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3 Entropy appears

3a  Binomial LDP: The simplest case of Sanov’s the-
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3a Binomial LDP: The simplest case of Sanov’s theo-
rem

Tossing a fair coin n times we get k € {0,1,...,n} ‘heads’ with the proba-

bility 27" (Z) =2" k,(:' i . The frequency of heads is k/n. We consider the

distribution pu,, of the frequency,

(3a1) 1 € P([0,1]) /fdun 22”() ()

3a2 Exercise. Prove that

1 () 1n
B TS (7 TS T T VT R G

—1

3a3 Exercise. Prove that

1/n k n—k
n 1 k. k n—-k. n—k n \" n n
2711 ~ — ——l —_ 1 — JR— -
( (k)) 2exp( nn om0 n ) (2k) (2(n—k))

as n — oo, uniformly in k € {0,1,...,n} (here 0°=1 and 0In0 = 0).
Hint: you do not need Stirling’s formula; instead, note that (n!)'/" ~ n/e,

since . .
1 1
—/ lnxdxﬁ——(ln—+---+lnﬁ> §—/ Inxdx.
1/n n n n 0

Further, (k)™ ~ (k/e)*/™; you may prove it separately for relatively small
k (say, k <+/n) and for other k.
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3a4 Exercise. (u,), satisfies LDP with the rate function I = Ij5 defined

by

(3a5) Ips(x)=xzlnz+(1—2z)In(l —z)+1In2 =
=zln2z)+ (1 —2)In((2(1 —x)) forO<z<1l, I(0)=I(1)=In2.

In2 [\10,5/
0 1

The expression —zInz — (1 — ) In(1 — z) is well-known as the entropy of
the distribution consisting of two atoms of masses x and 1 — .

See |5, Th. 1.3.1].

The statement Badl suggests an approximation

(1) ~eo (<o) - (5) ()

But on the other hand, the central limit theorem (or its special case, the De
Moivre-Laplace theorem) suggests another approximation,

2 () = oo (-5 men (02 3))

Of course, Iy5(z) # 2(x — 0.5)?. However,

(3a6) Iys(x) ~2(x — 0.5)2 as T 05, \ /

since 1p5(0.5) = 0, I} 5(0.5) = 0 and I)/5(0.5) = 4. Look at some numerics:
for n = 200,

Prove it.

k 100 115 130 145 160 175 190

27 (}) 6-102 6-1073 6-10% 5-10"" 1-107 3.107% 1.107“
JZEexp(—EEmy 61072 6.1078 7107 9-1071 1-10717 2.10°% 4.10°%

exp(—nlys(%)) 1 1-100' 1-107* 8-1071° 2-107'7 3-107%® 1-107%
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Tossing an unfair coin n times we get & € {0,1,...,n} ‘heads’ with
the probability (Z)pk(l — p)"*; here p € (0,1) is a parameter of the coin.
Similarly to Ball),

(3a7) P e P([0,1]) /fdﬂn R (k)pk(l—p)”kf(g)-

3a8 Exercise. (,uslp ))n satisfies LDP with the rate function I, defined by

T 1-—
(3a9) I,(z) = xln; +(1—2)In T
1,(0) = —In(1— p), L,(1) =~ Inp.

forO0<z<1,

Prove it.
Hint: similar to Badl

0 P 1
The case p = 0.5 conforms to (BaH).
The expression (Bad) for I,(x) is well-known as the relative entropy of the
distribution (z, 1 —x) w.r.t. the distribution (p, 1 — p); it may also be written

as
N l—2 1—-2z
W)= (SmI) p+ (1_p1n1_p> (1-p).
Alternatively, we can derive LDP for (,un )n from the case p = 0.5 by
means of 2¢ (change of measure). Indeed,

dgﬁf” k P k
4,09 \n \ 7 0) e = (2(1—p))",

(»)

thus,

d
“7(3;) = cpe ™M@ p(z) = —zln :
d,un l1—p

By Theorem 2cl, (;A{’)) satisfies LDP with the rate function J = Iy5+ h —
lim,, % Inc,;

J(z)=xzhe+(1—z)In(l—z)+In2—zhp+zin(l—p)—In2—-In(l—p) =

— = Iy(z).

T 1
o (1=
xnp+( a:)n1
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3b Multinomial LDP: Sanov’s theorem

Throwing a fair die n times we get an outcome k = (kyq,...,kq) (satisfying
ki,....ke €{0,1,2,...}, k1 + - - -+ k¢ = n) with the probability

n n!
6" =6 "
(kl,...,kﬁ) ki!. .. kg!

The frequencies ki/n, ..., ks/n may be treated as a (random) probability
measure (well-known as the empirical measure or the empirical distribution),

1
—ke P({1,...,6}).
n
Similarly to ([Ball), the distribution u,, of the frequency is

(3b1) € P(P({1,...,6})),

[ran- 5 o, " ol ).

.....

Do not be afraid of P(P({1,...,6})); this is the set of probability measures
on the 5-dimensional simplex P({1,...,6}) = {(z1,...,%¢) : @1,...,T6 >
0,21+ +x6 =1}

3b2 Exercise. Prove that

e Y)Y e (e e
ki, ..., kg 6 P n o n n o n)

as n — oo, uniformly in kq,.. ., k.
Hint: similar to Ba3l

3b3 Exercise. (u,,), satisfies LDP with the rate function (on the simplex)
I(xqy,...;26) =x1Inxy + -+ 2x6Inxg +1In6 = 21 In(621) + - - - + 26 In(626) .

Prove it.
Hint: similar to Badl

An unfair die has a parameter p € P({1l,...,6}); p = (p1,...,D6),
P1y---3p6 > 0, p1 + -+ ps = 1. The probability of an outcome k =

(kla---7k6) is
n k1 ke
(kl,...,k6)p1 o Pe
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The distribution uﬁf’ ) of the frequency is

n k k
dul o opkep( 2L 20
/f 'u & (kl,...,kﬁ)pl pG f(n’ ’77,)
6

.....

Thus,

d/iSzp) k1 ke ke
™ (Z ) (6p1)" ... (6p6)

n
Applying Theorem 2c1 (change of measure) for ¢, = 1 and h(xy,...,z6) =

—x11In(6p;) — -+ — 26 In(6pg), we get LDP for (Mgp))n with the rate function
L(xq, ... ) ::1011nﬁ +---+x61nﬁ.
P Ds

The latter is well-known as the relative entropy, H(x|p).
Replacing 6 with an arbitrary number we get Sanov’s theorem.

3b4 Theorem. Let A be a finite set and p € P(A) a probability measure

on A. Define u € P(P(A)) as the distribution of the empirical measure
(in other words, frequencies) in a sample of size n from the measure p. Then

the sequence (,u,(lp))n satisfies LDP with the rate function x — H(z|p).

Here H(z|p) is the relative entropy,

H(z|p) = Zxa 2% forze P(A);

acA a

by convention, Olnp% = 0 (be p, positive or zero), and z,In g = +oo for
T, > 0.
See [2, Th. 2.1.10], [B, Th. 1.4.3].

3c The simplest case of Cramer’s theorem via Gibbs’s
conditioning
Let Xy, Xs,... be independent, identically distributed random variables,

each taking on the three values —1,0,1 with equal probabilities (1/3). We
consider the distribution p,, of the mean value (X; + --- 4+ X,,)/n;

x1+-~-+xn)
—).

(3cl) pn € P([— /fdun—i% Y f(

21w €{—1,0,1}
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In order to use Sanov’s theorem (and the contraction principle), we introduce

ke k
the frequencies — ko B+ \where

By Sanov’s theorem, distributions v, of (%‘, ’;—0, 7*) satisfy LDP with the

rate function

Li(x_,zg,xy) =2_In(3x_) + o In(3z0) + v+ In(3z4) =In3 — H(z_, x9,2),
H(zx_,xp,24) = —x_Inz_ —xglnzg — x4y Inx,

for z_ xg, 2y >0, z_ + 29+ 24 = 1. (As before, 0In0 = 0.)

On the other hand,
x4+ +x, ke ko
The contraction principle 2b1, applied to

F:{(x_,zo,xy) 2 20,2y > 0,2 +20+2, =1} — [-1,1],
Flz_,xp,x1) =24y —x_,

tells us that (u,), satisfies LDP with the rate function

L(y) = min{li(z_,zp,xy) 1 x4y —x_ =y}.

On the line z; —z_ =y wehave z, = (1 —20+9)/2, 2- = (1 — 20— y)/2,
thus,

d l—x9g—vy 1—x0+y
n( )=
0

dx 2 -
1 1—20— 1 1— Inx_ +1
—§<1—Hn #) (1+lnx0)—§( +In M) :lnxo—w.
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The minimizer satisfies o = /z_x,; that is, x_,z¢,x, are a geometric
progression. (The boundary values are local maxima, not minima.) We may
write (recall 1d)

1

b —b
T, To,Ty) = ——"—- (e’ 1,e
(v @0, 71) eb+1+e?b (" 1,e77)
where b € R is determined by the equation
b_ b
e’ —e
3c2 - -
(8¢2) drirer Y

(the left-hand side is strictly increasing in b, from —1 to 1). We get

L(y)=m3+z_lnz_+zolnzg+zilnx, =

=In3— (r_+xo+a)Ine@+1+e?)+ b —be? _
B Bl 22 eb+1+et
—1
b 1 —b
:—by—ln%.

3
The equation (BcZ) may be written as

d e +1+e?
g(berlnf) =0,

thus, b is nothing but the minimizer of the (strictly convex) function b —
by + In W, which leads to another formula for I,

e+ 1+e?
(3¢3) L(y) = max (— by — In f) .
Note that
e +1+e?
— 3 = Ee"™ = (B XN Y — | £l )
where fy(z) = e for x € [—1,1]. Therefore
b —b
max (ebze*b(x)) _etlrer ;
z€[—1,1] 3
that is,
e +1+e?
3c4 in (I(z)—bzr)=—In—F—.
(3c4) men[l_l{l’l]( 2(z) — ba) n 3

In fact, Bc3) can be deduced from (Bcdl), which is another way to (Bc3)
(assuming LD-convergence).

See also [, Sect. 4], |5, Sect. VIIL.3], [I, Kullback’s lemma on page 30],
[3, Exercise 3.3.12] and [2, Sect. 2.2].
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3d Back to the physical question

We return to the physical question of 1a. On the configuration space {—1,0, 1}"
we have two probability measures, the uniform distribution U, and the
so-called Gibbs measure G,;

[rav =5 3t

ze{—1,0,1}n

) _ [ au,
/fdGn — consty, /feXp( BHy) AU, = [ePHndU, ’

here (as in Sect. 1), g = kBLT is the inverse temperature, and H, is the
Hamiltonian; recall that

Hufst, -3 50) =nf(¥)

where f:[—1,1] — R is a given smooth function (not depending on n).
Accordingly, on [—1, 1] we have two probability measures, j, (recall (BcTl))
and v,

dv, e "Bf
dpn, — [e 8l dp,
They are the images of U,, and G, respectively, under the map (si,. .., ;) —

(814 +s)/n.
By Bd (un), satisfies LDP with the rate function I, (recall (Bc3)). By
Theorem 2c1 (change of measure), (v,), satisfies LDP with the rate function

I=(L,+08f)— mln}(fz+ﬁf)

By 2a20, v, concentrate near zeros of I (in the sense that I/n({:L‘ I (x) <
z—:}) — 1 as n — 00), that is, minima of Iy + Sf. Assuming that I, + 8 f
has a unique minimum at some xg € [—1, 1] we conclude that v, concentrate
near zg (that is, v, ([xg — e, 25+ ¢]) — 1 as n — oo, for every ¢ > 0). Thus,
for large n, with high probability, (s; + - -+ s,,)/n is close to xg, therefore
the energy per particle f (2% is close to f(zg).

It remains to note that the entropy S of 1d is —I5(x) +1n 3, thus x5 in 1d
is the same as xg here. The ‘physical approach’ of 1d conforms to the theory
of large deviations.
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