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10a Covering, packing, volume, and dimension

Covering numbers M. (X) and packing numbers M. (X) (natural numbers or
o0) are defined for € > 0 and a metric space X by!

N(X)=inf{|A] : Ve € X Ja € A p(x,a) < e},
MS(X> = sup{|B| Z\V/bl,bg €eB (bl 7é by = p(bl,bg) > 5)},

here A, B run over all finite subsets of X, and | ... | is the number of elements.
10al Lemma. My (X) < M (X) < M (X).

Proof. My.(X) < N.(X): we have a one-to-one map B — A, since p(by,a;) <
e and p(by, az) < € and by # by imply a3 # as.

N(X) < M (X): if M.(X) < oo, we take a mazimal B and note that
it is a possible A. n

10a2 Exercise. The following three conditions on a metric space X are
equivalent:

(a) Ve > 0 N (X) < oc;

(b) Ve > 0 M (X) < o0;

(c) every sequence (of points of X) has a Cauchy subsequence.
Prove it.

10a3 Corollary. The following three conditions on a complete metric space
X are equivalent:

(a) Ve > 0 N.(X) < oc;

(b) Ve > 0 M (X) < o0;

(c) X is compact.

Not equivalently, but equally well, one may use p(x,a) < € in concert with p(b1, b)) >
€.
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Interestingly, it appears that (a) and (b) do not depend on the choice of
a complete metric on a (completely) metrizable space. (However, (0,1) is
homeomorphic to R. . .)

A subset E of a metric space X is itself a metric space; thus, N.(F),
M_(E) are well-defined, and apply. Compact subsets of R™ are a
notable special case. For a cube E C R™ it is easy to see that N (E) < C/e"
and M (E) > c¢/e" for some ¢,C € (0,00) (dependent on n but not E).
Using the inequality My (E) < NZ(E) we get

here @ =< 8 means that ca < f < Ca for some ¢,C € (0,00). The same
holds for every bounded set £ C R™ with nonempty interior (in particular,
a ball). For such E we get

1
—OgA/E(E) —n, —IOgME(E) —mn ase—0+.
log1/e log1/e

Accordingly, one defines the lower and upper Minkowski(-Bouligand) dimen-
L1
sion

. L JdogMNU(E) —— L log N-(E)
dim,(E) = hSEéEf Toglje dimy (F) = hir_lsﬂp Togljz

and if these are equal, the Minkowski dimension dimy (£ is equal to both.
(Equivalently, M. (E) may be used.)

Now we turn to a bounded set £ C R™ and Lebesgue measure of its closed
e-neighborhood F,..

10a4 Lemma. For all € > 0,

m(Eye)
CLem

Mo (E) < < 2"N.(E),

where C,, is the volume of the n-dimensional unit ball.
Proof. First, N.(E) = |A|, E C Ay, thus E,. C A and m(E,.) <

Cn(2e)™|A].
Second, My.(F) = |B|, B C E, thus m(E,.) > C,e"|B]. O

1 Also “box (counting) dimension”, and (for the upper dimension) “entropy dimension”,
“Kolmogorov dimension”, “Kolmogorov capacity”. By the way, the well-known Hausdorff
dimension never exceeds the lower Minkowski dimension.
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10a5 Corollary. If dimy(E) exists, then

1 E,.
M—>n—dimM(E) as € — 0+;
log e
and in every case,
o . ogm(ELe) _ log m(E.) :
— E)y=1 f————= <1 —————2 =n-— E).
n — dimy () Fats log e - lzr_l)ﬁlip log e n - dimy(E)

10b A space of compact sets

Given a metric space X, we denote by K(X) the set of all nonempty compact
subsets of X. For each K € K(X) we introduce its distance function dg :
X — [0,00) by
dg(x) = dist(z, K) = min p(x, y) .
yeK

Note that |dx(z) — dx(y)| < p(z,y); K = {z : dx(x) = 0}; and K; C
Ky, <— dg, > dg,. Also, dx,ux, = min(dg,,dkg,), while the evident
inequality dx,nx, > max(dg,, dk,) is generally strict (even if K; N Ky # ().

We endow K(X) with the Hausdorff metric dy,

du(K1, K3) = ||dg, — dr, || = sup |di, (z) — di, ()] -
S

10b1 Exercise. (a) sup,cx (dk, (z) — di, (7)) = max,ex, dx, (z);
(b) du(Ky, Ks) = mam(maxgce;(2 d, (), maxek, dxg, (x))
Prove it.

Denoting K . = {z : dx(z) < e} we have
dH(Kl,Kg) = min{g Ky C (K2)+5 N Ky C (Kl)-l—e} .
Here is a metric-free description! of the topology on K(X).

10b2 Exercise. The following two conditions on K, Ky, Ky, --- € K(X) are
equivalent:
(a) K, —» K;
(b) for every open U C X,
(bl) if K C U then K, C U for all n large enough;
(b2) if KNU # (0 then K,, NU #  for all n large enough.

Prove it.

1So-called Vietoris topology on K(X).
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If two metrics on X are equivalent then the two corresponding Hausdorff
metrics on K(X) are equivalent. Thus, a metrizable space K(X) is well-
defined for every metrizable space X.

10b3 Exercise. If X is separable then K(X) is separable.
Prove it.

We return to a metric space X.

10b4 Exercise. Let Kl,Kg,"' € K(X), Ki D Ky D ..., then dKn T dg
where K =N, K,,.
Prove it.

10b5 Exercise. Let K, Ky, --- € K(X) be such that the set K = Cl(K; U
Ky U...) is compact; then

(a) dK = lllfn dKn;

(b) liminf, dk, = dk., where K = N, Cl(K,, U K,11 U...) is the so-
called topological upper limit of K,;

(¢) Ko D limsup,, K, and this inequality is generally strict.
Prove it.

10b6 Exercise. Let Ky, Ky, -+ € K(X) and ¢, — 0. If X is complete then

the set

n

is compact.
Prove it.

10b7 Proposition. If X is complete then K(X) is complete.

Proof. Given a Cauchy sequence K, Ky, -- € K(X), we take ¢, — 0 such
that dy(K,, Knir) < &p, then K, C (K,,).c,, therefore

UK. KU UK.,

The latter is compact by [LI0b6l Thus, Cl(U,K,) is compact. By [10b5
liminf, dg, = dk,. However, dg, are a Cauchy sequence; thus ||dg, —

di || = 0, that is, K,, — K. O

10b8 Corollary. (a) If X is completely metrizable then K(.X) is completely
metrizable;
(b) if X is Polish then K(X) is Polish.
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10c Dimensions of typical sets

10c1 Theorem. ! Quasi all K € K(R") satisfy
dimy(K) =0, dimy(K)=n.

This fact should be another manifestation of the phenomenon seen in
lel(b). I wonder, is there a general theorem that implies both as special
cases?

10c2 Corollary. Quasi all K € K(R™) are null sets, and (therefore) nowhere
dense.

Strangely, small sets are the majority. . .
In order to avoid the question of continuity of m(K,.) in K (for a fixed
¢) we introduce

f(K) = é/ﬂem(Kﬂ)da: / (1 - éd;{>+dm.

If K, — K then dg, — dg uniformly, thus f.(K,,) — f-(K) (since the
relevant part of R" is bounded). It means that f. : K(R") — (0,00) is
continuous.

By monotonicity;,

1 1 [°
glKe) < 2 [ mi, ) da < miK.),
0

therefore

1+O< 1 ) logm(K-‘rE/Z) < logfs(K) < logm(K—i-e)
log1/e log(¢/2) — loge —  loge

In combination with it gives

log f.(K
log /- (K) —n —dimy(K) ase— 0+
loge
if dimy(K) exists; and in every case,
(10c3)
S log f.(K log f-(K .
n — dimy (K) = lim inf log fo(K) < lim sup log /-(K) =n —dimy(K).
e—0+ log e 0+ loge

IP.M. Gruber (1989) “Dimension and structure of typical compact sets, continua and
curves”, Monatshefte fiir Mathematik 108, 149-164.
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Proof of Theorem [10c1]. Finite K are dense in K(R"™) and are of Minkowski
dimension 0. Thus,

log f.(K
L() n (as e — 0)
loge
on a dense set. By 5b9,
log f.(K
lim sup log /e(K) >n (thus, =n)

o0+ loge

for quasi all K € K(R™). By (10c3)), dim,,;(K) = 0 for quasi all K. On the
other hand, sets of Minkowski dimension n are also dense (try finite unions
of balls; or even a ball plus a finite set). Thus,

log f.(K
log /e(K) —0 (ase— 0+)
log e
on a dense set. By 5b9 (again),
log f.(K
timinf 2255 0 (s, = 0)
=0+  loge
for quasi all K € K(R"). By (10c3), dimp(K) = n for quasi all K. O

10c4 Exercise. Quasi all K € K(R") satisfy
VU (KNU #0 = dimy(KNU)=n),

where U runs over all open sets.
Prove it.

10c5 Corollary. Quasi all K € K(R") are perfect sets.
By Theorem quasi all K € K(R") satisfy

K.
Va > 0 liminfM:O, lim sup

e—0+  gn—@ em0t  EY

On the other hand,

Kie
(10c6) m(K,.) — 0, % — oo (ase — 0+)

since m(K) = 0, and K is infinite (and % — C,|E| for finite F).
A more detailed analysis leads to a stronger result.
We recall the “anti-Egorov” phenomenon discussed in Sect. 7a (recall also

9b2) and give it a name.!

Not a standard terminology.
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10c7 Definition. Let X be a completely metrizable space, and fi, fo, - :
X — (0,00). We say that quasi everywhere

frn — 0 with nothing to spare

if {z : f,(z) — 0} is comeager, but {z : A, f,(z) — 0} is meager whenever
A, — 0.
Similarly, we say that quasi everywhere

fn — oo with nothing to spare

if {z: f,(x) = oo} is comeager, but {x : a, f,(r) — 0o} is meager whenever
a, — 0.

(And the same for ¢ — 0+ instead of n — 00).

10c8 Theorem. For quasi all K € K(R"),

m(K4.) — 0 (as € — 0+) with nothing to spare,
m(Ky)
en
Proof. Convergence is already established, see (10c6)); “nothing to spare” will
be proved. Using (and [L0al]) we reformulate it equivalently as follows:

— 00 (as € — 0+) with nothing to spare.

N.(K) — oo (as € — 0+) with nothing to spare,
e"N.(K) — 0 (as € — 0+) with nothing to spare.

The first relation. Let a(g) — 0; we have to prove that {K : a(e)N.(K) —
oo} is meager. It is sufficient to prove for arbitrary ey that the set S =
{K : Ve <&y a(e)N(K) > 1} is nowhere dense. We'll prove that a finite
Ky € K(R") cannot belong to the closure of S; this is sufficient, since these
K, are dense in K(R").

We take € < gq such that a(e)|Ko| < 1. Every K such that dy(Ky, K) < ¢
satisfies No(K) < |Kpl, thus, a(e)NV.(K) < 1. We see that S misses the
e-neighborhood of K.

The second relation. Let A(e) — oo; we have to prove that {K :
A(e)e"No(K) — 0} is meager. It is sufficient to prove for arbitrary ey that
the set S = {K : Ve <egq A(e)e"N.(K) < 1} is nowhere dense. We'll prove
that Ky € K(R™) with nonempty interior cannot belong to the closure of S;
this is sufficient, since these K| are dense in K(R").

There exists ¢ > 0 such that e"N.(Kj) > ¢ for all e. We take ¢ < &
such that A(g)e > 2". Every K such that du(Ky, K) < e satisfies V.(K) >
Noe(Kyp), thus, A(e)e"No(K) > 1. We see that S misses the e-neighborhood
of Ko. L]
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In this sense,

1
e"<m(K )<l and 1< NMN(K) < —

gn
(as € — 40) with nothing to spare.
10d Besicovitch sets
By Besicovitch sets we mean planar compact sets
that contain unit line segments in every direction.
We want to minimize the area of such set. It was
conjectured that the deltoid is optimal, of area
7/8. Amazingly, the minimal area is zero!*
10d1 Exercise. The set B of all Besicovitch sets De]tOid-l Its E)Ou;}d-
is a closed subset of K(R?). ary is {ge" + ge 72" :
Prove it. 0<t< 27}

Thus we may talk about typical Besicovitch sets.

10d2 Theorem. ? Quasi all Besicovitch sets are null sets.

A spectacular manifestation of the tendency “small sets are the majority”!

On K(R"), Lebesgue measure K + m(K) is an upper semicontinuous
function. Moreover, K — p(K) is upper semicontinuous on K(X) for every
locally finite measure p on X. Proof: K,. | K, therefore u(K,.) | p(K);
if W(K) < a then p(Ky.) < a for a small e, and u(K;) < a whenever
dH(Kl, K) S E.

Thus, in order to prove Theorem it is sufficient to prove that { K €
B:m(K) < ¢} is dense in B for all .

We divide the set of all directions in two subsets: these closer to the z
axis, and to y axis. We have B = B; N By where B; consists of sets that
contain unit line segment in every direction closer to the x axis, and By
to y. It is sufficient to prove that {K € By : m(K) < ¢} is dense in By,
since if Ky € By, Ky € By, m(K;) < €, m(Ks) < ¢, then K; UK, € B,
m(KyUK) < 22 and dy (KU Ky, K) < max(du(Ky, K), du(Ky, K)) (think,
why).

We'll prove a stronger claim: quasi all sets of B; are null sets.

1Some authors define Besicovitch sets as null sets with that property.
2T.W. Korner (2003) “Besicovitch via Baire”, Studia Math. 158, 65-78. See also
Sect. 4.5 in book: E.M. Stein and R. Shakarchi, “Functional analysis”, Princeton 2011.
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To this end it is sufficient to prove that
(10d3) m(K N ([a,a+¢] x R)) < Ae?

for quasi all K € Bj, whenever a € R, ¢ > 0; here A is some absolute
constant.

Given a and e, we have an open set of such K € By, and we’ll prove
that this open set is dense in By. Given K € B; and N, we seek K; € By
satisfying and dg(K;, K) = O(1/N).!

We take directions dy,...,dy, closer to the z axis, that are O(1/N)-
dense among all such directions. For each ¢ = 1,..., N we choose a unit
line segment S; C K in the direction dj. Rotating S; by angles +O(1/N)
around one of its points (specified below) we get S; € K(R?) such that the
set S = Sl n---U S'N belongs to B; and S c Kioa/n).-

We choose the center of the rotation as the point of S; most close to the

line {a + 5} x R (be it on the line or not). Then m(S;) = O(e?/N) (think,
why), thus m(S) = O(e?). It remains to take K; = S U K, where K, C K is
a compact null set (even finite, if you like) such that K C A o1 n); indeed,
then K C (Kl)JrO(l/N) and K, C K+O(1/N)-

Hints to exercises

10a2; (c)==-(a): if no A is finite then some B is infinite; (a)=-(c): if A is
finite then some e-ball contains x,, for infinitely many n.

try finite (compact) sets.

[TODGt use [0a3l

M0c4t use a countable basis.

Ky = K.

Index
Besicovitch set, dw,
dy. G5
Hausdorff metric, KKOO
Minkowski dimension, K(X),
M., B3 B4
nothing to spare, N, B3l B4

LAl O(1/N) are absolute (I mean, with absolute constants).
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