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After introducing probability measures we discuss random objects of two
kinds.

2a Probability space, measure algebra

We know that algebras are easy but σ-algebras are not. Surprisingly, a mea-
sure makes σ-algebras easy by neglecting null sets. In particular, the Lebesgue
σ-algebra is simpler than the Borel σ-algebra.

2a1 Definition. (a) A probability measure on a measurable space (X,A)
is a map µ : A → [0, 1] such that µ(X) = 1 and µ(A1 ∪ A2 ∪ . . . ) =
µ(A1) + µ(A2) + . . . whenever sets A1, A2, · · · ∈ A are pairwise disjoint.

(b) A probability space is a triple (X,A, µ) such that (X,A) is a measur-
able space and µ is a probability measure on (X,A).

2a2 Example. One and only one probability measure µ on ([0, 1],B[0, 1])
satisfies µ([0, x]) = x for all x ∈ [0, 1]. This µ is often called “Lebesgue
measure on [0, 1]”, but I prefer to add “restricted to the Borel σ-algebra”.

2a3 Definition. Let (X,A, µ) be a probability space, and A ⊂ X.
(a) Inner measure µ∗(A) and outer measure µ∗(A) of A are defined by

µ∗(A) = max{µ(B) : B ∈ A, B ⊂ A} , µ∗(A) = min{µ(B) : B ∈ A, B ⊃ A} ;

(b) A is a null (or negligible) set1 if µ∗(A) = 0;
(c) A is a µ-measurable set (symbolically, A ∈ Aµ) if µ∗(A) = µ∗(A).

1Terence Tao calls it “sub-null set”, requiring A ∈ A for null sets. For some authors,
“null” means just “empty”.
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In contrast, sets of A will be called A-measurable. Clearly, A ⊂ Aµ; that
is, A-measurability implies µ-measurability. For µ of 2a2, Aµ is the Lebesgue
σ-algebra on [0, 1].

2a4 Core exercise. Prove that (a) the maximum and minimum in 2a3(a)
are reached; and (b) µ∗(A) = 1− µ∗(X \ A).

2a5 Core exercise. Prove that µ∗ : 2X → [0, 1] satisfies
(a) µ∗(∅) = 0,
(b) µ∗(A) ≤ µ∗(B) whenever A ⊂ B ⊂ X (“monotonicity”);
(c) µ∗(A1 ∪ A2 ∪ . . . ) ≤ µ∗(A1) + µ∗(A2) + . . . for all A1, A2, · · · ⊂ X

(“countable subadditivity”).
Deduce that the null sets are a σ-ideal, that is, every subset of a null set

is a null set, and a countable union of null sets is a null set.

If A is a null set then its complement X \A is called a set of full measure
(or conegligible), and one says that x /∈ A for almost all x, in other words,
almost everywhere or almost surely (“a.s.”).

2a6 Definition. Let (X,A, µ) be a probability space, and A,B ⊂ X.
(a) The distance between A and B is1

dist(A,B) = µ∗(A4B) ;

here the symmetric difference A4B = (A \ B) ∪ (B \ A) = {x : 1A(x) 6=
1B(x)}.

(b) Sets A,B are equivalent or almost equal (symbolically, A
µ∼ B) if

dist(A,B) = 0, that is, their symmetric difference is a null set.

Note that

(2a7) dist(A,B) = min{µ∗(C) : A ∩ (X \ C) = B ∩ (X \ C)} .

(“By throwing C away we get A = B”. . . )

2a8 Core exercise. Prove that dist : 2X × 2X → [0, 1] is a pseudometric,
that is,

(a) dist(A,A) = 0,
(b) dist(A,B) = dist(B,A) (“symmetry”),
(c) dist(A,C) ≤ dist(A,B) + dist(B,C) (“triangle inequality”).

1Not at all the distance between their closest points. . .
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2a9 Core exercise. Let An, Bn ⊂ X, dist(An, Bn) = εn, then
(a) dist(A1 ∩ A2, B1 ∩B2) ≤ ε1 + ε2,
(b) dist(A1 ∪ A2, B1 ∪B2) ≤ ε1 + ε2,
(c) dist(A1 \ A2, B1 \B2) ≤ ε1 + ε2,
(d) dist(A14A2, B14B2) ≤ ε1 + ε2.

Prove it. Generalize (a), (b) to finite and countable operations. Deduce that
∀n An

µ∼ Bn implies A1 ∩ A2
µ∼ B1 ∩ B2, A1 ∪ A2

µ∼ B1 ∪ B2, A1 \ A2
µ∼

B1\B2 and A14A2
µ∼ B14B2. Generalize the first two relations to countable

operations.

2a10 Core exercise. (a) A set is µ-measurable if and only if it is equivalent
to some A-measurable set.

(b) Aµ is a σ-algebra.
(c) there exists one and only one probability measure µ̄ on (X,Aµ) such

that µ̄|A = µ.
Prove it.

The probability space (X,Aµ, µ̄) is called the completion of (X,A, µ). It
is complete; that is, the given σ-algebra contains all null sets. Sometimes I’ll
write µ(A) (instead of µ̄(A)) for A ∈ Aµ.

Consider the set 2X/
µ∼ of all equivalence classes. According to 2a9 we may

apply finite and countable (but not uncountable) operations to equivalence
classes; and the usual properties (such as (A∪B)∩C = (A∩C)∪ (B ∩C))
hold. The relation A ⊂ B for A,B ∈ 2X/

µ∼ may be defined by µ∗(A\B) = 0,
and is equivalent to A = A∩B (as well as B = A∪B). Also the distance is
well-defined on 2X/

µ∼, and is a metric; that is, a pseudometric satisfying

dist(A,B) = 0 =⇒ A = B for A,B ∈ 2X/
µ∼ .

Note that µ∗, µ
∗ : 2X/

µ∼ → [0, 1] are well-defined.
The set of all equivalence classes of measurable sets,1

A/ µ∼ = Aµ/
µ∼ ,

is called the measure algebra of (X,A, µ). It is closed under the finite and
countable operations.2

Note that µ : A/ µ∼ → [0, 1] is well-defined.

1“Many of the difficulties of measure theory and all the pathology of the subject arise
from the existence of sets of measure zero. The algebraic treatment gets rid of this source of
unpleasantness by refusing to consider sets at all; it considers sets modulo sets of measure
zero instead.” (P.R. Halmos, “Lectures on ergodic theory”, Math. Soc. Japan 1956,
p. 42.)

2In fact, A/ µ∼ is a complete Boolean algebra, and is topologically closed in 2X/
µ∼.
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Recall ∼E , Ed, Es, Eδ, Eσ introduced in Sect. 1(a,b) for arbitrary E ⊂ 2X .
Now they are also well-defined for arbitrary E ⊂ 2X/

µ∼. Similarly to 1a10
and 1b8, a set E ⊂ 2X/

µ∼ is called an algebra if it contains ∼E , Ed, Es, and
σ-algebra, if it contains ∼E , Eδ, Eσ.

2a11 Core exercise. Measure subalgebras, that is, sub-σ-algebras of A/ µ∼,
are in a natural bijective correspondence with sub-σ-algebras of Aµ that
contain all null sets.1

Formulate it accurately, and prove.

We know (recall 1a21 and 1c18 or the paragraph before 1b8) that Eds = Esd
but generally Eδσ 6= Eσδ for E ⊂ 2X .

2a12 Proposition. For every algebra E ⊂ A/ µ∼ the set Eδσ is a σ-algebra,
and Eδσ = Eσδ.

A surprise: no more Eσδσ and the like!
In particular, for an arbitrary probability measure on the Cantor set we

have Fσ/
µ∼ = Gδ/

µ∼ (recall 1b7).

2a13 Extra exercise. Does the equality Eδσ = Eσδ hold for arbitrary sets
(not just algebras) E ⊂ A/ µ∼?

The “sandwich” below implies 2a12 and gives substantially more detailed
information.

2a14 Proposition. Let E ⊂ A be an algebra and B ∈ σ(E); then there
exist A ∈ Eδσ and C ∈ Eσδ such that A ⊂ B ⊂ C and A

µ∼ B
µ∼ C.

For an arbitrary probability measure on the Cantor set we get A ∈ Fσ,
C ∈ Gδ. In particular, every null set is contained in a Gδ null set. In order
to get the same for a probability measure on Rd we generalize 2a14.

Given a set F ⊂ A, we introduce

µ∗F(A) = sup{µ(B) : B ∈ F , B ⊂ A} for A ⊂ X .

2a15 Proposition. If F ⊂ A satisfies Fs ⊂ F and Fδ ⊂ F then the set

{A ∈ Aµ : µ∗F(A) = µ(A) ∧ µ∗F(X \ A) = µ(X \ A) }

is a σ-algebra.

Let us denote this σ-algebra by Sandwich(F).
Clearly, the set F of all closed (or only compact) subsets of Rd satisfies

Fs ⊂ F and Fδ ⊂ F .

1That is, all subsets of all measure 0 sets of the whole σ-algebra A.
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2a16 Core exercise. Let X = Rd, A = B(Rd), F be the set of all closed
subsets of Rd, and µ a probability measure on (X,A). Then

(a) A ⊂ Sandwich(F).
(b) Aµ = Sandwich(F).

Deduce it from 2a15. Do the same for compact (rather than closed) subsets
of Rd.

2a17 Core exercise. If Fδ ⊂ F then the set E = {A ∈ Aµ : µ∗F(A) = µ(A)}
satisfies Eδ = E .

Prove it.

2a18 Core exercise. If F ⊂ A satisfies Fs ⊂ F then

{A ∈ Aµ : µ∗F(A) = µ(A)} = {A ∈ Aµ : ∃B ∈ Fσ (B ⊂ A ∧ B
µ∼ A ) } .

Prove it.

2a19 Core exercise. For arbitrary F ⊂ A the set E = {A ∈ Aµ : ∃B ∈
Fσ (B ⊂ A ∧ B

µ∼ A ) } satisfies Eσ ⊂ E .
Prove it.

2a20 Core exercise. Prove Prop. 2a15.

2a21 Core exercise. Prove Prop. 2a14.

Here is another useful implication of the sandwich.

2a22 Proposition. If two probability measures on (X,A) coincide on an
algebra E ⊂ A then they coincide on σ(E).

Proof. Due to the relation Ed ⊂ E , for every A ∈ Eδ there exist An ∈ E
such that An ↓ A (that is, A1 ⊃ A2 ⊃ . . . and A1 ∩ A2 ∩ · · · = A); thus,
µ(A) = limµ(An) = lim ν(An) = ν(A), which shows that µ = ν on Eδ.
Further, due to the relation Eδs ⊂ Eδ (recall 1b1), for every A ∈ Eδσ there
exist An ∈ Eδ such that An ↑ A, which shows that µ = ν on Eδσ. Similarly,
µ = ν on Eσδ.

Given B ∈ σ(E), 2a14 gives us A ∈ Eδσ and C ∈ Eσδ such that A ⊂ B ⊂ C
and µ(A) = µ(B) = µ(C). Thus, µ(B) = µ(A) = ν(A) ≤ ν(B) ≤ ν(C) =
µ(C) = µ(B).

Uniqueness in 2a2 follows easily.



Tel Aviv University, 2012 Measurability and continuity 30

2a23 Warning. Let (X,A, µ) be a probability space and B ⊂ A a sub-
σ-algebra, then (X,B, µ|B) is another probability space. Be careful with the
completed σ-algebra Bµ|B ; it need not contain all null sets of (X,A, µ). That
is, µ∗(A) = 0 does not imply (µ|B)∗(A) = 0. Here is a counterexample.
Let X = [0, 1] × [0, 1] with the two-dimensional Lebesgue measure µ on the
Borel σ-algebra A. The first coordinate [0, 1] × [0, 1] 3 (x, y) 7→ x ∈ [0, 1]
generates a sub-σ-algebra B ⊂ A. The diagonal A = {(x, y) : x = y} satisfies
µ∗(A) = 0 but (µ|B)∗(A) = 1 (think, why).

We have three generally different σ-algebras: B, B1 = Bµ|B , and B2 con-

sisting of all sets equivalent to B-measurable sets; clearly, B/ µ∼ = B1/
µ∼ =

B2/
µ∼. On the other hand, if B = A then B1 = B2 by 2a10(a).

2b Standard models

The Cantor set provides standard models again.

Similarly to 1b17, every subset E ⊂ A/ µ∼ of the measure algebra generates
a measure subalgebra σ(E)/

µ∼ ⊂ A/ µ∼, defined as the intersection of all
measure subalgebras that contain E . The corresponding (in the sense of 2a11)
σ-algebra σ(E) ⊂ Aµ (containing all null sets) is the σ-algebra generated
by E . Similarly to 1d28, A/ µ∼ is called countably generated, if A/ µ∼ =
σ(A1, A2, . . . )/

µ∼ for some A1, A2, · · · ∈ A/
µ∼.

2b1 Core exercise. If A is countably generated then A/ µ∼ is countably
generated (for every µ on A).

Prove it.

By 1d29 and 2b1, every probability measure on Rd leads to a countably
generated measure algebra.

The converse to 2b1 is generally wrong. (The Lebesgue σ-algebra on
[0, 1] is countably separated but, in fact, not countably generated.) Rather,
A/ µ∼ is countably generated if and only if A/ µ∼ = B/ µ∼ for some countably
generated σ-algebra B ⊂ A.

Using again the idea of (1a18) and (1d36),

(2b2) ϕ(x) =
(
1A1(x),1A2(x), . . .

)
we see, similarly to 1d38, that A/ µ∼ is countably generated if and only if
A/ µ∼ is generated by some measurable ϕ : X → {0, 1}∞. It means that
ϕ is measurable from (X,A) to (Y,B), where Y = {0, 1}∞, B is the usual
σ-algebra on {0, 1}∞ (as in 1d16), and Φ(B)/

µ∼ = A/ µ∼ (recall 1d13(a)). In
this case we introduce the image measure ν = µ ◦ Φ on {0, 1}∞,

ν(B) = µ
(
ϕ−1(B)

)
for B ∈ B ,
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and observe that Φ establishes an isomorphism of measure algebras A/ µ∼ and
B/ ν∼.

However, it does not mean that ϕ is an isomorphism of probability spaces
(X,A, µ) and (Y,B, ν), for two reasons.

First, in general ϕ need not be one-to-one. Though, if (X,A) is a Borel
space (recall 1d33) then ϕ is one-to-one (recall 1d39).

Second, in general ϕ need not map X onto Y , and worse, the image
ϕ(X) ⊂ Y need not be of full measure; rather, ν∗(ϕ(X)) = 1 (think, why),
but ν∗(ϕ(X)) need not be 1, which is sometimes called “the image measure
catastrophe”.

We may replace (X,A, µ) with (Y,B, ν) when dealing with events (treated
up to null sets). What about random variables?

Depending on context, by a (real-valued) random variable one means
either a measurable function X → R or an equivalence class of such functions.

2b3 Definition. Let (X,A, µ) be a probability space.
(a) Two µ-measurable (that is, Aµ-measurable) functions f, g : X → R

are equivalent if f(x) = g(x) for almost all x;
(b) L0(X,A, µ) is the set of all equivalence classes of µ-measurable func-

tions X → R.

Functions defined almost everywhere may be used equally well. The well-
known spaces Lp are subsets of L0 (endowed with topologies).

Clearly, we have an embedding

L0(Y,B, ν) 3 g 7→ f ∈ L0(X,A, µ) , f(·) = g(ϕ(·)) ,

and these f, g are identically distributed, that is,

(2b4) µ{x : f(x) ∈ B} = ν{y : g(y) ∈ B} for every B ∈ B(R)

(think, why). It is less clear whether L0(Y,B, ν) is thus mapped onto L0(X,A, µ).
Given f , we cannot construct g by just g(·) = f(ϕ−1(·)), since ϕ need not be
invertible. And nevertheless. . .

2b5 Proposition. 1 For every f ∈ L0(X,A, µ) there exists g ∈ L0(Y,B, ν)
such that f(·) = g(ϕ(·)) a.s.2

2b6 Lemma. Prop. 2b5 holds for f, g with values in the Cantor set.

1This is basically the Doob-Dynkin lemma.
2This “a.s.” is rather inappropriate, since f and g are equivalence classes. . . but this

is a usual and convenient abuse of language. From now on it will occur without notice.
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Proof. Treating the Cantor set as {0, 1}∞ we have

f(x) =
(
1A1(x),1A2(x), . . .

)
a.s.

for some A1, A2, · · · ∈ Aµ. We take B1, B2, · · · ∈ Bν such that An
µ∼ ϕ−1(Bn),

that is, 1An(·) = 1Bn(ϕ(·)) a.s., define g by g(y) =
(
1B1(y),1B2(y), . . .

)
and

get g(ϕ(x)) =
(
1B1(ϕ(x)),1B2(ϕ(x)), . . .

)
=
(
1A1(x),1A2(x), . . .

)
= f(x) for

almost all x.

2b7 Lemma. Let E be a Borel subset of the Cantor set; then Prop. 2b5
holds for f, g with values in E.

Proof. First, 2b6 gives g : Y → C (the Cantor set) such that f(·) = g(ϕ(·))
a.s. By (2b4), ν{y : g(y) ∈ E} = µ{x : f(x) ∈ E} = µ(X) = 1; that is,
g(·) ∈ E a.s.

2b8 Lemma. The measurable space
(
R,B(R)

)
is isomorphic to a Borel

subset of the Cantor set.

Proof. We replace R with the interval (0, 1), since they are homeomorphic.
We use binary digits:

x =
∞∑
n=1

2−nβn(x) for x ∈ (0, 1) ,

βn : (0, 1) → {0, 1}, lim infn βn(x) = 0. Each βn, being a step function, is
Borel measurable. Therefore the map

(0, 1) 3 x 7→
(
β1(x), β2(x), . . .

)
∈ {0, 1}∞

is Borel measurable (recall 1d18 and the phrase after it). The image is a Borel
set (complement to a countable set). The inverse map is Borel measurable
by 1d8 applied to binary intervals [k · 2−n, (k + 1) · 2−n

)
.

Proof of Proposition 2b5. Follows from 2b7 and 2b8.

2b9 Definition. A measurable space (X,A) is standard, if it is isomorphic
to some Borel subset of the Cantor set.

Clearly, such space is a Borel space (recall 1d33); thus, it is usually called
“standard Borel space”.

Recall 1c2, 1c3.

2b10 Definition. A subspace of a measurable space (X,A) is a measurable
space of the form (A,A|A) where A ∈ A, and A|A = {A ∩ B : B ∈ A} =
{B ∈ A : B ⊂ A}.
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2b11 Core exercise. (a) A subspace of a standard Borel space is standard;
(b) the product of two standard Borel spaces is standard;
(c) the product of countably many standard Borel spaces is standard.
Prove it.

By 2b8, R is standard. By 2b11(b), Rd is standard. By 2b11(a), every
Borel subset of Rd is a standard Borel space.

Proposition 2b5 (with its proof) still holds for f, g with values in a given
standard Borel space.

2c Random elements

Random functions etc.

A remark on terminology. Some authors call a measurable map ϕ from a
probability space to a measurable space (Y,B) “random element of Y ” with
special cases like “random vector”, “random sequence”, “random function”
etc. That is nice, but two objections arise. First, no one says “random real
number” instead of “random variable”! Second, some people insist that, say,
a “random vector” must be a single vector chosen at random, or somehow
typical, but surely not a map!

Other authors call such ϕ “Y -valued random variable” which avoids
the two objections mentioned above but leads to cumbersome phrases like
“RT -valued random variable” instead of “random function”. Also, one com-
plains that a so-called random variable is neither random nor variable!

Another choice is, between functions and equivalence classes. I hesitate
but I must choose. . .

2c1 Definition. Let (X,A, µ) be a probability space and (Y,B) a measurable
space.

(a) A random element of Y is an equivalence class (w.r.t. the equivalence
relation “equal almost everywhere”) of measurable functions X → Y .

(b) The distribution of a random element ϕ is the measure νϕ on (Y,B)
defined by

νϕ(B) = µ
(
Φ(B)

)
,

where Φ(B) is the equivalence class of {x : ϕ(x) ∈ B}.
(c) The measure subalgebra σ(ϕ)/

µ∼ ⊂ A/ µ∼ generated by ϕ is defined by

σ(ϕ)/
µ∼ = Φ(B) = {Φ(B) : B ∈ B}

(where Φ is as in (b)); the corresponding (in the sense of 2a11) σ-algebra
σ(ϕ) ⊂ Aµ (containing all null sets) is the σ-algebra generated by ϕ.



Tel Aviv University, 2012 Measurability and continuity 34

2c2 Example. Let (X,A, µ) be the interval (0, 1) with Lebesgue measure,
(Y,B) the Cantor set {0, 1}∞, and ϕ : X → Y the “binary digits” map used
in the proof of 2b8. Its distribution ν = νϕ satisfies

(2c3) ν{x : x(1) = a1, . . . , x(n) = an} = 2−n

for all n = 1, 2, . . . and a1, . . . , an ∈ {0, 1}. Infinite tossing of a fair coin!
(Known also as Bernoulli process.) It follows from 2a22 that (2c3) is satisfied
by only one measure ν on {0, 1}∞ (sometimes called Lebesgue measure on
the Cantor set); thus,

(
{0, 1}∞, ν

)
is an example of the infinite product of

probability spaces.1

The Borel space
(
{0, 1}∞

)∞ = {0, 1}∞×∞ is still {0, 1}(a countable set)

(recall the paragraph before (1c21)). Thus, the product ν∞ of countably
many copies of ν is also well-defined;

ν∞{(x1, x2, . . . ) : x1 ∈ B1, . . . , xn ∈ Bn} = ν(B1) . . . ν(Bn)

for all n and Borel sets B1, . . . , Bn ⊂ {0, 1}∞.
The “almost inverse” map

{0, 1}∞ 3 x 7→
∑
n

2−nx(n) ∈ [0, 1]

sends ν to Lebesgue measure µ. Applying it to each xn we get the product
map

(
{0, 1}∞

)∞ → [0, 1]∞ that sends ν∞ to µ∞, the infinite product of
copies of Lebesgue measure on [0, 1] (or (0, 1), it is the same), sometimes
called Lebesgue measure on (0, 1)∞; existence of µ∞ is thus proved (while its
uniqueness follows from 2a22).

Taking into account that every probability measure on R is the image of
Lebesgue measure on (0, 1) under an increasing function ϕ : R → R well-
known as the quantile function (or inverse cumulative distribution function)
of the measure, we get existence (and uniqueness, as before) of µ1×µ2× . . .
for arbitrary probability measures µ1, µ2, . . . on R.

Every probability measure ν on (Y,B) is the distribution of some random
element, for a trivial reason: just take (X,A, µ) = (Y,B, ν) and ϕ(x) = x. It
is less clear that X can be the Cantor set whenever (Y,B) is standard. For
the proof, embed Y into the Cantor set: ψ : Y → ψ(Y ) ⊂ C, consider the
image measure µ(·) = ν(ψ−1(·)) on C, and take measurable ϕ : C → Y such
that ϕ(c) = y whenever ψ(y) = c.

1Only finite product is defined for measure spaces in general; but for an infinite sequence
of probability spaces the product is well-defined (though I neither prove nor use it).
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Moreover, (C, µ) can be replaced with (0, 1) and Lebesgue measure. In-
deed, every probability measure µ on R (in particular, on C ⊂ R) is the
image of Lebesgue measure on (0, 1). Thus:

2c4 Proposition. Every probability measure on a standard Borel space is
the distribution of some (at least one) random element defined on (0, 1) with
Lebesgue measure.

2c5 Corollary. The infinite product of probability measures on standard
Borel spaces is well-defined.1

Here is another useful feature of standard Borel spaces, — a generalization
of the fact that each Lebesgue measurable function on [0, 1] is equivalent to
some Borel measurable function.

2c6 Core exercise. Let (X,A, µ) be a probability space, (Y,B) a standard
Borel space, ϕ a random element of Y , and A1 ⊂ A a sub-σ-algebra such
that σ(ϕ)/

µ∼ ⊂ A1/
µ∼ (that is, each set of σ(ϕ) is equivalent to some set of

A1; note that A1 need not contain all null sets in its completion, recall 2a23).
Then the equivalence class ϕ contains some A1-measurable map.

Prove it.

2c7 Extra exercise. Does 2c6 hold for arbitrary (not just standard) mea-
surable space (Y,B) ?

By 2b8 and 2b11, in order to prove that (Y,B) is standard it is sufficient to
find appropriate “coordinates” on Y , that is, measurable functions f1, f2, · · · :
Y → R such that the map f : Y → R∞, f(y) =

(
f1(y), f2(y), . . .

)
, is an

isomorphism between Y and its image f(Y ) ⊂ R∞, and the image is a Borel
set.

The Hilbert space l2 (over R) consists of all sequences x = (x1, x2, . . . ) ∈
R∞ such that ‖x‖2 = x21 + x22 + · · · < ∞. Its Borel σ-algebra B(l2) may be
defined as generated by linear functionals x 7→ 〈x, y〉 = x1y1 + x2y2 + . . . for
all y ∈ l2.

2c8 Core exercise. (a) l2 is a measurable subspace of R∞; that is, the
σ-algebra on l2 induced from R∞ is equal to B(l2).

(b) The unit ball {x ∈ l2 : ‖x‖ ≤ 1} is a Borel subset of R∞.
(c) l2 is a Borel subset of R∞, and therefore a standard Borel space.

Prove it.

1In fact, it is well-defined for arbitrary (not just standard) measurable spaces (as was
noted before).
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Every separable Hilbert space is isomorphic to l2 and therefore is also a
standard Borel space.

The set Q of all rational numbers of [0, 1] being countable, RQ is isomor-
phic to R∞, therefore standard.

2c9 Core exercise. Each of the following subsets of RQ is measurable, and
is therefore a standard Borel space:

(a) all increasing functions Q→ R;
(b) all increasing right-continuous functions Q → R (that is, f(q) =

limQ3r→q+ f(r) for all q ∈ Q \ {1});
(c) all uniformly continuous functions Q→ R.

Prove it.

The measurable space R[0,1] (with the product σ-algebra) is of little use
(recall 1d26) but contains useful measurable subspaces.

2c10 Core exercise. Each of the following measurable subspaces of R[0,1]

is a standard Borel space:
(a) all increasing right-continuous functions [0, 1]→ R;
(b) all increasing functions f : [0, 1] → R such that f(x) =

(
f(x−) +

f(x+)
)
/2 for all x ∈ (0, 1);

(c) all continuous functions [0, 1]→ R.
Prove it.

2c11 Core exercise. The following measurable subspace of R[0,1] is sepa-
rated but not countably separated, therefore not a Borel space:

(a) all increasing functions [0, 1]→ R.
Prove it.

A wonder: the notion “a random increasing function” is problematic, but
the notion “a random increasing right-continuous function” is not.

2c12 Extra exercise. (a) On the set of all increasing functions [0, 1] → R
invent a better σ-algebra that turns it into a Borel space;

(b) is this Borel space standard?

A function f : R → R is called a corlol1 function (or RCLL2 or càdlàg3

function) if it has two limits f(x−), f(x+) at every x ∈ R, and f(x) = f(x+)
for every x ∈ R.4 For a function f : [0, 1] → R the definition is similar but,

1“Continuous on (the) right, limit on (the) left”.
2“Right continuous with left limits”.
3“Continue à droite, limite à gauche” (French).
4Sample functions of many stochastic processes in continuous time (martingales,

Markov processes etc.) are corlol functions.
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of course, without f(0−) and f(1+). Waiving the right continuity (but
retaining f(x+)) we get a “function without discontinuities of the second
kind”.

2c13 Extra exercise. Each of the following measurable subspaces of R[0,1]

is a standard Borel space:
(a) all corlol functions [0, 1]→ R;
(b) all functions f : [0, 1]→ R without discontinuities of the second kind,

satisfying f(x) =
(
f(x−) + f(x+)

)
/2 for all x ∈ (0, 1).

Prove it.

2d Random sets

Strangely enough, a random Borel set is not a random element of the Borel
σ-algebra but a measurable subset of a product space.

2d1 Core exercise. Let (X,A, µ) be a probability space, andM ⊂ L0(X,A, µ)
be such that

(a) c · 1A ∈M for all c ∈ [0, 1] and A ∈ A;
(b) if f ∈M then 1− f ∈M ;
(c) if f1, f2, · · · ∈M and f = supn fn (a.s.) then f ∈M .

Then M contains all f ∈ L0(X,A, µ) such that 0 ≤ f ≤ 1 a.s.
Prove it.

We may replace “M ⊂ L0(X,A, µ)” with “M ⊂ RX/
µ∼” and consider the

least M satisfying (a), (b), (c); this M is exactly the set of all f ∈ L0(X,A, µ)
such that 0 ≤ f ≤ 1 a.s.

In the same spirit we may define a random Borel set. Similarly to 2c1(a),
it is an equivalence class of maps X → B(R), the equivalence being equality
almost everywhere; measurability is hidden, similarly to 2d1.

2d2 Definition. Let (X,A, µ) be a probability space.
(a) The set RBS(X,A, µ) is the least set RBS of equivalence classes of

maps X → B(R) such that
(a1) for arbitrary A ∈ A and B ∈ B(R) the map

ω 7→

{
B for ω ∈ A,
∅ for ω ∈ X \ A

belongs to RBS;
(a2) if S ∈ RBS then the map

ω 7→ R \ S(ω)
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belongs to RBS;
(a3) if S1, S2, · · · ∈ RBS and S(·) = ∪nSn(·) (a.s.) then S ∈ RBS.

(b) Elements of RBS(X,A, µ) will be called random Borel sets (on (X,A, µ)).

Clearly, the intersection of all sets satisfying (a1), (a2), (a3) is a set
satisfying (a1), (a2), (a3).

The “random Borel set” may seem to be a new notion, but it is rather
the old notion “set of the product σ-algebra” in disguise! In order to see this
fact we note a natural bijective correspondence between maps X → 2Y (for
now, X and Y are just two sets) and subsets of X×Y . Every set S ⊂ X×Y
leads to the map x 7→ {y : (x, y) ∈ S}. And every map f : X → 2Y leads to
the set {(x, y) : x ∈ X ∧ y ∈ f(x)}.

Reformulating 2d2(a) in terms of subsets of X × R we get

A ∈ A, B ∈ B(R) =⇒ A×B ∈ RBS ,

S ∈ RBS =⇒ (X × R) \ S ∈ RBS ,

S1, S2, · · · ∈ RBS =⇒ S1 ∪ S2 ∪ · · · ∈ RBS .

Comparing this with 1d15 (and the phrase after it) we see that RBS =
A × B(R), up to equivalence. This time, a subset of X × R is negligible if
it is contained in A × R for some null set A ⊂ X; and “equivalent” means
“differ on a negligible set only”. Thus we have an equivalent definition.

2d3 Definition. Let (X,A, µ) be a probability space. A random Borel set
(on (X,A, µ)) is an equivalence class of maps X → B(R) that contains the
map

x 7→ {y : (x, y) ∈ S}

for some (A× B(R))-measurable S ⊂ X × R.

It is convenient to denote by S both the set and the map (and the equiv-
alence class); just denote S(x) = {y : (x, y) ∈ S}.

2d4 Core exercise. (a) Prove that Definitions 2d2 and 2d3 are equivalent.
(b) Prove that “B ∈ B(R)” may be replaced with “B ⊂ R is an interval”

in 2d2(a1); that is, the modified definition is equivalent to the original one.
(c) Prove that “A× B(R)” may be replaced with “Aµ × B(R)” in 2d3.

2d5 Core exercise. (a) “random interval” Let f, g ∈ L0(X,A, µ) and

S(x) = {y ∈ R : f(x) ≤ y ≤ g(x)} for x ∈ X ;

prove that S is a random Borel set.
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(b) “random countable set” Let f1, f2, · · · ∈ L0(X,A, µ) and

S(x) = {f1(x), f2(x), . . . } for x ∈ X ;

prove that S is a random Borel set.

2d6 Extra exercise. Let f ∈ L0(X,A, µ), B ∈ B(R), and

S(x) = f(x) +B = {f(x) + y : y ∈ B} for x ∈ X ;

prove that S is a random Borel set.

You may wonder, why not treat a random Borel set as just a random
element of B(R). You may suggest some appropriate σ-algebras on B(R).
But, strangely enough, you cannot succeed! That is, you never get a defini-
tion equivalent to 2d2, 2d3, no matter which σ-algebra on B(R) is used. The
problem is that in general a random Borel set fails to generate a σ-algebra,
in contrast to a random element.

2d7 Core exercise. Let (X,A, µ), (Y,B), a random element ϕ : X → Y
and its generated σ-algebra σ(ϕ) ⊂ Aµ be as in 2c1. Prove that σ(ϕ) is the
least among all σ-algebras A1 ⊂ Aµ such that A1 contains all null sets and
ϕ is also a random element on (X,A1, µ|A1).

2d8 Extra exercise. The reservation “A1 contains all null sets” in 2d7
cannot be dropped. Moreover: let (X,A, µ), (Y,B) and ϕ : X → Y be as in
2d7. Consider all σ-algebras A1 ⊂ Aµ such that ϕ is also a random element
on (X,A1, µ|A1) (but this time A1 is not required to contain all null sets).
What about the least among these A1 ? Prove by a counterexample that it
need not exist.

Given a random Borel set S on (X,A, µ), we may consider all σ-algebras
A1 ⊂ Aµ such that A1 contains all null sets and S is also a random Borel
set on (X,A1, µ|A1). In this case we say that S is A1-measurable. If there
exists the least among these A1, we call it the σ-algebra generated by S, and
denote it σ(S). But in general it need not exist! Therefore (by 2d7) the notion
“random Borel set” is not equivalent to “random element of (B(R), C)”, no
matter which σ-algebra C on B(R) is used.

2d9 Core exercise. If σ(S) exists then {x : S(x) 3 y} ∈ σ(S) for all y ∈ R.
Prove it.

2d10 Extra exercise. Let f , g and S be as in 2d5(a), and f(·) < g(·) a.s.
Prove that σ(S) exists and is equal to σ(f, g).
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Here is a counterpart of 2c6 for random Borel sets.

2d11 Core exercise. If S is A1-measurable and A2 ⊂ A is a sub-σ-algebra
such that A1/

µ∼ ⊂ A2/
µ∼ (that is, each set of A1 is equivalent to some set of

A2; note that A2 need not contain all null sets, in contrast to A1) then there
exists S2 ∈ A2 × B(R) such that S(x) = S2(x) for almost all x.

Prove it.

2d12 Example. “Unordered infinite sample” Let (X,A, µ) = (0, 1)∞ be the
product of countably many copies of (0, 1) with Lebesgue measure, and

S(x1, x2, . . . ) = {x1, x2, . . . } for x1, x2, · · · ∈ (0, 1) ;

this is a special case of 2d5(b). We’ll see that σ(S) does not exist. To this
end we introduce transformations Tn : X → X that swap x1, . . . , xn and
xn+1, . . . , x2n:

Tn(x1, x2, . . . ) = (xn+1, . . . , x2n, x1, . . . , xn, x2n+1, x2n+2, . . . ) ;

these transformations are measure preserving, that is, µ(T−1n (A)) = µ(A) for
A ∈ A. We consider the σ-algebra Bn ⊂ Aµ of all Tn-invariant measurable
sets:

Bn = {A ∈ Aµ : Tn(A)
µ∼A} ;

clearly, Bn contains all null sets.
The function x 7→ max(x1, . . . , x2n) is Bn-measurable (since it is A-mea-

surable and Tn-invariant). The same holds for so-called order statistics

x
(2n)
(1) , . . . , x

(2n)
(2n) defined by

x
(2n)
(1) ≤ · · · ≤ x

(2n)
(2n) , and

(
x
(2n)
(1) , . . . , x

(2n)
(2n)

)
is a permutation of

(
x1, . . . , x2n

)
.

Thus, the random Borel set x 7→ {x1, . . . , x2n} is Bn-measurable. Also
{x2n+1, x2n+2, . . . } is Bn-measurable (since functions x 7→ x2n+k are). We
see that S is Bn-measurable for all n. Therefore σ(S) ⊂ ∩nBn if σ(S) exists.
It remains to check that ∩nBn is the trivial σ-algebra1 (only null sets and
full measure sets), see below, and apply 2d11 to A2 = {∅, X}.

We need some useful general facts.
Let (X,A, µ) be a probability space and A,A1, A2, · · · ∈ A/

µ∼. What
about convergence, An → A as n → ∞? It appears, we have two different,
but closely related modes of convergence. One is convergence almost sure:

1An(·)→ 1A(·) a.s.

1Basically, the Hewitt-Savage zero-one law.
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The other is topological convergence:

dist(An, A)→ 0

where dist(An, A) = µ(An4A) (recall 2a6).
For monotone sequences these modes coincide (think, why).

2d13 Lemma. Almost sure convergence implies topological convergence.

Proof.

dist(An, A) = µ(An4A) =

∫
1An4A dµ→ 0

by the bounded convergence theorem, since 1An4A(x) = 0 if and only if
1An(x) = 1A(x).

2d14 Lemma. If
∑

n dist(An, A) <∞ then 1An → 1A a.s.1

Proof. ∞ >
∑

n dist(An, A) =
∑

n

∫
1An4A dµ =

∫ ∑
n 1An4A dµ by the

monotone convergence theorem; therefore
∑

n 1An4A <∞ a.s.

But if
∑

n εn =∞ then there exist intervals An ⊂ [0, 1] of length εn such
that lim supn 1An = 1 everywhere (think, why).

For arbitrary E ⊂ A/ µ∼ its topological closure is

Et = {A ∈ A/ µ∼ : inf
E∈E

dist(A,E) = 0} .

2d15 Lemma. Et ⊂ Eδσ ∩ Eσδ for all E ⊂ A/ µ∼.

Proof. Given A ∈ Et, we choose En ∈ E such that
∑

n dist(En, A) < ∞. By
2d14, 1En(·)→ 1A(·) a.s., therefore 1A = lim supn 1En = infn supk 1En+k a.s.;
thus, A = ∩n ∪k En+k ∈ Eσδ. Similarly (using lim inf), A ∈ Eδσ.

2d16 Core exercise. Let E ⊂ A/ µ∼ be an algebra. Prove that
(a) Et is an algebra;
(b) moreover, Et is a σ-algebra;
(c) moreover, Et = σ(E).

We return to Example 2d12.
Treating the coordinates x1, x2, . . . of x ∈ (0, 1)∞ as random variables we

have σ(x1, x2, . . . ) = Aµ. Applying 2d16 to the algebra E = ∪nσ(x1, . . . , xn)
we get

inf
E∈E

dist(A,E) = 0

1This is basically the first Borel-Cantelli lemma.
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for all A ∈ Aµ. This is instructive: functions of finitely many variables can
approximate every function of infinitely many variables. Though, we need
only indicator functions.

Given B ∈ ∩nBn, we take An ∈ σ(x1, . . . , xn) such that dist(An, B)→ 0.
We note that dist(Tn(An), B) = dist(Tn(An), Tn(B)) = dist(An, B) (since
Tn(B)

µ∼ B). By 2a9(a), dist(An ∩ Tn(An), B) = dist(An ∩ Tn(An), B ∩B) ≤
dist(An, B) + dist(Tn(An), B) → 0. Therefore µ(An ∩ Tn(An)) → µ(B). On
the other hand, µ(An ∩ Tn(An)) = µ(An)µ(Tn(An)) = (µ(An))2 → (µ(B))2

(since Tn(An) ∈ σ(xn+1, . . . , x2n)). We get µ(B) = (µ(B))2, which means
that µ(B) is either zero or one!

We see that the random Borel set of Example 2d12 fails to generate a
σ-algebra. And therefore random Borel sets in general cannot be treated as
random elements of the Borel σ-algebra.

In particular, we cannot reduce an arbitrary probability space (X,A, µ)
to the Cantor set via 2b5. But we can do it in another way.

Let S be a random Borel set on (X,A, µ). According to 2d3 we may treat
S as a (A × B(R))-measurable subset of X × R. By 1d41, S ∈ A1 × B(R)
for some countably generated A1 ⊂ A. By 1d38, A1 = σ(ϕ) for some
ϕ : X → {0, 1}∞. The map

X × R 3 (x, y) 7→
(
ϕ(x), y

)
∈ {0, 1}∞ × R

generates a σ-algebra that contains both {A × R : A ∈ A1} and {X × B :
B ∈ B(R)}, therefore it contains A1 × B(R).1 We take a Borel set S1 ⊂
{0, 1}∞ × R such that S = {(x, y) :

(
ϕ(x), y

)
∈ S1}. Similarly to Sect. 2b

we introduce the image measure ν on {0, 1}∞ (the distribution of ϕ), treat(
{0, 1}∞,B({0, 1}∞), ν

)
as another probability space (Y,B, ν), and S1 as a

random Borel set on (Y,B, ν). We get

S(x) = {y : (x, y) ∈ S} = {y :
(
ϕ(x), y

)
∈ S1} = S1(ϕ(x)) ,

which is the counterpart of 2b5 for random Borel sets, formulated below.

2d17 Proposition. For every random Borel set S on (X,A, µ) there exist
measurable ϕ : X → {0, 1}∞ and a random Borel set S1 on (Y,B, ν) (where
ν is the ϕ-image of µ) such that

S(·) = S1(ϕ(·)) a.s.

2d18 Remark. Why only random Borel subsets of R ? For an arbitrary
measurable space (Y,B), a random measurable subset of Y is defined similarly

1Moreover, it is equal to A1 × B(R), but we do not need it now. Recall 1d18. . .
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to 2d2, 2d3. All general statements (and their proofs) of Sect. 2d (including
2d11 and 2d17), stated for the special case (Y,B) = (R,B(R)), generalize
immediately to the general case. However, some items (namely, 2d4(b), 2d5,
2d6, 2d10, 2d12) use the structure of R (at least in proofs).

2d19 Core exercise. Let (X,A, µ) and (Y,B, ν) be probability spaces, ϕ :
X → Y a map measurable from (X,A) to (Y,B) and measure preserving
(that is, µ(ϕ−1(B)) = ν(B) for B ∈ B). Then ϕ is measurable from (X,Aµ)
to (Y,Bν).

Prove it.

2d20 Core exercise. The following two conditions on a measurable space
(Y,B) are equivalent:

(a) for every probability space (X,A, µ) and every random measurable
subset S of Y , defined on (X,A, µ), the set {x ∈ X : S(x) 6= ∅} is µ-measur-
able;

(b) the same, but only for X = {0, 1}∞ and A = B({0, 1}∞) (and arbi-
trary µ).

Prove it.

Later we’ll see that this condition is satisfied by all standard Borel spaces
Y .

2d21 Extra exercise. Let (X,A, µ) be a probability space such that (X,A)
is countably separated. Then for every (not just µ-measurable) set Z ⊂ X
there exists a measurable space (Y,B) and a random measurable subset S of
Y , defined on (X,A, µ), such that {x ∈ X : S(x) 6= ∅} = Z.

Prove it. (In fact, you do not need more than one point in each S(x).)
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Hints to exercises

2a4: (a) B = ∪nBn.

2a5: (c) µ(Bn) ≤ µ∗(An) + 2−nε.

2a8: (c) use (2a7).

2a9: use (2a7).

2a10: (b) use (2a9).

2a11: consider the union of these equivalence classes.

2a16: (a) F ⊂ Sandwich(F) since ∼F ⊂ Fσ; (b) using (a) prove that null
sets belong to Sandwich(F).

2a17: µ(Bn) ≥ µ(An)− 2−nε.

2a18: µ(B1 ∪ · · · ∪Bn) ↑ µ(B1 ∪B2 ∪ . . . ).
2a20: use 2a17 and 2a19.

2a21: use 2a15.

2b11: (b) {0, 1}∞ × {0, 1}∞ is isomorphic to {0, 1}∞.

2c6: Similarly to the proof of 2b5, first prove it for the special case of the
Cantor set Y .

2c8: (a) 〈x, y〉 = limn(x1y1 + · · ·+ xnyn);
(b) ‖x‖ = sup{〈x, y〉 : ‖y‖ ≤ 1}; take a dense countable set of y;
(c) use (b).

2c9: f 7→ f(q2)− f(q1) is measurable.

2c10: use 2c9.

2c11: increasing functions need not be continuous.

2d1: approximate f by fn : X → {0, 1
n
, . . . , n−1

n
}; condition (b) is not needed.

2d4: take RBS according to one definition and check that it satisfies the
other.

2d5: approximate the given functions similarly to the hint to 2d1.

2d7: use 2a11.

2d9: x 7→ (x, y) is measurable from (X,A) to (X,A)× (R,B(R)).

2d11: this is simpler than 2c6; you do not need standardness of (R,B(R)).
Just consider all S that have the needed property and check that they are a
σ-algebra.

2d16: (a) use 2a9; (b) use monotone convergence and (a); (c) use 2d15 and
(b).

2d20: use 2d17 and 2d19.
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