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7a About Severini-Egorov theorem

For every sequence of measurable functions fn : [0, 1] → R there exists a
sequence of numbers εn > 0 such that εnfn → 0 almost everywhere. This
fact follows easily from the first Borel-Cantelli lemma; we take εn such that∑

nm{x : |εnfn| > 1
n
} <∞, then |εnfn| ≤ 1/n for n > N(x).

“Almost” in “almost everywhere” cannot be dropped. Here is a coun-
terexample:

(7a1) fn(x) =
1

dist(2nx,Z)

(if 2nx /∈ Z; otherwise fn(x) = 0).1 Taking x =
∑

k 2−nk with nk+1 − nk ≥ 2
we get fnk

(x) ≥ 2nk+1−nk−1 (think, why).

7a2 Exercise. If fn : [0, 1] → R satisfy fn → ∞ almost everywhere then
there exist cn, Cn such that 0 < cn < Cn < ∞, cn ↑ ∞, Cn ↑ ∞ and
cn � fn � Cn (that is, fn/cn →∞ and fn/Cn → 0) almost everywhere.

Prove it. Do the same for fn → 0.

On the other hand, given cn, Cn we may take, say, fn = cn on (0, 1/2)
and fn = Cn on (1/2, 1), violating both relations cn � fn, fn � Cn.

Thus, given a sequence of random variables that tends to infinity almost
surely, we always can say something (but maybe not too much) about the
rate of growth. The same holds for convergence to 0, of course.

Having |fn| � εn almost everywhere we also have m{x : ∀k |fn+k(x)| ≤
εn} → 1 as n→∞, which leads to the following.

7a3 Theorem. (Severini-Egorov) If f, fn : [0, 1] → R are measurable func-
tions such that fn → f almost everywhere then for every ε > 0 there exists
a measurable A ⊂ [0, 1] such that m(A) ≥ 1− ε and fn → f uniformly on A.

1Or fn(x) = tan 2nx, if you like.
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By regularity (recall (6a1)), A may be chosen to be compact.

7a4 Corollary. There exist An ⊂ [0, 1], An ↑, such that ∪nAn is of full
measure and fn → f uniformly on each An.

Nothing like that holds in the topological approach. Recall for example
the random walk conditioned to stay positive1 (Sect. 2b); there, n−x(n) ↑ ∞
for quasi all x ∈ X+, but nothing can be said about the rate of convergence
(lower bound, I mean; the upper bound n− x(n) ≤ n is trivial). According
to 2b3, an = log log log n are not a lower bound.

7a5 Exercise. For fn : X+ → R defined by

fn(x) =
1

n+ 1− x(n)

prove that fn ↓ 0 quasi-everywhere, but the convergence can be uniform on
A ⊂ X+ only if A is nowhere dense.

In contrast to 7a4, if An ⊂ X+ are such that fn → 0 uniformly on each
An then ∪nAn cannot be comeager, and moreover, must be meager.

7a6 Exercise. Let (xn)n be the random walk.2

(a) Prove that {n : x(n) = 0} is infinite for quasi all x ∈ X;
(b) defining n1(x) < n2(x) < . . . by {n : xn = 0} = {n1(x), n2(x), . . . }

prove that for every (ak)k the set {x : ∀k nk+1(x)− nk(x) ≤ ak} is nowhere
dense;

(c) continuing (b) prove that

lim sup
n

nk+1(x)− nk(x)

ak
=∞ for quasi all x ∈ X .

Here, nothing can be said on the rate of growth. And the same holds for
the functions fn : [0, 1]→ R defined by (7a1): for every (an)n,

lim sup
n

fn(x)

an
=∞ for quasi all x ∈ R

by 2b1 (for c =∞) or 5b9.

1Though, the same holds for the unconditioned random walk.
2Unconditioned. Though, the same holds under the condition.
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7b About Lusin’s theorem

7b1 Theorem. (Lusin) If f : [0, 1] → R is a measurable function then for
every ε > 0 there exists a measurable A ⊂ [0, 1] such that m(A) ≥ 1− ε and
the restriction f |A is continuous (on A).

Once again, by regularity, A may be chosen to be compact.
Do not think that the whole f is continuous on A. (Try 1lQ.)
For f = 1lQ, f |A is continuous for some A of full measure, but this is not

the general case, as we’ll see soon.

7b2 Example. There exists a measurable function f : [0, 1]→ R such that

m{x ∈ (a, b) : f(x) ∈ (c, d)} > 0

for all (a, b) ⊂ [0, 1] and (c, d) ⊂ R.
Here is why. We take a sequence (yn)n dense in R and a sequence of

intervals In = (xn − 3−n, xn + 3−n) ⊂ [0, 1] such that (xn)n is dense in
[0, 1]. Almost every x ∈ [0, 1] belongs only to finitely many intervals In; we
take f(x) = yn for all x ∈ In \ (In+1 ∪ In+2 ∪ . . . ) and, say, f(x) = 0 for
x ∈ [0, 1] \ ∪nIn.

7b3 Exercise. Prove that this function is indeed an example.

7b4 Exercise. Prove that Theorem 7b1 generally fails for ε = 0.

Theorem 7a3 fails for ε = 0 evidently (just try fn(x) = xn).

Proof of Theorem 7b1. Continuous functions being dense (in measure) among
(equivalence classes of) measurable functions, we take continuous fn : [0, 1]→
R such that fn → f almost everywhere. Theorem 7a3 gives measurable
A ⊂ [0, 1] such that m(A) ≥ 1 − ε and fn → f uniformly on A. It follows
that f |A is continuous.

The topological approach contains nothing like Theorem 7a3 and never-
theless it contains a counterpart of Theorem 7b1, and moreover, of “Theorem
7b1 with ε = 0”.

7b5 Definition. Let X, Y be metrizable spaces. A map f : X → Y has the
Baire property1 (symbolically, f ∈ BP(X → Y )) if f−1(V ) ∈ BP(X) for all
open V ⊂ Y .

1“Baire measurable” according to Kechris (Sect. 8.I) which may be misleading (as noted
in Sect. 6c).
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7b6 Theorem. Let X be completely metrizable, Y separable, and f ∈
BP(X → Y ). Then there exists a comeager A ⊂ X such that f |A is contin-
uous (on A).

Proof. We take a countable basis (Vn)n of Y and open Un ⊂ X such that
sets Un4f−1(Vn) are meager. The set A = X \∪n(Un4f−1(Vn)) is comeager,
and (f |A)−1(Vn) = Un ∩ A.

The converse is also true: if f |A is continuous for some comeager A ⊂ X
then f ∈ BP(X → Y ), since for every open V ⊂ Y there exists open U ⊂ X
such that f−1(V ) = U ∩ A and therefore f−1(V ) ∈ BP(X).

Can we prove Lusin’s theorem 7b1 similarly to 7b6, avoiding 7a3? Yes,
we can.

Proof of Theorem 7b1 (again). We take a countable basis (Vn)n of R and,
using regularity (6a1), open Un ⊂ [0, 1] such that f−1(Vn) ⊂ Un and m

(
Un \

f−1(Vn)
)
≤ 2−nε. The set A = [0, 1]\∪n(Un\f−1(Vn)) satisfies m(A) ≥ 1−ε,

and (f |A)−1(Vn) = Un ∩ A.

7c About measurable functions

If f ∈ BP(X → Y ) and B ∈ BP(Y ), it does not imply f−1(B) ∈ BP(X).
Moreover, this can fail for a nowhere dense B. Here is why.

7c1 Exercise. There exists a one-to-one f ∈ BP([0, 1) → [0, 1]) such that
f([0, 1)) is contained in the Cantor set.

Prove it.

Let V ⊂ [0, 1) be a Vitali set and B = f(V ), then B is nowhere dense,
but f−1(B) = V /∈ BP([0, 1]).

A set endowed with a σ-algebra (of subsets) is called measurable space;
subsets belonging to the σ-algebra are called measurable. A map from one
measurable space to another is called measurable if the inverse image of every
measurable set is measurable.

Several useful σ-algebras are defined on every metrizable space X. First,
the Borel σ-algebra B(X) generated by open sets. Second, BP(X) generated
by open sets and nowhere dense sets.1

Let X be a measurable space and Y a metrizable space. The following
two conditions on a map f : X → Y are equivalent:

∗ f−1(V ) is measurable (in X) for every open V ⊂ Y ;

1Third, universally measurable sets, etc.; these will not be used here.
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∗ f−1(B) is measurable (in X) for every Borel B ⊂ Y ; in other words, f
is measurable from X to (Y,B(Y )).

Given two metrizable spaces X, Y , we may endow X with B(X) and get
so-called Borel maps (or Borel measurable maps) f : X → Y . We also may
endow X with BP(X) and get f ∈ BP(X → Y ). In addition, when X = R,
we may endow it with the Lebesgue σ-algebra and get Lebesgue measurable
maps R→ Y .

In all cases, on Y the relevant sets are Borel measurable. Indeed, if
f : R → R is Lebesgue measurable and B ⊂ R is Lebesgue measurable, it
does not imply Lebesgue measurability of f−1(B). This phenomenon was
already noted for BP (see 7c1 and around it).

7c2 Exercise. Let X be a measurable space and fn : X → [−∞,+∞]
measurable functions.

(a) If f : X → [−∞,+∞], f(·) = supn fn(·), then f is measurable.
(b) If f : X → [−∞,+∞], f(·) = lim supn fn(·), then f is measurable.
(c) If f : X → [−∞,+∞], fn(·)→ f(·) as n→∞, then f is measurable.

Prove it.

7c3 Exercise. Let X be a measurable space, Y a separable metrizable space,
fn : X → Y measurable functions, and fn(·) → f(·) as n → ∞, then f is
measurable.

Prove it.

The latter fact applies to Borel functions, as well as functions with Baire
property (and also to Lebesgue measurable functions on R).

Having on X also a σ-ideal (in addition to a σ-algebra) we get an equiv-
alence relation between measurable functions, and a quotient set (of equiv-
alence classes). For indicator functions X → {0, 1} these are equivalence
classes of measurable sets. Two such cases were treated in Sect. 6d: Am/

m∼
and BP /∼.

A measurable function f : X → R may be described by a family (At)t∈R
of measurable sets At = f−1

(
(−∞, t]

)
⊂ X satisfying

s ≤ t =⇒ As ⊂ At ,⋂
t

At = ∅ ,
⋃
t

At = X ,

∀t ∈ R
⋂
ε>0

At+ε = At .

Every such family (At)t corresponds to some (evidently unique) f ; just
f(x) = min{t ∈ R : x ∈ At}.
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Similarly, an equivalence class of measurable functions may be described
by a family of equivalence classes of measurable sets. In order to restore [f ]
from ([At])t choose At ∈ [At] for t ∈ Q and let f(t) = inf{t ∈ Q : x ∈ At}.

An equivalence class of measurable maps f : X → Y (Y being a separable
metrizable space) may be described by a family

(
[AB]

)
B of equivalence classes

of measurable sets, indexed by all Borel sets B ⊂ Y , satisfying

[A∅] = [∅] , [AY ] = [X] ,

[AB1∩B2 ] = [AB1 ∩ AB2 ] ,

[AB1∪B2∪...] = [AB1 ∪ AB2 ∪ . . . ] .

In order to restore [f ], use a countable base of Y . . .

Hints to exercises

7a2: Consider m{x : infk fn+k(x) ≥ c}.
7b3:

∑
k 3−n−k ≤ 1

2
· 3−n.

7b4: use 7b2–7b3.

7c1: f(
∑

n 2−nβn) =
∑

n 3−n · 2βn is continuous quasi everywhere.

7c3: apply 7c2(c) to ρ(x, f(·)) = limn ρ(x, fn(·)).
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