a Borel subset of Z (since Z 3 x 7→ (x, ψ(x)) ∈ R2 is a Borel map), maybe
not of R. But if B ⊂ Z × R then A is a Borel subset of R (no matter how
bad is Z). Here is why. The function (x, y) 7→ y − ψ(x) is Borel measurable
on the Borel set B, therefore {(x, y) ∈ B : y = ψ(x)} is a Borel set in R2.
Its projection A is a Borel set in R by 6d9! We conclude.

7c1 Lemma. If a Borel set B ⊂ R2 has a non-Borel projection Z = {x :
∃y (x, y) ∈ B} then a Borel function ψ : Z → R cannot satisfy the condition(
x, ψ(x)

)
∈ B for all x ∈ Z.

In other words, such B does not admit a Borel uniformizing function.1

Moreover, by the same argument, B does not admit an uniformizing function
ψ : Z → R such that the function (x, y) 7→ ψ(x) on B is Borel measurable.2

7c2 Core exercise. Let B and Z be as in 7c1. Then the parametrization
(B, f) of Z, where f : (x, y) 7→ x is the projection, cannot be equivalent to a
trivial parametrization.

Prove it.

Such (Z,B, f) is an example of a parametrizable space (Z, PB) that is
not a measurable space.

On the other hand, the subset Z of R has its Borel σ-algebra B(Z), and
the measurable space (Z,B(Z)) is itself a parametrizable space (Z, Ptrivial).
Clearly, idZ is a morphism from (Z, PB) to (Z, Ptrivial). By 7c1, idZ is not a
morphism from (Z, Ptrivial) to (Z, PB). It means that PB is strictly finer than
Ptrivial. In the spirit of 7b4 we have ((B,A2), f) ∈ PB and ((B,A1), f) ∈
Ptrivial where A2 = B(B) is the Borel σ-algebra of B, and A1 = σ(f) =
{(A × R) ∩ B : A ∈ B(Z)}. The relation “A1 ⊂ A2” is equivalent to the
relation “PB is finer than Ptrivial”, of course; but the relation “PB is strictly
finer than Ptrivial” is deeper than just “A1  A2”. Indeed, if B is (say) a
rectangle (and so, Z is an interval rather than a non-Borel set) then A1  A2

but PB is equivalent to Ptrivial.

1Borel measurability of the projection is necessary but not sufficient for a Borel uni-
formizing function to exist; see D. Blackwell, “A Borel set not containing a graph”, Ann.
Math. Statist. 39:4, 1345–1347 (1968); also Srivastava, Example 5.1.7. On the other hand,
a universally measurable uniformizing function exists for every Borel (as well as analytic)
set by the (Jankov-)von Neumann uniformization theorem, see Srivastava, Sect. 5.5 or
Kechris, Sect. 18.A.

2In fact, Borel measurability of (x, y) 7→ ψ(x) on B is equivalent to Borel measurability
of ψ (on Z), since a subset A ⊂ Z is Borel measurable (in Z) if and only if (A×R)∩B is
Borel measurable (which follows easily from 6a5). This is basically the Blackwell-Mackey
theorem, see Srivastava, Th. 4.5.7 or Kechris, Exercise (14.16).
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Why only B ⊂ R2? The same holds for B ⊂ R1 × R2 whenever R1, R2

are standard Borel spaces.1

In particular we may consider the standard Borel space Tr(T ) of all sub-
trees of the full infinitely splitting tree T = {1, 2, . . . }<∞ (recall Sect. 6c),
and its subset IF(T ) of all subtrees that have (at least one) infinite branch.
The set IF(T ) is analytic (by 6c12) and not Borel (which is partially proved
in 6c14). The body [T ] is the standard Borel space of all infinite branches of
T .

In the space Tr(T )× [T ] we consider the Borel set B = {(T1, s) : s ∈ [T1]}.
Its first projection Z = {T1 : [T1] 6= ∅} = IF(T ) is non-Borel. By 7c1
(generalized to standard Borel spaces), a Borel map ψ : IF(T )→ [T ] cannot
be uniformizing, that is, cannot satisfy the condition ψ(T1) ∈ [T1] for all
T1 ∈ IF(T ). An infinite branch cannot be chosen by a Borel function of the
tree.

An evident uniformizing function, well-known as the leftmost branch,
chooses the least k1 such that the subtree over (k1) has an infinite branch,
the least k2 such that the subtree over (k1, k2) has an infinite branch, and so
on. This is not a Borel function (think, why).2

7c3 Core exercise. Let Z, (X, f), A and ϕ satisfy the conditions of 7b5.
Then:

(a) A set A ⊂ Z is A-measurable if and only if f−1(A) ⊂ X is measurable.
(Thus, (Z,A) is a quotient space of X.)

(b) ϕ is an isomorphism from (Z,A) to ϕ(Z) (treated as a measurable
subspace of X).

(c) ϕ(Z) = {x ∈ X : ϕ(f(x)) = x}.
(d) If X is countably separated then ϕ(Z) is measurable.
Prove it.

7d Borel sets in the light of measurable parametriza-
tions

All knots are not just an analytic set, they are a Borel set.

We still deal with T , Tr(T ) and IF(T ) as in 7c, but now we use topology.
It was noted in Sect. 6c (before 6c12) that the set Tr(T ) is a closed

subset of the space 2T (homeomorphic to the Cantor set), thus, a compact
metrizable space. The set of all (finite or infinite) branches is also a closed

1Then y − ψ(x) cannot be used; instead of y − ψ(x) = 0, the relation
(
ψ(x), y

)
∈ D is

used, the diagonal D being measurable.
2Still, it is universally measurable (think, why); see also Footnote 1 on page 102.
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subset of 2T . The set [T ] of all infinite branches is not closed (think, why)
but still Polish;1 a complete metric on [T ] introduced in Sect. 6c (before 6c2)
is compatible (think, why).

All pairs “a subtree and its branch” are a closed set in 2T × 2T (think,
why). Thus, the set B = {(T1, s) : s ∈ [T1]} is closed in Tr(T ) × [T ]. We
see that Z = IF(T ) is a projection of a closed set in the product of Polish
spaces, therefore a continuous image of a Polish space. (And no wonder:
every analytic set is.) The leftmost branch of T1, being not a Borel function
of T1, is a Borel function of [T1] treated as an element of F([T ]) (think, why).
It means that [T1] is not a Borel function of T1. A wonder: the section
BT1 = {s : (T1, s) ∈ B} of the closed set B is not a Borel function of T1.

This is the only reason for the absence of Borel uniformizing functions in
such situations, according to the following result.

7d1 Proposition. For every Polish space X there exists a Borel map d :
F(X) \ {∅} → X such that d(F ) ∈ F for all nonempty closed F .

Proof. We take a complete compatible metric ρ on X and a dense sequence
(xn)n in X. Given a nonempty closed F , we take the smallest n1 such that
dist(xn1 , F ) < 2−1. Then we take the smallest n2 such that dist(xn2 , F ) < 2−2

and ρ(xn1 , xn2) < 2−1. And so on; dist(xnk
, F ) < 2−k and ρ(xnk−1

, xnk
) <

2−(k−1). Finally, d(F ) = limk xnk
.

7d2 Core exercise. For every Polish space X,
(a) there exist Borel maps dn : F(X)\{∅} → X such that every nonempty

closed F is the closure of {d1(F ), d2(F ), . . . };
(b) every random closed set in X is the closure of some random countable

set.
Prove it.

7d3 Proposition. If a parametrized space (Z,X, f) satisfies the conditions
(a) X is a Polish space with the Borel σ-algebra,
(b) for every z ∈ Z the set {x ∈ X : f(x) = z} is closed,
(c) for every open U ⊂ X the set f−1(f(U)) is Borel measurable,

then (X, f) is equivalent to the trivial parametrization of a standard Borel
space.

Proof. We define a σ-algebra A on Z as in 7c3(a):
A = {A : f−1(A) is measurable in X}; note that f : X → Z is measurable.

1It is in fact a Gδ set dense in the set of all branches; every Gδ set in a Polish space is
known to be Polish. In contrast, if T is finitely splitting then [T ] is closed in 2T ; see also
6c2.
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For every open U ⊂ X we have {z : f−1(z) ∩ U 6= ∅} = f(U) ∈ A by (c).
Thus, the map Z 3 z 7→ f−1(z) ∈ F(X) is measurable. Using 7d1 we get
a measurable map ϕ : Z → X such that ϕ(z) ∈ f−1(z) for all z ∈ Z, that
is, f ◦ ϕ = idZ . The conditions of 7b5 are satisfied by Z,X, f and A. By
7c3(b), (Z,A) is isomorphic to ϕ(Z); by (a) and 7c3(d), ϕ(Z) is a standard
Borel space.

7d4 Proposition. All knots are a Borel subset of F(R3).

Proof (sketch). Denote by K the circle,1 and by Homeo(K → R3) the set of
all homeomorphisms α : K → α(K) ⊂ R3; it is a Borel subset of C(K → R3),
recall 5d13. For α, β ∈ Homeo(K → R3) the relation α(K) = β(K) holds if
and only if α = β ◦ γ for some γ ∈ Homeo(K) (homeomorphism of K).

We check the conditions of 7d3 for X = Homeo(K → R3), Z ⊂ F(R3) the
set of all knots, and f : α 7→ α(K). Condition (a) holds since Homeo(K →
R3) is a Gδ set in the Polish space C(K → R3). Condition (b) holds clearly.
Condition (c): let U ⊂ Homeo(K → R3) be an open set, then f−1(f(U)) =
{β ◦ γ : β ∈ U, γ ∈ Homeo(K)} is the union over γ of sets {β ◦ γ : β ∈ U};
such a set is open, since the map β 7→ β ◦γ is a homeomorphism of the space
Homeo(K → R3).

Using 7d3, 7b5 and 7c3(a) we see that the quotient space (Z,A) is a
standard Borel space. Measurability of f ensures that A contains the Borel
σ-algebra of Z. It remains to apply 6b3.

7e Micro-survey of advanced theory

A systematic theory of classification. (No proofs in this section.)

A Borel equivalence relation is, by definition, an equivalence relation E on
a standard Borel space X such that E treated as a subset of X ×X is Borel
measurable. Every Borel equivalence relation E leads to a parametrized
space (X/E,X, f) where f(x) = [x] ∈ X/E is the equivalence class of x.
Thus, E = Ef = {(x, y) : f(x) = f(y)}.

Let us define a Borel parametrizable space as a parametrizable space that
admits a parametrization (X, f) such that Ef is a Borel equivalence relation.

A reduction of a Borel equivalence relation E on X to a Borel equiva-
lence relation F on Y is, by definition, a Borel map ϕ : X → Y such that
x1 E x2 ⇐⇒ ϕ(x1) F ϕ(x2) for all x1, x2 ∈ X. Existence of a reduction is
denoted E ≤B F (or F ≥B E) and called Borel reducibility of E to F .

Clearly, a reduction of E to F leads to a one-to-one morphism X/E →
Y/F . And conversely: let Z,W be Borel parametrizable spaces and (X, f),

1Or another compact metrizable space. . .
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(Y, g) their parametrizations such that Ef , Eg are Borel equivalence relations;
then every one-to-one morphism Z → W corresponds to some reduction of
Ef to Eg.

We see that Borel reducibility of Borel equivalence relations is the same
as existence of one-to-one morphism of Borel parametrizable spaces.

Here are several well-known examples of Borel equivalence relations, or
equivalently, Borel parametrizable spaces.

7e1 Example. R/Q, the Vitali space. HereX = R (with the Borel σ-algebra,
of course), and x ∼ y means that x− y is rational.

7e2 Example. E0, germs of binary sequences. Here X = {0, 1}∞, and x ∼ y
means that xn = yn for all n large enough.

7e3 Example. E1, germs of real sequences. Here X = R∞, and again, x ∼ y
means that xn = yn for all n large enough.

Below, X ∼B Y means (X ≤B Y ) ∧ (Y ≤B X).

7e4 Proposition. 1 R/Q ∼B E0.

In addition, every standard Borel space is itself a Borel parametrizable
space; the corresponding equivalence relation is just the equality. Thus, we
add to the list R (the real line) and N (the natural numbers).

The following three “dichotomy theorems” hold for all Borel equivalence
relations E. By 7e4, E0 may be replaced with R/Q.

7e5 Theorem. 2 Either E ≤B N or E ≥B R.

Among Examples 7a1–7a11, only two (7a1 and 7a10) satisfy E ≤B N,
that is, have only countably many equivalence classes. In 7a4 there are
exactly ℵ1 equivalence classes! Well, I did not claim that 7a4 leads to a
Borel parametrizable space. . .

7e6 Theorem. 3 Either E ≤B R or E ≥B E0.

When E ≤B R, such E is called smooth (or tame, or concretely clas-
sifiable).4 For a nontrivial but smooth Borel parametrizable space, recall
Sect. 7c (a Borel parametrization of a non-Borel analytic set). Example 7a5
is smooth (think, why), but 7a6 is not, and moreover (see below). . .

1See Hjorth, Exercise 7.22.
2The Silver dichotomy. See Theorem 5.7.1 in: V. Kanovei, “Borel equivalence relations:

structure and classification”, AMS 2008.
3Harrington, Kechris and Louveau. Sometimes called the general Glimm-Effros di-

chotomy. See Kanovei, Th. 5.7.2.
4See Kechris, Exercise (18.20) and Kanovei, Sect. 7.2.
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7e7 Theorem. 1 Let E ≤B E1; then either E ≤B E0 or E ∼B E1.

These statements are quite simple, but their proofs are quite complicated.
Here is one more example and one more dichotomy.

7e8 Example. E3. Here X = R∞×∞, and x ∼ y means that
∀m ∃N ∀n ≥ N xm,n = ym,n.

7e9 Theorem. 2 Let E ≤B E3; then either E ≤B E0 or E ∼B E3.

7e10 Proposition. 3 Neither E1 ≤B E3 nor E3 ≤B E1.

A lot of mutually incompatible Borel equivalence relations exist above
E0. In contrast, below E0 they are linearly ordered.

Example 7a6 is not reducible to E1, nor to E3. This is a special case of
a general result.4 On one hand, E1 and E3 belong to the set of all Borel
equivalence relations obtainable from N by (arbitrary combinations of) five
special operations.5 On the other hand, Example 7a6 is “turbulent”.6

1Kechris and Louveau. See Kanovei, Th. 5.7.3.
2Hjorth and Kechris. See Kanovei, Th. 5.7.6.
3See Kanovei, Lemma 13.9.5.
4See Kanovei, Th. 13.5.3.
5Union, disjoint union, product, Fubini product, and power; see Kanovei, Sect. 4.2.
6Kechris and Sofronidis; see Hjorth, Th. 3.27.
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Hints to exercises

7b4: given ϕ : X → Y , consider (X, σ(ϕ)).

7c2: otherwise, by 7b5, ϕ ◦ f : (x, y) 7→ (x, ψ(x)) is a Borel measurable map
B → B.

7c3: (a) A = ϕ−1(f−1(A)); (b) ϕ and f |ϕ(Z) are mutually inverse measurable
maps; (d) use (c) and 6b7.
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