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9 The end of monotone equilibria

9a Entry cost and unknown distributions

We introduce an entry cost ¢ into our ‘not-so-simple auction’ (recall 8a), that is, a first price,
private value, single unit auction with two players, having such a distribution of (correlated)
signals:
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Formally, it is a symmetric game described by

S =8=8=R; A=Ay = A=10,00);
O=R; Po=U(0.9,1);
Ps, 9 = Ps,9 = Psg =U(0,0);
IT, = II, = IT is the function defined by
II(aq, s1; a9, s2) = G(a1, $1;a2) — L(a1; a2) ,

0 if o < ao,

0 if a1 = a9 = 0,
(9al) Glar, siia) = 4 1 ar = ay
581 if a; = ag > 0,
s1 ifa; > ag;
0 if a; =0,
if 0 < a1 < ag,
L(al;QQ) _ C 1 aq (05}

c—i—%al if 0 < a1 = asg,

c+ ay if a1 > a9

(recall (3al), (3el), (3gl); the reserve price is zero). Hopefully, the game has a symmetric
monotone equilibrium! (like 8c) with a participation threshold (like 3g):

A =p(S);
(92) o(s) =0 for s < sp;
©(s) >0 for s> sg;

¢ is continuous and strictly increasing on (sg,1) .

Inequality (8c2) must hold for all s,¢ € (sg,1), since the entry cost, added to both sides,
may be canceled. Therefore (assuming smoothness) we get the differential equation (8c4) as

"What about other equilibria (non-monotone and/or non-symmetric)? I do not know.
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before;? now, however, it holds on (sq, 1) rather than (0, 1).

We introduce the associated auction (as in 8c) with independent signals distributed F;
the function F', defined by (8¢6), appeared to describe just the uniform distribution, U(0, 1).
We ascribe an entry cost ¢ to the associated auction; note that ¢ need not be equal to ¢. The
equilibrium strategy function of the associated auction is known to us (recall 7a):

1 .
©*¢(s) = max (0, 58(1 - s%)) .

The function ¢**°¢ satisfies the same differential equation (8c4). Having the free parameter
¢, we have a one-parameter family of solutions; no need to solve the differential equation.
Hopefully ¢ = ¢**°¢ if ¢ is chosen appropriately.

Let us find an equation for so. We have two conditions:

e the action ¢(s) must be (optimal, therefore) better® for s than the action 0 (quit),

whenever s € (sg,1);*

e the action 0 must be better for s than any positive action, whenever s € (0, sq).

The first condition means (recall (8cl)) 0 < (s — ¢(s))Fy(s,)5,=s(¢(s)) — c. However,
F¢(52)|51=S(90(8)) = FSz\Slzs(S) = Fs(s)' Thus,

(9a3) (s —¢@(s))Fy(s) > ¢ for s € (so,1),

therefore (by continuity) soFj,(sq) > c.
The second condition means

(9a4) (s — a)Fy(sy)|s=s(a) —c <0 foralla >0,s € (0,s),
hence (by continuity; take a — 0+4) soFj,(s0) < c. Therefore, sy must satisfy
(9a5) soFs,(s0) = c.

Also, the first condition implies (so — ¢(so+))Fs,(S0) > ¢, hence

©(so+) =0

assoC

(in other words, ¢ is continuous on the whole (0,1)). It means that ¢ = ¢ if ¢ is chosen

to be s2. So,

(9a6) ~ 2

2Tt does not mean the same ¢ as before, since the differential equation has a (one-parameter) family of
solutions.

31 did not say strictly better.

4For almost all s € (sq,1); however, everything is continuous here ...
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For now we do not claim that such ¢ describes an equilibrium. Rather, we claim that no
other ¢ (satisfying (9a2)) can do so.

Being a solution of the differential equation (8c4), ¢ satisfies also (8¢3) and (8¢2) on (sg, 1)
due to the superadditivity argument (recall 8d). It remains to check the two conditions about
participation.

In order to check (9a3) it suffices to show that the function s — (s —¢(s))Fs(s) increases
2
on (sp, 1). In fact, both factors s—¢(s) and Fi(s) increase. Indeed, s—¢(s) = s—3s(1—3) =

%0(% + %) is minimal at s = sy and increases for s € (so,00). Also,

p

1 1
F (3) _ 79111(10/9)8 for s € (0,09); ]/
’ mhﬁ for s € (0.9,1) .

091

(check it by integrating the conditional density written out on page 103, or adapt formulas
of page 105; see also (9a8)), an increasing function on (0,1). So, (9a3) holds.

In order to check (9a4) it is worth thinking first, which a € (0,1) maximizes (s —
a)Fy(s,)5,=s(a) for a given s € (0,50). In other words: which action is optimal for the
first player having the signal s, if he is forced to participate, or equivalently, released from
the entry cost. It is a question about the best response to the given strategy As = ¢(Ss) of
the second player. The argument of 8b (recall 8b2) shows that the best response of s € (0, s¢)
must be less than that of every signal of (sg, 1); it must be 0+. I mean, the best response prob-
ably does not exist, but anyway, sup,(s — a)Fi(s,)s;=s(a) = lima_01 (5 — @) Fiy(s,)5,=5(a) =
sP(¢(S2) =0|S1 =5) = sF,(so). Thus (9ad) is equivalent to

(9a7) sFy(sg) < c¢ forall s € (0,s0).

In order to check (9a7) it suffices to show that the function s — sF;(sg) increases on (0, sg).
We have

STa(1075) for s <t < 0.9;
(9a8) F,(t)y=<¢1+ W for s < 0.9 <t
%r;(:)/s) for 0.9 <s <t

Note that Fi(so) does not depend on s as far as s € (0,0.9). The question is, whether or not
the function s — sFy(sq) increases on (0.9, sg), when so > 0.9. Here we have

_ 1—so+In(se/s) so—1+1In(1/s0)\
sFg(s9) = In(1/5) s = (1 — In(1/5) )31
d 1 1
%(SFS(SO)) =1— (50— 1+1n(1/s0)) (E - m) ;
we need
1 1 1

for s € (0.9, sp) ,

n2(1/s) | In(1/3) = 50— 1+ In(1/50)
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which is enough to check for s = sy only:

R S 1 _
]n2(1/50) 111(1/80) T sg— 1+ 111(1/80) ’

the latter happens to be true for all so € (0.9, 1) (in fact, for all s, € (0,1)):

u

1 11
so—1+In(1/s0) In2(1/s0) In(1/s0)

u =

100

S0
09 1

So, for every ¢ € (0, 1) the game (9al) has one and only one symmetric monotone equilibrium
of the form (9a2), namely (9a6).

9b Many players and entry cost and unknown distributions

We consider the symmetric game of n players, described by (S, A, ©, P, (Psjg), IT, n) (recall
5a), where S, A, 0, Po, (Ps|g), IT are defined by (9al), while n is now arbitrary. Recalling
the case of n players but independent signals (considered in 5d, page 61) and the case of
correlated signals but two players (considered in 9a) we may hope for a symmetric monotone
equilibrium of the form (9a2):

A =¢(5);

o(s) =0 for s < sg;

©(s) >0 for s> sg;

¢ is continuous and strictly increasing on (sg,1) .

Everything should be similar to 9a, but X = max(Ss,...,Sy) is used instead of Sy.
The associated auction has n independent signals distributed F,

[t (0
F( ) = exp < / fS1, 7 dt) = exp (_ fX|S17t( ) dt) )
n—1 fo fS1, a n—1 s FX\Slzt(t)
Fortunately, we do not need the whole conditional distribution of X given S; = s; rather,

we need its restriction to (0, s), which is easy to calculate due to a special property of our
distribution (recall page 104):

IF’(XSIE‘@ZQ) :P(Szgx,...,SnSx‘(a:H) :min<(%>n_l,1>;

Er—O—®
IP’(XSx‘Sl) :]E(P(XSCU‘Sh@) ‘51) =
=E(P(X <2|0)|8) =E(min((+/0)""",1)|8) ;
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for z < s we get (taking into account that © > Si)
P(X <z|S =s)=E(min((z/0)" ",1)|S1=5) =E((z/0)" ' |5 =5),
thus, P (X <z |S; =s) = const(s)-z"~!, where const(s) = E (1/0"7! | §; = s ) ; therefore
Fx|s,—s(z) = const(s) - z" " for z € [0, 5];
fx s,=s(z) = const(s) - (n — 1)z" > for z € [0, s];
)

fxisi=s(s) n—-1
Fxs,=5(5) s

- 1 'n—1
F(s):exp(—n_l/nt dt):s;

still the uniform distribution, U(0, 1).
The equilibrium strategy of the associated auction was calculated in 7a:

n—1 c
assoc — 0’ (1 _ ) .
P*°¢(s) = max ( s = )

The first condition for the participation threshold sy (recall 9a, page 114) is 0 < (s —
©(8)) Fpix)s1=s (¢(s)) — ¢; now (9a3) becomes

Y

(9b1) (s — @(s)) Fx|s,=s(s) > ¢ for s € (so,1)

and implies soF'x|s,=s,(50) > c.
The second condition for sq is (recall 9a4)

9b2 s—a)F,x)s,=s(a) —c<0 foralla>0,se(0,sq),
P(X)[S1

and implies 5o F'x|s,=s,(50) < c. Instead of (9a5) we get soFx|s,=s,(50) = ¢, and also ¢(so+) =
0, as before; (9a6) turns into

o) =max (0."s(1- ).

- .
C=5p;

C = SOFX\Slst(SO) .

(9b3)

Either it gives an equilibrium of the form (9a2), or there is no such equilibrium at all.
The left-hand side of (9bl) is equal to ¢ when s = sy. Let us calculate its derivative in s
at s = sg. We have

FX\Slzs(S) = Sn_lE( 1/®n—1 ‘ S1 = S) ;
Bayes formula (for densities)

fois1=5(0) = fSIGJZ;((Z))f@ =
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gives for s € (0.9,1)

f®|51:s(0) =

79111(11/8) when 6 € (s,1),
0 when 6 € (0.9, s).

Hence

1
1
E( 1/@11,71 | Sl = S) = Ag Wf@\slzs(g) da =

- ﬁ/ T orre CE e

1 1-s"1!
n—1 In(1/s)

An elementary but somewhat tedious calculation gives

and

for s €0.9,1).

(9b4) Fxs,=s(s) =

d 1 1—gt 1 n—24s"
R S — S F —s S ) = 0 _ 0
ds|,_,, (( #(8)) Fxis1=5(5) n—1In*(1/sq) n—1 In(1/sp)
n=2
1
50
n=3 n—d
n=>5
n=10
-5 =100

What a surprise! The case n = 2 is not just the simplest case, it is an exceptional case!
For all other n, the derivative is negative for all sy € (0.9,1).° It means nonexistence of
equilibria of the form (9a2) for n > 2, if the entry cost ¢ satisfies

(9b5) 0.9Fx|51:0_g(0.9) <c<l1
which corresponds to 0.9 < s < 1. Using (9b4) we see that the nonexistence is ensured for
1 1-09""!
0.9 <c<l1.

n—1 In(10/9)

Cc

1 IIIIIIIIIIIIIIIIII

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5In fact, the expression is negative for all so € (0, 1), which becomes relevant, if we replace © ~ U(0.9, 1)
with © ~ U(6™in, 1) for any ™" € (0,1).
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It does not mean existence for all other ¢, since (a) a positive derivative at sq does not ensure
the inequality on the whole (sg, 1), and (b) the second condition could exclude more cases.
In order to examine a given ¢ (and n), we have to check (9bl) for all s € (sg,1), and (9b2)
for all s € (0, sg); however, in (9b2) we may take a — 0+ (similarly to 9a):

(9b6) sFx|s,-5(50) < ¢ for all s € (0, s0)

(recall (9a7)).

Assume that sy < 0.9 (otherwise we know the answer already). If s € (0,0.9) then
Fx|s,—s does not depend on s (a special property of our distribution), which makes the
second condition (9b6) evidently satisfied:

5Fx|5,=5(50) = 5Fx|51=50(50) < 50Fx|5,250(50) = C.

For the first condition, the case s € (0,0.9) is also easy:

(s — gp(s))FX|51:s(s) = (s — <p(s))FX|51:0_9(s) = (s — go(s)) - const - s"71 =

n—1 sy 1 n—1
= const - 5" (8 - s( - —2)) = const - (—s" + s{}) ,
n s n n

which evidently increases in s. It remains to check the first condition for s € (0.9, 1):

1 1-s"t
n—1 In(1/s)

(9b7) (s —¢(s)) >c¢ forse(0.9,1).

c

RN

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

You see, the nonexistence holds unless ¢ is small or n is not large. Say, for n = 20 it holds
for ¢ > 0.062.

It is instructive to see the expected profit of, say, the first player released from the entry
cost and playing the best response against others that still play the strategy (9b3), especially
for the critical value of the entry cost; the expected profit is a function of the signal.

I
- — — -+
I
I
I
I
I
I
I
d

T \
P ‘
P \
Pl \ \
I \ \
R |
L \
4 JUN ¢ y—
n=>5c=056 5 =085 n=20,c=0062, s =08

You see, for s € (0,0.9) it is a convex function, just like the case of independent signals, and

no wonder: here s is effectively s™ only, since s is effectively constant (say, 0.9) due to
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a special property of our distribution. The interval (0, s¢) is a bunch (corresponding to the
‘virtual action’ 0+).

After 0.9 the situation changes dramatically. Here s is both s™ and s®%; a higher s™*
means good news (for the player), however, a higher s*** means bad news. The latter leads to
a decrease of the profit. If it lowers under the entry cost ¢ then participation is not optimal
for corresponding signals. That is the failure of the participation threshold.

If players 2,...,n play the strategy ¢ of (9b3) and the first player is released from the
entry cost then his best response is ¢; his expected payoff function can cross ¢ more than
once.

t

a
1

I (releaSed from c)

Y — — — — — — — —
»
- -

50 50 0.9
n = 20, ¢ = 0.067, so = 0.824 n = 20, ¢ = 0.067, so = 0.824
Returning to the normal situation (the entry cost is incurred) we get a non-monotone best
response to the monotone strategy (even though signals are affiliated):

a
1

best response to ¢

80
n = 20, ¢ = 0.067, so = 0.824
You see, in the absence of entry cost, a more aggressive bidding of others makes the best
response more aggressive. However, in presence of an entry cost, a more aggressive bidding
of others can prevent participation.

9¢ To burst or not to burst®

The nonexistence of monotone equilibria, pointed out in 9b, is of quite general nature, as
we’ll see soon. After all, monotone equilibria fail because they cannot give a satisfactory
answer to the question, to burst or not to burst, as explained below.

Return for a while to the joint distribution of n signals, used in 9b:

P(Slgsl,...,5n§5n|®:0) :Fg(sl)...Fg(sn):min(%J)...min(%n,l),

0~ U(0.9,1).

6See also: M. Landsberger and B. Tsirelson, “Correlated signals against monotone equilibria”, April 2000,
Preprint SSRN 222308.
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Assume existence of a monotone equilibrium for each n. (We already know from 9b that the
assumption is false; however, we want to find a more general argument, why.) Then we have
a participation threshold ¢, € (0,1) for each n. The number of participants is a random
variable

K = 1(1,,00)(51) +*** + Lt ,00)(Sn) 5
the mean number of participants is
E K, = np,,
where p,, is the participation probability,
Pn=P(51>1t) =EP(S1 >, |0) =1— Fs,(ts).

What happens for n — oo ? Taking into account entry cost, and a single unit to be sold, we
may expect p, — 0, and moreover, p, = O(1/n), that is, boundedness of np,. Indeed, the
total entry cost paid by all players is np, - ¢ in the mean, while the total gain of all players
never exceeds max(Si,...,S,). Voluntary participation implies

nppc < E max(Sy,...,S,).

If signals have a compact support, P (51 < sma") =1, then we get np,c < s™**, thus

max 1
(9c1) o< -
cn
If signals have a non-compact support, we may do similarly to 7d: E max(Si,...,S,) <

n fll*% S*(p) dp (think, why); assuming (recall 7d5)

1
/ S*(p)dp < Me* for alle € (0,1),
1—¢

where M and « do not depend on n, we get p, = O(1/n%), namely,

M1
(9C2) Pn S ?E .
In any case p, — 0; therefore
t, — 1.

It is quite natural, isn’t it? On one hand, it really is; only few players are willing to pay the
entry cost in the hope of winning the single unit. On the other hand, however, consequences
are terrible: in most cases, the auction is empty! Recall, © ~ U(0.9, 1), thus t,, — 1 implies
IF’(@ < tn) — 1. However, S1,...,S, < 0, hence

P(K,=0)=P (S <tp,..., 5% <tn) >P(O<t,) —1.

n—oo
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It is strange; it is a pity for the auctioneer; but above all, it simply cannot happen in
equilibrium. If a player knows that, very probably, he has no competitors, then he definitely
wants to participate. An auction cannot be empty too often!

So, once again, what is happening to K, for n —+ oo ? The expectation EK, = np, =
n(1— Fs,(tn)) is able to behave nicely, in particular, tend to a given number (neither 0 nor
o0). However, the mean value E K, of K, is not its typical value. In most cases K, = 0.
In rare cases K,, > 0, and here K, is typically large, much greater than EK,. That is a
burst-like behavior.

Specifically, we have (recall p. 100) fs, (s) = 10 min(In(1/s),1n(10/9)) ~ const-(1—s) for
s — 1—, thus 1 — Fg,(s) ~ const - (1 — s)? for s — 1—. The case 1 — F, (t,) = p, ~ const/n
appears when 1 — ¢, ~ const/y/n. In most cases, © < t,. In rare cases, © > t,; then
typically © — t,, ~ const/y/n and K,, ~ n - const/\/n ~ const - y/n. We have, roughly,

K, =0 with probability 1 — const/v/n;
K, ~ const - /n with probability const/v/n.

Thus, E K,, ~ const, however, K, is either large or zero; that is the burst.

Finding a threshold ¢ (for a given n) means finding a participation ray (¢, 00).” In general,
a pure strategy A = ¢(S) determines its participation set {s : ¢(s) # 0}, not just a ray.
However, if ¢ is a monotone (increasing) strategy, then its participation set is necessarily a
ray. Alas, rays appear to be inappropriate to be participation sets for large n. Rays are a
burst collection in the following sense:

o If Fy,E,,... are rays (of the form (¢,00) each) such that P(S; € E,) > 0 and

P(S1€En) —— 0 then P(SIEER|®:9)
n—00 P(Sl € En) n—»00

>0 for all # € (0.9,1).

0.9 t1 ta t3 1
Note that
P(S € E,|©0=0)  Psp(E.)
P(S: € E,) [ Psjo(Er) dPo(0)

the random variable P ( S, € E, | @) /P (51 € En) is of expectation 1 for every n. Never-
theless, for n — oo it may tend to 0® almost surely (which happens in our special case), or
(more generally) in probability,” which is stipulated by the following definition.

"Which boils down to (¢,1) for our example.

8Neither bounded convergence theorem nor dominated convergence theorem (nor monotone convergence
theorem) can be applied here.

9Recall the definition: X,, — 0 in probability, if P (|X,| < ) — 1 for every ¢ > 0. Convergence a.s.
implies convergence in probability; the converse is wrong.
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9c¢3. Definition. A collection £ of subsets of the signal space S is called a burst collection
(with respect to (Psj), Po), if for all Ey, E,,--- € £ such that I[’(Sl € En) > 0 and
P ( S, € E, ) — 0, the following sequence of random variables!? converges to 0 in probability
(when n — o0):

P (Sl ek, ‘ @)
P (S, € E,)
The following event is clearly related to emptiness of an auction:

Si ¢ En,...,Sn ¢ En.

Its probability is

P(S, ¢ Eny....Sn ¢ E,) =E(P(S1 ¢ En,....Sy ¢ E,|©)) =
E(P(S1¢E.|0)...P(S.¢E,|0))=E(1-P(S1€E,|0))".

This is why the following lemma is relevant.

9c4. Lemma. A burst collection cannot contain Eq, Es, ... such that
(9¢5) limsup(nP (S € E,)) < o0,
(9c6) limsupE (1 -P (S € E,|©))" <1.

(For a proof see the preprint cited on page 120.)

On the other hand, let E,, be the participation set of a strategy supporting a symmetric
equilibrium (for n players). Then (9c5) is satisfied due to (9cl), as far as a positive entry
cost (not depending on n) is incurred, and signals have a compact support (not depending
on n). Also (9¢c6) is satisfied; the emptiness probability must be bounded away from 1,
unless players are utterly repelled by a high entry cost. So, under conditions mentioned,
participation sets cannot be chosen from a burst collection.

9d Burst collections

An example of a burst collection involves not just a collection £ of subsets E of a signal
space S, but also a parametric space @, a probability distribution Pg on @, and a family
(Psjg) of probability distributions on S, indexed by 6 € 6.

Our first example was

6 =(09,1), Po=U(09,1), Psy="U(0,6),
S=R, E={(t,0):teR}.
Here the right endpoint s™*(6) of the support of Ps|y has a nonatomic distribution; indeed,

(@) = © ~ U(0.9,1). That is the only relevant feature of (Pgg). The parameter space
© may be multidimensional.

0They are functions of ©.
"1 0One may also eliminate @ by considering a probability measure on the (infinite dimensional) space of
all probability measures on S.
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9d1. Exercise. Let © be two-dimensional, © = (©1,0,) ~ U(0,0.1) ® U(0.9,1),'2 and let
Pgjg = U(61,62). Then the collection

(9d2) E={(t,0):te R} U{[t,0):t € R} U{0,R}

is a burst collection.
Prove it.
Hint: if ¢, = 1— and E,, = (t,, 00) then for every 6, Psy(E,) vanishes for n large enough.

The collection (9d2) consists of all increasing sets'®> E C R, that is, sets satisfying the
condition

(9d3) Vr,y € R (xgy&xEE = yEE);

it just means that the indicator 1g(-) is an increasing function on R.
If E = (t,00) then Pgjg(E) = 1—Fy(t), where Fj is the (cumulative) distribution function
of Pgjp. The mixture Pg of all Pgg has its distribution function

Ft) = / Fy(t) dPo(6),

and the right endpoint of its support, s™* = sup{s : F'(s) < 1} € (—o0, +00]. The quotient

1-— Fg(t) o PS‘Q(E)
1-F(t)  Ps(E)

tends to 0 when ¢ — s™**— (or t — 00, if s™™* = 00) in an extravagant way: it just vanishes
in a neighborhood of s™#*. In the next example the support of Fy does not depend on 6, and
the quotient converges to 0 without vanishing.

9d4. Exercise. Let Py be some nonatomic distribution on © = (0, 00), and
Psjp = Exp(6),

the exponential distribution on & = R; in other words, P(S > s|© = 60) = exp(—s/6).
Then increasing sets are a burst collection.

Prove it.

Hint: for every # we may take 6; > 6 such that

1— F(t) = /Oooexp<— g) dFe(0) > /alooexp (- g) dFe(0) >

zconst-exp(—i) :o(exp(—i>) for s = o00.

Sometimes, however, the burst does not appear.

12That is, ©1, O, are independent, ©; ~ U(0,0.1), 2 ~ U(0.9,1).
13Known also under the name ‘upper layers’.
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9d5. Exercise. Let Pg be some nonatomic distribution on © = R, and Pgjg be the shifted
exponential distribution on § = R:

P(S>s|0=0) =exp(f—s) fors>0.

Then increasing sets are not a burst collection.
Prove it.
Hint: 1 — Fy(s) ~ const - e * for s — oo, irrespective of 6; also 1 — F(s) ~ const - e *.

9d6. Lemma. Assume that for every 6 the distribution Pgy has a density fg, and

fo(s)
f(s)

here f(x) = [, fo(s) dPg(f) is the density of Pg, assumed to be non-zero almost everywhere.
Then increasing sets are a burst collection.

— 0 for s —» +o0;

(For a proof see the preprint cited on page 120.)

An important example is the multinormal (that is, multidimensional normal) distribution.
Here f and fy are normal densities; they differ both in mean values and in variances. The
variance of fy is strictly less than that of f, hence fy(z)/f(z) — 0 irrespective of mean
values.

Lemma 9d6 still holds for a multidimensional signal space S = R? (using |s| — oo
rather than s — +00).}* Thus, the burst argument excludes monotone equilibria also for
multidimensional signals.

Small deviations from monotonicity do not invalidate the argument. Instead of a ‘sharp
threshold’ ¢t one may consider a ‘fuzzy threshold’ (t—¢,t+¢) such that S > t+¢ ensures par-
ticipation, and S < t — € ensures non-participation. The burst argument can be generalized
accordingly.

What about a compact support? Inequality (9c1) needs a finite s™**, the upper bound of
signals. The burst argument can be used for unbounded (in particular, normally distributed)
signals, provided that valuations are bounded. Otherwise, we turn to (9¢2) which, however,
needs a modification to Definition 9¢3. Namely, a d-burst collection is defined similarly to
9c3, using

(B(Si € B, 0))"
P(S €F)

instead of the quotient used in 9¢3. (The case § = 1 returns us to 9¢3.) The burst argument
works whenever a > 1/6 (see (9¢2) for o). The most strong burst, § = oo, is produced by
a ‘floating support’, as in 9d1; here, monotone equilibria are excluded for all a. A weaker
burst is produced by the multinormal distribution; here 0 depends on the correlation between
signals.'®

4Note that increasing sets in R? are not so simple as in R.
15Namely, if the correlation coefficient between signals is p (equivalently, the correlation coefficient between
O and S is \/p), then the d-burst happens for any § < 1/(1 — p).
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The burst argument is quite insensitive to auction rules. Non-private value auctions,
all-pay auctions, and many others are included. The number of units to be sold need not be
just 1;%6 it is enough if it is kept fixed when n — oo.

Here are possible reasons for monotone equilibria to appear:

e The number of players'” is small.

e The number of units to be sold is not small as compared to the number of players.

e Players are well informed about the distribution of signals, or at least, its right tail.'8
e The entry cost is very small (or reimbursed).

All that is about symmetric auctions (and symmetric equilibria). An asymmetric auction
game with 100 players, 2 strong and 98 weak, can easily have a monotone equilibrium such
that the two strong players always participate while others always quit.

16For a multi-unit auction, the action space may be multi-dimensional, which may invalidate the notion
of a monotone bidding strategy. However, the notion of a monotone participation strategy still works.

7" That is, potential bidders.

8That is, about its rate of convergence to 1 for high signals. In the case of a compact support, knowing
its right endpoint is necessary (but not sufficient).



