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Foreword

A problem, for example

Here is a motivating example. Given a sequence of random variables ζ1, ζ2, · · · :
Ω→ R and continuous functions f1, f2, · · · : R3 → R, we consider a random
function

ψω : R3 → R , ψω =
∞∑
n=1

ζn(ω)fn(x) for x ∈ R3, ω ∈ Ω ,

assuming that the series converges a.s. to a continuous function. We get a
random field on R3. We consider the random closed set

Zω = {x ∈ R3 : ψω(x) = 0} for ω ∈ Ω

and its connected components. We may ask many question, such as

∗ are the components bounded?

∗ what about the number of components in a large ball?

∗ what about their topological properties?

And so on. Surely, the answers depend on the properties of the random field.
In order to answer such a question for a given random field, one usually
needs ingenuity rather than a general theory. However, are these questions
well-defined? Are we sure that the relevant subsets of Ω are measurable?
Here the general theory should help.

Random variables ζn are real-valued; this is quite simple. The random
field (ψω)ω is a random element of a space of continuous functions R3 → R.
This space is infinite-dimensional, but still, not unusual; probably one can
work in an appropriate Hilbert or Banach space. The random set (Zω)ω is a
random element of the set (space?) of closed subsets of R3. Quite nonlinear!
Is it a tractable space? Of which kind? But wait, we need the set of connected
components of Zω. This is a random element of the set (space??) of (nice, or
not??) subsets of the previous “quite nonlinear” space(?). Is this tractable??

You might expect one of the three “discouraging” answers:

∗ yes, all that is tractable easily; just learn some relevant definitions and
their straightforward implications;

∗ no, all that is generally intractable; nonmeasurable sets can appear eas-
ily; try to prove measurability in every needed special case, separately
and specifically;

∗ well, these are fine points of the set theory; the answers can be “yes”
or “no” depending on additional axioms; try to prove measurability in
every needed case specifically.
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The true answer is less expected and more encouraging:

∗ yes, most cases are tractable, but not easily; the needed theory is quite
nontrivial, but not overcomplicated (you do not need even the trans-
finite induction). However, some cases are indeed intractable; try to
prove measurability in every such case specifically.

A result, for example

Note that a subset of R is a Borel set if and only if it belongs to the least set
(of sets) satisfying the following conditions:

∗ every interval is a Borel set;

∗ the complement of a Borel set is a Borel set;

∗ the union of an infinite sequence of Borel sets is a Borel set.

In the same spirit, given a probability space1 (Ω,F , P ), we define a random
Borel set as a map X from Ω to the set of all subsets of R that belongs to
the least set (of maps) satisfying the following conditions:

∗ if A ∈ F and I ⊂ R is an interval then the map ω 7→

{
I for ω ∈ A,
∅ otherwise

is a random Borel set;

∗ if X is a random Borel set then the map ω 7→ R \ X(ω) is a random
Borel set;

∗ if X1, X2, . . . are random Borel sets then the map ω 7→ X1(ω)∪X2(ω)∪
. . . is a random Borel set.

One of the most basic questions about a random Borel set is: what is the
probability that it is empty? That is, P

(
{ω ∈ Ω : X(ω) = ∅}

)
=? But wait;

are you sure that {ω : X(ω) = ∅} ∈ F? It is easy to see that {ω : x ∈
X(ω)} ∈ F for every x ∈ R; but we need the union of these sets over all
x ∈ R, — uncountably many. . .

Fact. It may happen that {ω : X(ω) = ∅} /∈ F . Moreover, this may happen
when Ω = [0, 1] and F is the Borel σ-algebra on [0, 1].

Fact. The set {ω : X(ω) = ∅} is P -measurable; that is, there exist A,B ∈ F
such that A ⊂ {ω : X(ω) = ∅} ⊂ B and P (A) = P (B).

The latter fact shows that the probability that a random Borel set is
empty is well-defined. The former fact shows that the proof cannot be simple.

1Just a measure space such that P (Ω) = 1.
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Why this name, “measurability and continuity”

Relations between measurability and continuity may seem to be evident, but
they are not. The same can be said about relations between σ-algebras and
topologies. Evidently,

∗ continuous functions are measurable, but measurable functions are gen-
erally discontinuous;

∗ a σ-algebra is often introduced using a preexisting topology, but the
topology cannot be restored from the σ-algebra.

Surprisingly,

∗ in many cases a σ-algebra can be introduced and used irrespective of
any topology, and is more inherent than a topology;

∗ every measurable function is continuous in some useful topology (de-
pendent on the function);

∗ in many cases, deep results about σ-algebras are proved using an aux-
iliary topology (constructed rather than preexisting).


