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4a Some motivation

Sanov’s theorem for a discrete distribution with d atoms was obtained in
dimension (d—1); for a nonatomic distribution, infinite dimension is required.

On the other hand, the sum of n random variables is a symmetric (that
is, permutation invariant) function of them; the same holds for the empirical
distribution (sample frequencies). But we are also interested in more gen-
eral, non-symmetric functions. For example, given i.i.d. random variables
X1, Xa,... with the expectation 1, consider

P(3n X;+---+ X, <—100).

(Think about the risk of ruin in gambling, insurance or finance.) Or, like
this:
P(3k,0:1<k<l<n, X+ +X,<-100).

Or, for a large 2-dimensional array n x n of such i.i.d. random variables one
may ask about existence of a k x k sub-array whose sum is < —100; etc.
Here, infinite dimension is involved even if each random variable takes only
two values.

4b A joint compactification

When dealing with a sequence of models, for n = 1,2,..., and interested in
the limit as n — oo, it may help to embed these models into a single compact
space.

Recall the Banach space L,|0, 1], for p € (1, 00), of all equivalence classes
of measurable functions [0, 1] — R, Wlth the norm ||f||p (fo | f(z)|P dz) /.
Its dual space is L,[0, 1] for q = -2 (that is, ~ —I— = =1);if f € L, and

g € L, then (f,g) fo d:v is well- deﬁned and L] < N1 fpllgllg
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(Holder). Every linear' functional ¢ on L, is of the form (-, g) for some
g € L,* The unit ball B, = {f € L, : ||fll, < 1} in the norm topology is
separable,® but not compact.? Here is a weaker, compact topology on B,,.
Given f, f1, f2,--- € By, all g € L, such that (f,,,g) — (f,g) (asn — 00)
are a linear® subspace (think, why); if it is the whole L, one says that f, — f
in the weak topology.® This topology is metrizable on B,;” in particular, it

corresponds to the norm
a
| f@ya
0

Weak compactness of B, is easy to prove. We take g1, g2, -+ € B, dense in
B,. Given a sequence (f)x in B,, we take a subsequence (denoted by (fx)x
again) such that (fx,g1) converges; then, such that also (fx,g2) converges;
and so on. The diagonal construction ensures that limy/(fy, g;) exists for all
i. We get a linear functional ¢(g) = limy(fy, g) on L,; it is £(g) = (f, g) for
some f; and fp — f weakly.

We turn to probability measures on L, that are concentrated on finite-
dimensional subspaces, but the rate function that describes their large de-
viations is not. If puzzled, recall Sect. la: the binomial distributions are
concentrated on rational numbers, but their rate function ~(+) is not.

Let p be a probability measure on R such that,® for a given ¢ € (1, 00),

[/ lline = sup
a€(0,1)

Au(t) =0(Jt]?) ast — £oo,

and A} (0) = 0 (that is, expectation zero), and A7(0) > 0 (that is, not a
single atom). We introduce a random element S,, of L,, where % + (11 =1,

T mean, algebraically linear and continuous (that is, bounded).

2Hint: first, £(14) = fA g by Radon-Nikodym. Second, take f such that fg = |g|?, that
is, f = |g|9/? sgng; then, for every measurable A such that g is bounded on A we have
Uf-1a) = [y fg= [,lgl” and || f - Dall, = ([, [9%)"/7, thus [[€] > ([, 1g]9)*/.

3Rational step functions are dense; rational piecewise linear functions are also dense.

“Try f,(z) = sinnz, or the Rademacher functions f,(z) = “;‘;22::‘?‘

51 mean, algebraically linear and closed.

SIn this case the convergence is uniform on compact subsets of Ly, but (generally) not
uniform on Bj.

"But not on the whole L,; never mind.

8More generally, one may require V¢ A, (t) < oo and use Orlicz spaces (more general
than L, spaces).
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where Xi,..., X, are independent random variables, each distributed pu.
Here is the corresponding cumulant generating function:

1/n 1
A (g) =InE exp(Sn,g>:A#(n/ g)—l—”-—i-A#(n/ g) forge L,.
0 n—1

It is easy to guess that 1A ) — fo ( ) dx as n — oc.
4b1l Lemma. A (t) = (|t|q*1) as t — +o0.

Proof. For s,t > 0, by convexity, A,(t +s) > A,(t) + sA),(t ); if ¢ is large
enough, then SAL(t) < Ot + s)4 for all s > 0; and mingo 2(t 4 )7 =

#tq_l. The case t < 0 is similar. O

4b2 Lemma. There exists C' such that for all g, g» € Ly,

‘ /01 Au(g1()) do — /01 Ay (g2(x)) d

Proof. Using [AbI] we take C' such that

< Cllgr = gally (1 + llonlly + llgalle) ™

Vi, to [Au(tr) — Au(t)] < Clty — tof (max(1, [, |t2|))q_1;

then

‘/ gl d$—/ AM(gQ(x)) dx S/o |Au(g1(x))—Au(gQ(x))|dx§
< C{|lgi—gol, (max(L, |g1, |921))7™") < Cllgi—galloll (max(L, [gal, [g2]))* "]l ,

and ||(max(...)) ||, = [[max(...)[|¢™", and finally, || max(...)[l; < |1 +
91] + g2lllg < 1Tllg + llgalla + Nlg2lla- =

4b3 Proposition. For every g € L,[0,1],

()= Anlo) = [ Ao de asn—s oo,

and A, (g) < Ax(g) for all n.

Proof. Introducing linear operators A,, : L, — L, by A,g = (n fol/ " g) Bo,1y+
4 (n f; g)]l(L—lJ) we have ||4,|| <1 and A,g — ¢ (in the norm topol-
ogy) for all g € L, (indeed, such g are a subspace containing all continuous

functions). We note that A, (g9) = Ax(A4, ) by 4b2] As(Ang) = Ax(9).
Also, 1A, (g9) < Ax(g), since A, (n fkkH /m (z)dz) < nfkkH /m Au(g(2)) dz
by convexity of A,,. O
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4b4 Example (Normal distribution, see 2a2). Let £ (dx) = \/%7 e /2 then

Au(t) = 12/2, and Ao(g) = [, 39°(x) dz = L|g|l3. Every p € (1,2] may be
used.

4b5 Example (Fair Coin see 2a3) Let p({—1}) = 1/2 = p({+1}), then
A, (t) = Incosht, and Ay fo In cosh g(x) dz. Every p € (1,00) may be
used.

Note that $A,(t) converges to A/,(+00) € (0,+0c] as t — 400, and to
Aj,(—00) € [-00,0) as t — —oo; the least closed interval of full measure y is
[A},(=00), A, (+00)] NR. Also,

1
(4b6)  lim —A(tg) = |A,(— ]/ x) dz + |A),(+o0 |/ x)dr >
t——+oo ¢
> min (|A},(—00)], |A},(+00)lgll: -

For the (one-dimensional) distribution v, of (S,,g) we have A, () =
InE exp(t(Sy, g)) = An(tg), thus,

(4bT7) %A,,n (1) = Ax(tg) = /0 Au(tg(z))dz asn — oo.

Much more can be said about v, since it corresponds to a sum of n indepen-
dent (but not identically distributed) random variables. On the other hand,
(4b7)) itself leads to LDP, according to “finite-dimensional” Sect. dc| below.

4c¢ Gartner-Ellis theorem

Let probability measures vy, v5,... on R be such that the limit
1
(4cl) lim —A,, (t) = A(t) e R
n—oo N,

exists for all t € R. (In particular, v, = v*" satisfy just A, (t) = A,(t).)

Convexity of A,, implies convexity of A, and therefore, existence of one-
sided derivatives A'(t—) < A’(t+). However, these can differ (in spite of
analyticity of A, ); recall Example 2c10.

The Legendre transform

A*(z) = sup(tz — A(t))
teR

is a convex function R — [0, 00| (since A(0) = 0), and |%‘A*@) — 00 as
x — oo (since A(+) < 00).



Tel Aviv University, 2015 Large and moderate deviations 36

Note that sup,sq(tz — A(t)) = 0 <= 2 < A(0+), and sup,,(tz —
A(t)) =0 < x> AN(0—); thus,

sup,<q(tz — A(t)) >0 for z < A’(0-),
AN (z) =10 for A'(0—) <z < A'(0+),
supso(tz — A(t)) >0 for z > A'(0+).

Consider A'(—o0) € [—o00,+00) and A'(4+00) € (—o0,+o0]. For z €
(A'(—o0), A'(+00)) the function ¢ — tz — A(t) is maximal at some ¢ (maybe,
non-unique); then clearly A'(t—) < x < A(t+) and A*(z) = tx — A(t).
On this open interval A* is finite and convex, therefore continuous. If = ¢
[A'(—0), A'(+00)] then A*(z) = +oo (try t — —o0, t — +00). But if
x € {N(—00), N(+00)}NR, two cases are possible: either A*(x) < oo (recall
2¢7), or A*(z) = oo (recall 2¢8).

4c2 Lemma.

exp(—nA*(z) 4+ o(n)) for z > A'(0+);
z)+o(n)) forx < A'(0-).

o
[
o)
|
N

"

Proof. Let x > A'(0+) (the other case is similar). For ¢ > 0 we have

)< [ e v, (dx)

Vn|nx, 0o S = exp (A,,n () — ntx) :
1 1
—Iny,[ne,00) < —A, (t) — tx — A(t) — tx;
n n
1
limsup — Inv,[nx, 00) < —sup(tz — A(t)) = —A*(z).
n o N >0

O

For tilted measures v,; we have A, ,(s) = A, (t +5) — Ay, (t), thus
LA, (s) = Ay(s) = A(t + s) — A(t). The corresponding Legendre transform
1s

Af(x) = A" (x) —tx + A(2),
since sup, (sz — Ay(s)) = sup,(sz — A(t + s) + A(t)) = sup,((s — t)z —
A(s) + A(t)) = sup,(sz — A(s)) — to + A(t). Note that A} vanishes on
[A(0=), AY(0+)] = [A'(t=), A'(t+)] (only). By [ic2]
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Therefore
(4¢3) Vni(na,nb) — 1  whenever (a,b) D [A(t—), N'(t+)].

Taking into account that

;Vn (z) = exp(—ta+A,,(t)) > exp(—nmax(ta, tb)+A,,(t)) for z € (na,nb)
Vn,t

we get

(4c4) Vn(na,nb) > exp(—nmax(ta, tb) + nA(t) + o(n))

whenever (a,b) D [A'(t—), A'(t+)].
Now we assume that A is differentiable (that is, A'(t—) = A/(t+) for all
teR).!

4c5 Lemma. If A'(0) <z < A'(4+00), then for every ¢ > 0,
Vo (nz,n(z + €)) > exp(—nA*(z) + o(n)) .

Proof. We take the maximal® o > 0 such that A’(fg) = z. By ({c4)), for
every b > z and every t such that x < A'(t) < b we have v,(nz,nb) >
exp(—ntb-+nA(t)+o(n)); that is, liminf,, L In v, (nz, nb) > —tb+ A(t) when-
ever x < A'(t) < b; the latter holds whenever t > ¢, is close enough to to,
therefore it also holds for ¢ = to: liminf, X Inwv,(nz,nb) > —teb + A(te) =
—tox + A(to) to(b — x) = —A*(z) — to(b —z) for all b > 2. Finally,
liminf, L nv, (nz,n(z +¢€)) > —A*(z) — to(b — z) for all b € (z,z + €],
therefore also for b = . O

In combination with we get the following.
4c6 Proposition. If v, satisfy with a differentiable A, then
Vn(nz,n(z + €)) = exp(—nA*(z) + o(n))
for all z € [A’(0), A’(+00)) and € > 0.
And, of course,
vn(n(z — €), nx) = exp(—nA*(z) + o(n))
for all z € (A'(—o00),A’(0)] and € > 0.

'Without this assumption Lemma still holds for a ¢ Uy[A/(t—), A (t+)).
?Recall 2¢10. ..
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4¢7 Example. Do not think that A determines uniquely lim,, * In v, (na, nb)

in all cases.
Let v, be the atom (of probability 1) at 1/n. Then A, (t) = 1t; A(t) = 0 for

all t; A*(z) = +oo for all = # 0; A*(0) = 0; and v,(0,00) = 1"for all n.
The atom at —1/n leads to the same A (and A*), but here 1,(0,00) = 0 for

all n.

We turn to a finite dimension. Let probability measures vy, s, ... on R?

be such that the limit
1
(4¢8) lim —A, (t) = A(t) e R

n—oo M,

exists for all t € R?. As before, A is convex, and

A*(z) = sup (({t,z) — A(t))

teRd

is a convex function R? — [0, 0o], and ﬁA* (x) — o0 as |z| — oo (since A is
locally bounded).
We consider the interior (possibly, empty) G of the set {z : A*(z) < oo}.!

4c9 Exercise. (a) v € G if and only if lim inf};_, W > 0.

(b) G is convex.
Prove it.

4c10 Theorem. (a) For every nonempty closed set F' C R%,

1
li —1 F)< —min A*(z).
1mnsup " nv,(nF) < min (x)

(b) If A is differentiable and G' is nonempty,? then for every open set U C R?,

1
liminf — Inv,(nU) > — inf A*(x).
n n zeU

(The infimum over F' is reached; think, why.)

4c11 Exercise (upper bound for a half-space). 3

v ({nz : (t, ) — A(t) > c}) < exp(—cn + o(n))

for all t € R? and ¢ > 0.
Prove it.

IBut in Sect. 3 G was a set of ¢, not z.

2The claim still holds when G = (), but the proof is more complicated; see Dembo and
Zeitouni, Exer. 2.3.20.

3Recall 3a3.



Tel Aviv University, 2015 Large and moderate deviations 39

Now we assume that A is differentiable.

As before, for every x € G there exists t € R? (maybe, non-unique) such
that VA(t) = z and A*(x) = (¢t,z) — A(?).

The upper bound applies to a half-space not containing the “expec-
tation”, since (¢, VA(0)) — A(t) < 0 by convexity.

4c12 Exercise (half-space not containing the “expectation”). ' If ¢ > (¢, VA(0)),
then

Je >0 v,({nz: (t,x) >c}) = O(e™").
Prove it.
4c13 Exercise (exponential concentration near the “expectation”). 2
If U C R? is a neighborhood of the point VA(0), then

>0 1—v,(nU)=0(e"").
Prove it.
4c14 Exercise (lower bound). 3 If G # () and U C R? is open, then

> — i * .
Inv,(nU) > nxel{}rwaA (x) 4+ o(n)

Prove it.

Proof of Theorem[4c1((b). We have
inf A"(x) = inf A*(x)

zeU zeUNG
since, first, A*(x) = oo for ¢ G, and second, for z € 9G and y € G, by
convexity, A*(z+e(y—x)) < A*(z)+e(A*(y) —A*(z)) and z+e(y—z) € G.
It remains to apply fcI4] O

Proof of Theorem[4c1((a). If A*(z) > c then, by [ic11] = belongs to some
open half-space H = {y : (t,y) — A(t) > ¢} such that v,(nH) < exp(—cn +
o(n)). If A*(z) > c for all z of a compact set F, then v,(nF) < exp(—cn +
o(n)), since F' is covered by a finite number of such half-spaces (recall 3a6).
However, we need it for a closed F', not just compact.

Similarly to the proof of 3ab, we apply to t = +eq,...,+eq and
obtain, for every R,

1 —v,(n[-R,R]Y) <exp(—n(R—C)+ o(n))

1Recall 3a4.
2Recall 3a5.
3Recall 3al.
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where C' = max(A(—e1),A(e1),...,A(—eq), A(eq)). Thus, for every c there
exists a compact K C R? such that 1 — v, (nK) < exp(—cn+o(n)).! Finally,
Va(nF) < vy (n(FNK)) +1 - v,(nK). O

Here is a reason, why dimension d > 1 needs more caution than dimension
1. In one dimension, the function A* : R — [0, co] may be discontinuous (in
the compact topology of [0,00]) at A’(—o0) or/and A'(+o0) (recall (2¢7),
but its restriction to [A'(—o00), A'(+00)] MR is continuous, since A* is convex
and lower semicontinuous (as was noted before (3c2)). In higher dimensions,
A*|z need not be continuous.

4c15 Example. There exist ¢, € R? and ¢, € R such that the function f :
x — sup,, ({tn, ) +¢,) € [0,00] (evidently convex and lower semicontinuous)
is finite on the disk {x € R?: |z| < 1} but has a discontinuous restriction to
its boundary.

We choose ¢, € (0,7/2), ¢, | 0, introduce ¢,105 = (Pn + ©ni1)/2,
T, = (cos p,,sinp,) € R?, x,,05 = (cOS@n 105,50 0ni05) € R? and define
tn, Cp by

<tna xn) +cp = 0= <tna xn+1> + Cn s <tn>$n+0.5> +c, = 1.

In addition, we take ty = 0, ¢cg = 0. We get 105 — Too = (1,0), f(Tnio5) =
1 for all n, but f(zs) = 0.

Using the “multiscale” approach as in 2c¢10 one can construct a probability
measure f on R? such that A, behaves like f above.

4d Exponential tightness

We return to the random elements S, of L,, introduced in Sect. 4b]

4d1 Proposition. There exists € > 0 such that for all R large enough,
1
sup — InP (||Sy|l, > Rn) < —eRP.
n N

Using the weak topology of L, we have, for every C', a compact set K C L,
such that P (S, ¢ nK) = O(e~°"). This is called ezponential tightness.
Recall that A,(g) = InE exp(S,,¢) for g € L,, é—i—% =1; A, (9) —

Awe(9) = [y Au(9(x)) dz by [tb3} and 1A, (g) < Au(g). Also, A, (t) = O([t]9)

1S0-called exponential tightness; see Sect.
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as t — £oo, which implies' A(g) = O([|g]|?) as [|g|l, = oo. We introduce
Legendre transforms

Ay (f) = sup ((f, 9) — An(g)) € [0, 00];

9€Lq
AL() = S&P((f,g) —As(g)) €0, 00].
4d2 Lemma.
1
AL (f) —/ Ay (f(z))dz forall feL,.
0
Proof. First, A*_(f) < fol A (f(x)) da, since (f, g) fo r)dor—

fol Au(g(z))dz = [(f(z)g(z) — Au(g(z))) dz, and the mtegrand does not ex-

ceed A% (f(x)) irrespective of g.
In order to prove that A% (f) > fol A% (f(x)) dz we use operators A,, intro-

k
duced in the proof of 4b3t A, f = >, Silx=2 ry where f = n [, f(z)de

and the same for g.

We have
AL(f) = sup ((f,9) — Ax(9)) =
9=4ng
= sup (lkagk_lZAu(gk>:_ sup Y (fagk — Aulgr)) =
Glyeesgn N1 k n & T g1, 9n k
1 1 . .
= (it = 8ul0) = 1 S0 = [ Aitnso)
Also, A,f — [ in L,; we take n; < ny < ... such that A,,f — f
almost everywhere. The lower semicontinuity of A}, implies AJ(f(-)) <
liminf; A% (A, f(1)) ae; by Fatou’s lemma, fol Ar(f(z))de <
liminf; [ A% (A, f(2)) de < AL (f). O
4d3 Exerc1se ( ) A (f) = 400 whenever f # A, f;
(b) 1A% (n fo A (f(x)) dz = A% (f) whenever f = A, f;
(c) A*(nA f) — AL (f) for all f.
Prove 1t
4d4 Example (Normal distribution, see 2c¢6 and . Ar(z) = 2%, and
= Jo 3/2(x) de = 41113

"Hint: A, () < const - (1 + |¢[7) for all ¢.
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4d5 Example (Fair coin, see 2c7 and4b5)). Ay (x) = y(z) is just the function
of (lal); AX (f) = folv(f(x)) dz; note that y(z) = +oo for z ¢ [—1,1].

4d6 Lemma. There exists € > 0 such that for all x large enough,
N (x) > ea?, Ni(—x) > ea?, plr,00) < exp(—ea?), p(—oo, —z] < exp(—ea?).

Proof. We know that A,(t) < C|t|? for |[t| > T. Thus, for every t > T we
have A% (z) >tz — C|t|? and [z, 00) < exp(Ct|? — tx). Given 2 > CqT9™,
we take ¢ > T such that Cqt?™! = . Then tx — C|t|9 = c2P, where ¢ =
W. For (—x) the proof is similar. O

It follows from [4d6l and 4d2] that

inf Af > eRP  for large R.
Ifllp>R =(f) 2 &

(Hint: A% (z) > [z|P — const for all x.) It may seem that Prop. follows,
similarly to Theorem [4c10|(a). But no, in the infinite dimension we cannot
cover {f :||f|l > R} by finitely many half-spaces (not containing 0).

4d7 Lemma. There exists € > 0 such that
/exp(&t\x|p) p(dr) < oco.

Proof. Using the equality exp(e|z|P) =1+¢ fo\w e du we get

/exp(€|x|p),u(dx):1—|—5 // eE“duu(dx)zl—i—e/OoodueE“ / u(de)

0<u<|z|P |z[P>u

Lemma {4d6|gives o > 0 such that fmbu p(dx) < 2e7% for large u; it remains
to take € < 4. N

Proof of Prop. [4d1|
Lemma (4d7| gives ¢ such that E exp(e\Xl\p) = M < oco. We have ||%H; =

L(|X1]P + - -+ 4 |X,|P), therefore

P(ISull, > Bn) =P (

< E expe(|XqP + -+ + | X,[P)
- exp enRP

%

CS R PGP XG0P > R <
p

= M" exp(—enRP),

that is, L InP(||Syll, = Rn) < —eRP 4 In M; and of course, In M < $RP for
large R. [l
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4e Mogulskii’s theorem

Recall the weak topology on the closed unit ball B, of L,; it is compact. A
set F' C L, is called sequentially weakly closed,' if F'N RB, is weakly closed
for all R € (0,00). A set U C L, is called sequentially weakly open, if its
complement is sequentially weakly closed.

4el Theorem. (a) For every nonempty sequentially weakly closed set F' C
L

Do

1
: 1 < —min AT ().
hmnsup - InP(S, € nk) < IlpelgAm(f)

(b) For every sequentially weakly open set U C L,

1
oo b > * )
hnlllnfnlnP(SnEnU)_ }IelzfjAOO(f)

4e2 Corollary. Let a nonempty set A C L, satisfy

inf A* (f) = minA*_(f) =
Jof. () min o) =a

where A° and A are the interior and closure of A in the sequential weak
topology. Then

P(S, € nA) = exp(—an+o(n)) asn— cc.

We choose linearly independent gy, g2, -+ € B, that span? L,, and note
that

(fo = fweakly) <= Yk (fu,08) —— (f,0)
for all f, fi, f2,- -+ € B,. We introduce linear operators Ty : L, — R? by
Tuf = ({fr91)5-- -+ (f.9a)) 5
they are weakly continuous, and
(fn — f weakly) <= Vd Tuf, — Tyf .

Denote by v, the distribution of T;S,,. Similarly to (4b7)), by ,

1
EAud,n(tb cootg) = Ao(tigr + -+ tage) asn — oo

n other words, closed in the bounded weak topology (bw-closed). In fact, every weakly
closed set is bw-closed, but the converse fails; never mind.
2As a (closed) linear subspace.
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for all d and (t,...,t;) € R% since Ay, (t,... tg) = InE exp(t1<5n,g1> +

c+1ta(Sn, 94)) = InE exp(Sp, t1g1+ - -+taga) = An(t1g1+- - -+taga). Theo-
rem applies to vy, and A}, the Legendre transform of Ay : (t1,...,tq) —

Ao(tigr+ -+ -+ taga) = fo W(tigi (@) + - + taga()) da.
4e3 Exercise. A, is differentiable.
Prove it.!

4e4 Exercise. A
t
i inf 240 <

[ES.

Prove it.?

By [ded] and [Ac9] G contains 0 (and so, G # 0).

4e5 Exercise. (a) A5(T,f) is the supremum of (f, g) — A (g) over all g from
the finite-dimensional subspace spanned by g1, ..., g4;

(b) AS(Tuf) T A% (f) as d — oo.

Prove it.?

4e6 Lemma.
IfnellIJlAd(Tdf) 0 Ifnellngo(f) as d — oo

for every weakly closed F' C B,,.

Proof. We denote M = mingep A5 (f) and take f; € F such that
Ni(Tufa) = mingep AY(Tyf); clearly, this minimum does not exceed M.
Assume the contrary (to the claim of the lemma); liminfy oo A%(Tufq) =
M —4e < M. We take d; — oo such that Vi A} (Tq, fa;) < M — 3. WLOG,
fa, — foo weakly (otherwise, choose a subsequence); and A% (f.) > M, since
foo € F. Usingled|(b) we take d such that A%(Tyfs) > A5 (foo) —€ > M —¢.
For all i large enough we have A%(Tyfa,) > Aj(Tafs)—e by weak lower semi-
continuity of f > Aj(Tyf). Also, d; > d. Hence, A} (Ty, fa,) > Nj(Tufs;) >
AN5(Tufs) —e > M — 2¢; a contradiction.

[

Proof of Theorem([4ell(a). We denote M = mingep A% (f). WLOG, F is
bounded (otherwise we turn to FNRB, with R such that sup,, £ In P (||.S, |, >
Rn) < —M,; such R exists by Prop. ; F C RB,. By Theorem (a),

1
li InP(S, enk) < — A}
imsup - In ( nF) ) EI%?F) a(x),

'Hint: recall the proof of
2Hint: use (4b6)); all norms on R are equivalent.
3Hint: A is continuous.
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since vy (nTy(F)) = P(T4S, € nTy(F)) > P(S, € nF). Finally,
minger,p) Aj(x) = mingep A3(Tyf) — M by O
4e7 Lemma. Let U C L, be sequentially weakly open, and f, € U N B,.
Then there exist d and € > 0 such that

VfeB, (ITaf —Tafoll <e = feU).

Proof. Assume the contrary: f; € B, \ U, ||Tufa — Tafol < é. Taking into
account that ||Tyf — Tyfoll is increasing in d we have |Tyf,, — Tufoll < =

whenever n > d; thus Tyf, — T,fo for all d, that is, f, — fo weakly; a
contradiction. O

Proof of Theorem[4el|(b). Let fy € U; we’ll prove that liminf, % lnP(Sn €
nU) > —A% (fo). We take R such that fy € RB, and sup, £ InP(||S,], >
Rn) < =A% (fo); such R exists by Prop. . Lemma @ gives d and € > 0
such that Vf € RB, (||Tuf —Tufol| < e = f € U). It is sufficient to
prove that

1 n
nminf—m]}b(HTds— —Tuf
n n n

< 5) >—  inf  Ai(2),

z:||lx—Tqfoll<e

gives the needed inequality, since vy, ({nz : ||z — Tyfo] < e}) = P (||T;>>
Tdf()” < 8).

4e8 Example. Let X, X5,... be independent standard normal random
variables, and a,b > 0. Consider events

since infy.o—1,po<c Aj(x) < AY(Tufo) < A (fo) by . Theorem [4c10|(b)
[l

m

Bo={ o 3 (Xi—) 20}
-1
We’ll see that
1 —2ab for b <
“WP(E)—{ o U=
n —5(a+0)? forb>a

as n — oo.
In terms of the random elements S,, of L,,

1 max Y (X —a) = max /Ox (—Sn(u) — a> du .

n m=0,....,n ! 0<z<1

We introduce the set

A:{feLp: max/ox(f(u)—a)dqu},

0<z<1

then E, = {S, € nA}. According to [4d4] A% (f) = 3| f]3.



Tel Aviv University, 2015 Large and moderate deviations 46

4e9 Exercise. Prove that A satisfies the condition of Corollary [fe2] and
find a there.

4e10 Exercise. Formulate and prove a counterpart of for

J
max (Xg —a) >bn.
0<i<j<n
k=i
Multidimensional arrays of i.i.d. random variables may be treated simi-
larly. Various geometric bodies may be used instead of the intervals [i, j].

4ell Exercise. In the situation of [eg] formulate and prove a statement
about the conditional distribution (in the spirit of Prop. 3d2).

As was mentioned in Sect. the weak topology on B, is metrizable and,
in particular, corresponds to the norm
a
| f@yas
0

On the whole L,, the situation is more complicated; a linear functional (-, g) is
bounded w.r.t. ||+ ||int if and only if g is (equivalent to) a function of bounded!
variation. Nevertheless, we have the following fact.

[/ lline = sup
a€(0,1)

4el12 Lemma. A* is lower semicontinuous w.r.t. || - |[int-
0 t

Proof. 1t was seen (recall 4e5)) that A% is the supremum of (-, g) — A (g)
when ¢ runs over (finite) linear combinations of gy, gs,...;> and the only

requirement on these gy, g2, ... was that they span L, (and are linearly inde-
pendent). Thus, we may take g; = ll(g4,) for a dense set {z1,z,,...} C [0,1].
Then each (-, gx) is continuous w.r.t. || « ||int- O

4el3 Proposition. For every f € L, such that A’ (f) < oo,

— 0.
e—0

1 n
lirnsup‘—lnIP’ <HS— —f
n n n

<e)+AL(f)

int

Proof. Wedenote F. = {f1 : |[fi—[lims < e}and U = {f1 : [ fi—fllins < €}
F is sequentially weakly closed, and U. is sequentially weakly open. In order
to prove that

1 n
lim sup ‘ﬁln]P’ (% € F5> + AL (f)

— 0,
e—0

'Tn other words: finite.
2Continuity of A, was used.
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it is sufficient to prove that

0 < liminf lim inf (llnP (ﬂ € UE) + A;(f))
n

5 n n

1
< lim sup lim sup <ﬁlnIP’ (% € F€> + A;(f)) <0.

3 n

The second (middle) inequality is trivial. The first inequality follows from

Th. [del|(b), since infyep. AL (f1) = AL (f) by fel2l Similarly, the third
inequality follows from Th. [{el](a). O

It means that

<e) o —AL()

int

L |5~

when ¢ — 0 and n > N, that is, n grows fast enough when ¢ tends to 0.
Otherwise, if n grows with € but not fast enough, the situation may differ.

4e14 Exercise. (a) It may happen that

Find an example.!
(b) If A% (f) < oo, then

min A%(f1) = inf AL (f)

fleFE

and therefore Corollary applies, giving

1
lim = InP (H& _
n

n—oo N,

<c) — -ALl).

1 e—0

Prove it.?

4el5 Exercise. A fair coin is tossed n times, giving (84, ..., 06,) € {0,1}™.
Consider

1 /kN\2
pn,gzIP(Vk:l,...,n ‘u_(_> gg),
n 2\n
Prove that
lim sup \"/pn,s—§‘—>0 ase — 0.
n—oo

'Hint:
2Hint: recall the proof of Th. b).
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4e16 Exercise. A fair coin is tossed n times, giving (31, ..., 5,) € {0,1}".
Given c € [0,1], we consider

Prove that
/Pn — 1 for 0 <c<0.5,
1
Yoy > ——————— for0.5<c<1
b 2¢¢(1 —¢)l—e o =C=

(0° = 1, as before).!

Another example:

It appears that

VP — —= asn — 00.
The extremal function is
x — 0.522 for 0 <z <0.5,
w(z) =
0.524+0.125 for 0.5 <x <1.

In order to prove its extremality, the following lemma helps: A% ((w Av) ) <
A% (w') for every linear function v : [0,1] — R such that v(0) > 0 and
v'(+) > 0.5; here w A v is the pointwise minimum.

'Hint: guess the extremal function; prove your guess, taking into account that

Jo As(f(@)) da = A% () f(z) da).
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sequentially weakly, [£3]

weak, [33]
By,
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