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3a Binomial LDP: The simplest case of Sanov’s theo-

rem

Tossing a fair coin n times we get k ∈ {0, 1, . . . , n} ‘heads’ with the proba-
bility 2−n

(
n
k

)
= 2−n n!

k!(n−k)!
. The frequency of heads is k/n. We consider the

distribution µn of the frequency,

(3a1) µn ∈ P ([0, 1]) ,

∫

f dµn =
n∑

k=0

2−n

(
n

k

)

f
(k

n

)

.

3a2 Exercise. Prove that

1 ≤ ‖f‖Ln(µn)

maxk=0,1,...,n

(
|f(k/n)| ·

(
2−n

(
n
k

))
1/n

) ≤ (n + 1)1/n

︸ ︷︷ ︸

→1

.

3a3 Exercise. Prove that

(

2−n

(
n

k

))1/n

∼ 1

2
exp

(

−k

n
ln

k

n
−n − k

n
ln

n − k

n

)

=

(
n

2k

) k

n

(
n

2(n − k)

)n−k

n

as n → ∞, uniformly in k ∈ {0, 1, . . . , n} (here 00 = 1 and 0 ln 0 = 0).
Hint: you do not need Stirling’s formula; instead, note that (n!)1/n ∼ n/e,

since

−
∫ 1

1/n

ln x dx ≤ −1

n

(

ln
1

n
+ · · · + ln

n

n

)

≤ −
∫ 1

0

ln x dx .

Further, (k!)1/n ∼ (k/e)k/n; you may prove it separately for relatively small
k (say, k ≤ √

n) and for other k.
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3a4 Exercise. (µn)n satisfies LDP with the rate function I = I0.5 defined
by

(3a5) I0.5(x) = x ln x + (1 − x) ln(1 − x) + ln 2 =

= x ln(2x) + (1 − x) ln((2(1 − x)) for 0 < x < 1 , I(0) = I(1) = ln 2 .

Prove it.

b

b b

0 1

ln 2 I0.5

The expression −x ln x− (1−x) ln(1−x) is well-known as the entropy of
the distribution consisting of two atoms of masses x and 1 − x.

See [5, Th. 1.3.1].
The statement 3a4 suggests an approximation

2−n

(
n

k

)

≈ exp

(

− nI0.5

(k

n

))

=

(
n

2k

)k(
n

2(n − k)

)n−k

.

But on the other hand, the central limit theorem (or its special case, the De
Moivre-Laplace theorem) suggests another approximation,

2−n

(
n

k

)

≈
√

2

πn
exp

(

− (2k − n)2

2n

)

≈ exp

(

− n · 2
(k

n
− 1

2

)2
)

.

Of course, I0.5(x) 6= 2(x − 0.5)2. However,

(3a6) I0.5(x) ∼ 2(x − 0.5)2 as x → 0.5 ,
b

b b

since I0.5(0.5) = 0, I ′
0.5(0.5) = 0 and I ′′

0.5(0.5) = 4. Look at some numerics:
for n = 200,

k 100 115 130 145 160 175 190
2−n

(
n
k

)
6 · 10−2 6 · 10−3 6 · 10−6 5 · 10−11 1 · 10−18 3 · 10−29 1 · 10−44

√
2

πn
exp(− (2k−n)2

2n
) 6 · 10−2 6 · 10−3 7 · 10−6 9 · 10−11 1 · 10−17 2 · 10−26 4 · 10−37

exp
(
−nI0.5(

k
n
)
)

1 1 · 10−1 1 · 10−4 8 · 10−10 2 · 10−17 3 · 10−28 1 · 10−43
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Tossing an unfair coin n times we get k ∈ {0, 1, . . . , n} ‘heads’ with
the probability

(
n
k

)
pk(1 − p)n−k; here p ∈ (0, 1) is a parameter of the coin.

Similarly to (3a1),

(3a7) µ(p)
n ∈ P ([0, 1]) ,

∫

f dµ(p)
n =

n∑

k=0

(
n

k

)

pk(1 − p)n−kf
(k

n

)

.

3a8 Exercise. (µ
(p)
n )n satisfies LDP with the rate function Ip defined by

(3a9) Ip(x) = x ln
x

p
+ (1 − x) ln

1 − x

1 − p
for 0 < x < 1 ,

Ip(0) = − ln(1 − p), Ip(1) = − ln p .

Prove it.
Hint: similar to 3a4.

bb

b

b

0 1p

Ip (p = 2
3
)

The case p = 0.5 conforms to (3a5).
The expression (3a9) for Ip(x) is well-known as the relative entropy of the

distribution (x, 1−x) w.r.t. the distribution (p, 1−p); it may also be written
as

Ip(x) =
(x

p
ln

x

p

)

· p +
(1 − x

1 − p
ln

1 − x

1 − p

)

· (1 − p) .

Alternatively, we can derive LDP for (µ
(p)
n )n from the case p = 0.5 by

means of 2c (change of measure). Indeed,

dµ
(p)
n

dµ
(0.5)
n

(
k

n

)

= cn

(
p

1 − p

)k

, cn = (2(1 − p))n ,

thus,

dµ
(p)
n

dµ
(0.5)
n

(x) = cne−nh(x) , h(x) = −x ln
p

1 − p
.

By Theorem 2c1, (µ
(p)
n )n satisfies LDP with the rate function J = I0.5 + h −

limn
1
n

ln cn;

J(x) = x ln x+(1−x) ln(1−x)+ln 2−x ln p+x ln(1−p)− ln 2− ln(1−p) =

= x ln
x

p
+ (1 − x) ln

1 − x

1 − p
= Ip(x) .
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3b Multinomial LDP: Sanov’s theorem

Throwing a fair die n times we get an outcome k = (k1, . . . , k6) (satisfying
k1, . . . , k6 ∈ {0, 1, 2, . . .}, k1 + · · ·+ k6 = n) with the probability

6−n

(
n

k1, . . . , k6

)

= 6−n n!

k1! . . . k6!
.

The frequencies k1/n, . . . , k6/n may be treated as a (random) probability
measure (well-known as the empirical measure or the empirical distribution),

1

n
k ∈ P ({1, . . . , 6}) .

Similarly to (3a1), the distribution µn of the frequency is

(3b1) µn ∈ P (P ({1, . . . , 6})) ,
∫

f dµn =
∑

k1,...,k6

6−n

(
n

k1, . . . , k6

)

f
(k1

n
, . . . ,

k6

n

)

.

Do not be afraid of P (P ({1, . . . , 6})); this is the set of probability measures
on the 5-dimensional simplex P ({1, . . . , 6}) = {(x1, . . . , x6) : x1, . . . , x6 ≥
0, x1 + · · · + x6 = 1}.
3b2 Exercise. Prove that

(

6−n

(
n

k1, . . . , k6

))1/n

∼ 1

6
exp

(

− k1

n
ln

k1

n
− · · · − k6

n
ln

k6

n

)

=

=

(
n

6k1

) k1
n

. . .

(
n

6k6

) k6
n

as n → ∞, uniformly in k1, . . . , k6.
Hint: similar to 3a3.

3b3 Exercise. (µn)n satisfies LDP with the rate function (on the simplex)

I(x1, . . . , x6) = x1 ln x1 + · · ·+ x6 ln x6 + ln 6 = x1 ln(6x1) + · · ·+ x6 ln(6x6) .

Prove it.
Hint: similar to 3a4.

An unfair die has a parameter p ∈ P ({1, . . . , 6}); p = (p1, . . . , p6),
p1, . . . , p6 > 0, p1 + · · · + p6 = 1. The probability of an outcome k =
(k1, . . . , k6) is

(
n

k1, . . . , k6

)

pk1

1 . . . pk6

6 .
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The distribution µ
(p)
n of the frequency is

∫

f dµ(p)
n =

∑

k1,...,k6

(
n

k1, . . . , k6

)

pk1

1 . . . pk6

6 f
(k1

n
, . . . ,

k6

n

)

.

Thus,

dµ
(p)
n

dµn

(k1

n
, . . . ,

k6

n

)

= (6p1)
k1 . . . (6p6)

k6 .

Applying Theorem 2c1 (change of measure) for cn = 1 and h(x1, . . . , x6) =

−x1 ln(6p1) − · · · − x6 ln(6p6), we get LDP for (µ
(p)
n )n with the rate function

Ip(x1, . . . , x6) = x1 ln
x1

p1
+ · · · + x6 ln

x6

p6
.

The latter is well-known as the relative entropy, H(x|p).
Replacing 6 with an arbitrary number we get Sanov’s theorem.

3b4 Theorem. Let A be a finite set and p ∈ P (A) a probability measure

on A. Define µ
(p)
n ∈ P (P (A)) as the distribution of the empirical measure

(in other words, frequencies) in a sample of size n from the measure p. Then

the sequence (µ
(p)
n )n satisfies LDP with the rate function x 7→ H(x|p).

Here H(x|p) is the relative entropy,

H(x|p) =
∑

a∈A

xa ln
xa

pa
for x ∈ P (A) ;

by convention, 0 ln 0
pa

= 0 (be pa positive or zero), and xa ln xa

0
= +∞ for

xa > 0.
See [2, Th. 2.1.10], [5, Th. 1.4.3].

3c The simplest case of Cramer’s theorem via Gibbs’s

conditioning

Let X1, X2, . . . be independent, identically distributed random variables,
each taking on the three values −1, 0, 1 with equal probabilities (1/3). We
consider the distribution µn of the mean value (X1 + · · ·+ Xn)/n;

(3c1) µn ∈ P ([−1, 1]) ,

∫

f dµn = 3−n
∑

x1,...,xn∈{−1,0,1}

f
(x1 + · · ·+ xn

n

)

.
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In order to use Sanov’s theorem (and the contraction principle), we introduce
the frequencies k

−

n
, k0

n
, k+

n
, where

k− = #{i : xi = −1} , k0 = #{i : xi = 0} , k+ = #{i : xi = 1} .

By Sanov’s theorem, distributions νn of (k
−

n
, k0

n
, k+

n
) satisfy LDP with the

rate function

I1(x−, x0, x+) = x− ln(3x−) + x0 ln(3x0) + x+ ln(3x+) = ln 3 − H(x−, x0, x+) ,

H(x−, x0, x+) = −x− ln x− − x0 ln x0 − x+ ln x+

for x−, x0, x+ ≥ 0, x− + x0 + x+ = 1. (As before, 0 ln 0 = 0.)

On the other hand,
x1 + · · · + xn

n
=

k+

n
− k−

n
.

The contraction principle 2b1, applied to

F : {(x−, x0, x+) : x−, x0, x+ ≥ 0, x− + x0 + x+ = 1} → [−1, 1] ,

F (x−, x0, x+) = x+ − x− ,

tells us that (µn)n satisfies LDP with the rate function

I2(y) = min{I1(x−, x0, x+) : x+ − x− = y} .

b

On the line x+ − x− = y we have x+ = (1 − x0 + y)/2, x− = (1 − x0 − y)/2,
thus,

d

dx0
I1

(1 − x0 − y

2
, x0,

1 − x0 + y

2

)

=

−1

2

(

1+ln
1 − x0 − y

2

)

+(1+ln x0)−
1

2

(

1+ln
1 − x0 + y

2

)

= ln x0−
ln x− + ln x+

2
.
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The minimizer satisfies x0 =
√

x−x+; that is, x−, x0, x+ are a geometric
progression. (The boundary values are local maxima, not minima.) We may
write (recall 1d)

(x−, x0, x+) =
1

eb + 1 + e−b
· (eb, 1, e−b)

where b ∈ R is determined by the equation

(3c2)
eb − e−b

eb + 1 + e−b
= −y

(the left-hand side is strictly increasing in b, from −1 to 1). We get

I2(y) = ln 3 + x− ln x− + x0 ln x0 + x+ ln x+ =

= ln 3 − (x− + x0 + x+)
︸ ︷︷ ︸

=1

ln(eb + 1 + e−b) +
beb − be−b

eb + 1 + e−b
=

= −by − ln
eb + 1 + e−b

3
.

The equation (3c2) may be written as

d

db

(

by + ln
eb + 1 + e−b

3

)

= 0 ,

thus, b is nothing but the minimizer of the (strictly convex) function b 7→
by + ln eb+1+e−b

3
, which leads to another formula for I2,

(3c3) I2(y) = max
b∈R

(

− by − ln
eb + 1 + e−b

3

)

.

Note that

eb + 1 + e−b

3
= E ebX1 =

(
E eb(X1+···+Xn)

)
1/n = ‖fb‖Ln(µn) ,

where fb(x) = ebx for x ∈ [−1, 1]. Therefore

max
x∈[−1,1]

(
ebxe−I2(x)

)
=

eb + 1 + e−b

3
,

that is,

(3c4) min
x∈[−1,1]

(
I2(x) − bx

)
= − ln

eb + 1 + e−b

3
.

In fact, (3c3) can be deduced from (3c4), which is another way to (3c3)
(assuming LD-convergence).

See also [4, Sect. 4], [5, Sect. VIII.3], [1, Kullback’s lemma on page 30],
[3, Exercise 3.3.12] and [2, Sect. 2.2].
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3d Back to the physical question

We return to the physical question of 1a. On the configuration space {−1, 0, 1}n

we have two probability measures, the uniform distribution Un and the
so-called Gibbs measure Gn;

∫

f dUn = 3−n
∑

x∈{−1,0,1}n

f(x) ,

∫

f dGn = constn ·
∫

f exp(−βHn) dUn =

∫
fe−βHn dUn

∫
e−βHn dUn

;

here (as in Sect. 1), β = 1
kBT

is the inverse temperature, and Hn is the
Hamiltonian; recall that

Hn(s1, . . . , sn) = nf

(
s1 + · · ·+ sn

n

)

,

where f : [−1, 1] → R is a given smooth function (not depending on n).
Accordingly, on [−1, 1] we have two probability measures, µn (recall (3c1))

and νn,
dνn

dµn
=

e−nβf

∫
e−nβf dµn

.

They are the images of Un and Gn respectively, under the map (s1, . . . , sn) 7→
(s1 + · · ·+ sn)/n.

By 3c, (µn)n satisfies LDP with the rate function I2 (recall (3c3)). By
Theorem 2c1 (change of measure), (νn)n satisfies LDP with the rate function

I = (I2 + βf) − min
[−1,1]

(I2 + βf) .

By 2a20, νn concentrate near zeros of I (in the sense that νn

(
{x : I(x) ≤

ε}
)
→ 1 as n → ∞), that is, minima of I2 + βf . Assuming that I2 + βf

has a unique minimum at some xβ ∈ [−1, 1] we conclude that νn concentrate
near xβ (that is, νn

(
[xβ − ε, xβ + ε]

)
→ 1 as n → ∞, for every ε > 0). Thus,

for large n, with high probability, (s1 + · · · + sn)/n is close to xβ , therefore
the energy per particle f

(
s1+···+sn

n

)
is close to f(xβ).

It remains to note that the entropy S of 1d is −I2(x)+ ln 3, thus xβ in 1d
is the same as xβ here. The ‘physical approach’ of 1d conforms to the theory
of large deviations.
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