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6 Symmetric and asymmetric!

6a A simple counterexample

Consider an asymmetric first price auction with n players. That is, payoff functions IT; =
--- =1II, = IT are standard, given by (5a3) with G of (3el) and L of (3d1). The asymmetry is

in signal distributions Pg,, ..., Ps,; they need not be the same. Accordingly, an equilibrium
is not expected to be symmetric.
Let (1, - . -, pn) be an equilibrium, then u; (as well as any py) is a best response to others,

U2, - - -, iy (recall (5a6)); results of 2¢ are applicable (as was noted on page 56). Especially,
by Corollary 2c5,

e 1 is a weakly increasing strategy except, maybe, never-wining actions.

The reservation about never-wining actions was eliminated in 3bl, 3b2 using symmetry.
Now, having no symmetry, we must be in earnest about the reservation.
The following conjectures may seem to be natural, but are generally wrong:

e If signal distributions are nonatomic then action distributions (in an equilibrium) are
also nonatomic. (WRONG)

e An action (in an equilibrium) never exceeds the signal. (WRONG)
e An equilibrium is unique. (WRONG)

Here is a counterexample. Let n =3, S; ~ U(1,2), Sy ~ U(3,4), S3 ~ U(3,4). Let ag be
an arbitrary number of [0, 3]. Consider such a triple of strategies:

A; =ap always (irrespective of Si);
A2:3+%(52—3);
A3:3+%(53—3).

It is an equilibrium, and it refutes the three conjectures.

Of course, the counterexample is not at all deep. However, it emphasizes that seemingly
natural properties of strategies must be proven, not just declared.

6b Hopeful and hopeless

Striving to exclude pathologies we may restrict ourselves to signal distributions satisfying
the assumption

(6b1) Fs(s)=0 <= ... <= Fs(s)=0 forallse[0,00).
That is, the low end s of the support of Sy does not depend on k,
(6b2) Slinin — .. = Smin (: Smin)

n

and in addition, s™™ is an atom either for all Sj or for no one of them.

1Section 6 is especially influenced by the paper
BERNARD LEBRUN, “First price auctions in the asymmetric N bidder case”, International Economic Review
40:1 (1999), 125-142.
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6b3. Lemma. Assuming (6bl) we have Ay < Sy almost surely, for all .

Proof. Consider sets Ey = {a € R : Fa,(a) = 0}. Each Ej is of the form (—oo0,a™"] or

(—00, a™n); the latter happens if " is an atom of A;. Sets Ey, ..., E, are linearly ordered;
consider the greatest one, let it be E;. Every action in E) is never-winning for players
2,...,n. Every action outside F; has a positive chance to win for each player 1,...,n.

However, A; ¢ E; (almost surely),” therefore A; always has a chance to win; therefore
A; < S; (a.s.);® therefore S; ¢ E; (a.s.). Condition (6b1) ensures that Sy ¢ E; (a.s.) for all
k (think, why). The inequality Ay > Sy can hold only when Ay is a never-winning action
(otherwise py is not optimal), therefore, only when Ay € E;. However, the three relations
Sk ¢ Ey, A, € Ey and Ay, > S, are evidently inconsistent. O

6b4. Exercise. Assuming (6b2) we have A; < Sy almost surely, for all .
Prove it.
Hint: a small insertion to the proof of 6b3 is needed.

6b5. Corollary. Assuming (6b2), the expected profit is strictly positive for every player
and every signal except, maybe, an atom at s™".

Proof. Recall (2a12): II{™(s;) = sup,, ITi(a1,s1). Let s; > s™®; we have to prove that
IT;(ai,s1) > 0 for some a;. Let a; € (s™®,s); it suffices to prove that IT;(as,s;) > 0.
However, IT (a1, 1) = (s1 — a1)W(a1), and the winning probability

W(al)EIP’(A2<a1,...,An<a1) 21?(52<a1,...,8n<a1):
=P(S:<a1)...P(S,<a;) >0,

since Ay < S,..., A, <5, by 6b4. O
6b6. Corollary. Assuming (6b2) we have A, < Sy almost surely, unless S = s™,

6b7. Note. Atoms of S,...,S, at s™" can lead to pathologies. If, say, j1 and ji5 are such
that S; = s™® = A; = s™" and Sy = s™* = A, = s™" then pus,..., U, may use
arbitrary actions Ay € [0, s™"] when S}, = s™,

In an equilibrium, p; is a best response to us, ..., ,, that is, to the corresponding
winning probability function (recall (5¢13)) a3 — Wi(a1); we have (recall (5¢14), (5¢15))

) .
(6b8) " a1+; = 5; (a14) ... Fa, (a1+) ,

1(a1+) = W (al—) =W (al) =W (CL1+) ,
al—) < Wl(a1+) - Wl(al—) < Wl(al) < Wl(a1+)

for 0 < a; < oo, and Wy(0) = 0. However, generally Wi(ay) # Fa,(a1)-..Fa,(ar). The
same for Wy, the winning probability of player k. In fact, Wy,..., W, are well-defined for
arbitrary strategies py,. .., i, (not just an equilibrium).

2Check it separately for the two cases.
30therwise p; cannot be optimal; when A; > Sy, it is strictly better to quit.
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6b9. Lemma. Assuming (6b2) we have IIp***(s™") = 0 for all .

Proof. Assume the contrary, say, II"*(s™®) > 0. Take a; such that IT;(s™® a;) > 0,
then a; < s™® and Wi(a;) > 0, therefore Wy(s™"—) > 0 and IP’(Ak < smi“) > 0 for
k=2,...,n. AlsoP(A; < s™") > 0, since otherwise II"(s) < s — s™" for Pg,-almost all
s, in contradiction to IT"**(s™) > 0. So,

]P’(Ak<smi“)>0 fork=1,...,n,
therefore
P> (s™) >0 fork=1,...,n.

Similarly to the proof of 6b3, we introduce sets Ej, but now we consider the least one,
let it be E;. We have P (Ak < a{“i“) = 0 for all k. For u;-almost all pairs (si,a;) we have
I (s™in) < TIP*(s1) = (81 — a1)Wi(aq), therefore TIT**(s™in) < (s™i0 — glin)|¥/; (gt ).
So,

Wi (af™-) =0, Wi(af™+) >0,

which shows that a™® is an atom of A, (as well as As, ..., A,). Thus, a™® ¢ E, D E, hence
min min

a™" is an atom of A;, too. However, a™ can be an optimal action for s; = a™ and no
other s; (similarly to 2b9); a contradiction.

p
o
ap
6b10. Exercise. P ( A, < s™") = 0 for at least two players.

Prove it.
What about other players? (Recall 6b7.)

6b11. Exercise. Assuming (6b2) we have Sy > s™® = A, > s™ (almost surely).
Prove it.
Hint: recall 6bb.

6b12. Exercise. Assuming (6b2) we have S; > s™* = A; > s™" (almost surely).
Prove it.
Hint: otherwise, s™" is an optimal action for some signal s > s™® and Wi (s™") > 0 by
6b5, but W, (s™8—) = 0 by 6b10; now recall 2b9.

min
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6¢c Nonatomicity of actions

6cl. Exercise. If a; is an atom of A; and Wi(a;+) > 0 then Wy(a;—) < Wa(ar+), --. ,
Wy(a1—) < Wy(a1+).

Prove it.

Hint: recall (6b8) and forget about equilibria (and best responses); the statement holds
for arbitrary strategies.

6c2. Exercise. Let p; be a best response to pg, ..., s, and 0 < Wi(a;—) < Wi(ai+).
Then ]P’(al—ESAl gal) = ( for some € > 0.

Prove it.

Hint: recall 2b7 and 2b8(a).

6c3. Lemma. Under (6b2), Ay,..., A, have no atoms on (s™", 00).

Proof. Assume the contrary: a; is an atom of A;, and a; > s™®. Then Wi(a;+) > 0,
moreover, Wy(a;—) > 0 for all & (which follows from 6b3), and 6¢1 shows that Ws, ..., W, are
discontinuous at a;. We apply 6¢2 to us (rather than p;) and get P ( a—e < Ay < al) =0
for some € > 0. The same holds for As,...,A,. Thus, Wi(as —¢) = Wi(a1) > 0, in
contradiction to optimality of u; (since a; — ¢ is strictly better than ay, irrespective of
s). O

Note that 6¢3 does not assume nonatomicity of signals.

6d Toward differential equations

The framework of this subsection is best response (rather than equilibrium). Let p; be a
best response to ps, ..., tin, that is, to the corresponding W; (recall (6b8)). Each action a
is represented by a linear function s — IIi(a, s) = (s — a)Wi(a), and their supremum is the
convex function s — II7**(s) (recall 2a).

N Irpe(s)
II:(a,s)

— S

—aWi(a)s

We know that TI7**(s) is the integral of the winning probability p*'"(s) treated as a function
of a signal. Now, however, we have no way to get p"™® apriori. Thus, we are more interested
in relating IT* to the winning probability W) treated as a function of an action. It is easy
to express IT** in terms of Wy,

(6d1) I (s) = sup (s —a)Wi(a).
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Can we express W in terms of IT]*** ? Generally, not; different functions W, can lead to the

same TT{"® which is easier to see on the plane (expected loss, winning probability) (recall 2b):

p s

e (s)

Iy ”
The function IT"™ determines uniquely the convex envelope of the curve rather than the
curve itself. The point « (see the picture) describes an action a that is never optimal
(irrespective of s); its Wi(a) cannot be determined by IT{***. We can see the same on the
(s,II) plane:

i

/ ’
Actions a, b, d, e are optimal for some signals, but ¢ is not.
If a is an optimal action for some signal, then

(6d2) Wi(a) = min w

s€(a,0) S —a

Therefore (6d2) holds for Pa,-almost all a. If, however, a is not an optimal action (for any
signal) then*

(6d3) Wi(a) < H;;XS) for all s € (a,o0). ) ITi (a,s)
f v s

We define

(6d4) Vi(a) = inf 1™ (s) ,

s€(a,0) S —a

4And nevertheless the infimum may happen to be equal to W;(a), though typically it is greater than
W1 (a)
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then

Wi(a) < Vi(a) for all a,

6d5
(6d5) Wi(a) = Vi(a) for Pa,-almost all a.

The function W is monotone, it increases on [0, 00) from 0 to 1, which basically exhausts its
properties.> However, W, is related by (6d5) to another function, V;, constructed by (6d4)
in a purely geometric way from a given function ITI]** such that®

IT"* is a convex increasing function on [0, 00),

(6d6) d
I17"(0) =0, and gﬂrf‘ax(s) — 1 for s = 0.

Due to convexity of IT{", the function V; is much more special than W7, as we’ll see. First,
introduce such a set of pairs (s, a):

(6d7) R ={(s,a) € [0,00) x [0,00) : (s — a)V1(a) = TIT™(s) > 0} . __

We have a weakly increasing relation between s and a, and R is a connected line.

6d8. Example. Let IT* be piecewise linear. Thgn R consists of a finite number of hori-
zontal and vertical segments.

a2 Pr—

s
t a1 S1062 S2 t s1 82

In general, horizontal (a = const) segments of R correspond to linear segments of TT"**
(nothing but bunches, recall 3c), except for II7***(s) = 0.

II
a

sa  S1 59 s
Ve S1 52

Similarly, vertical (s = const) segments of R correspond to jumps of the derivative of TT***.

5The last line of (6b8) is the only additional property, and is relevant at discontinuity points only.
6The latter holds since d%l'l‘fax(s) = p"in(s) (except discontinuity points, if any).
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In the latter case we have Vi(a) = IIT"™(s)/(s — a) for all a € (a1,as), thus InVj(a) =
const — In(s — a) and
Vifa) _ d

d
Vi(a) da nVi(e) da n(s —a) s—a

(6d9) for a € (a1,as) .

We may guess that the equality V{(a)/Vi(a) = 1/(s — a) holds also for nondegenerate cases,
when s is not constant. There are several ways to show that the guess is true. Here is one of
them. First, note that in the degenerate case s = const we have 1/V;(a) = (s — a) /IIT"**(s),
a linear function on (ai, as). In general, it follows from (6d4) that

1 s —

a
6d10 —— = SUP =~ fOr a € (t,00),
( ) Vi(a)  seqto0) TIT(5) (

where
(6d11) ¢t =1inf{s € [0,00) : IIT"™(s) > 0} = max{s € [0, 00) : IIT"*(s) =0} =

= inf{a € [0,00) : Vi(a) > 0} = sup{a € [0,00) : Vi(a) =0} =
= inf{a € [0, 00) : Wi(a) > 0} = sup{a € [0, 00) : Wi(a) = 0},

0 <t < oo. (Think, why the threshold of signals is equal to the threshold of actions.) Being
the supremum of linear functions, the function a — 1/V;(a) is convex on (¢, 00).

_1
Vi(a)

a

It follows that the function 1/V; is differentiable on (¢, 00) except (maybe) a finite or count-
able set, and its derivative is an increasing function. Therefore the function V; is differentiable
except (maybe) a finite or countable set. Though, its derivative V] need not be monotone,”
it may behave like that:

1
Vi(a) Vi(a)
3 1/3

° a . o a

1 1
If (s,a) € R then the supremum in (6d10) for a is reached at s. If in addition, 1/V; is
differentiable at a, then its derivative corresponds to the tangent line:

d 1 d
da1 al:a‘/l(al) da1
"Rather, 2b5(b) is satisfied,

s—a 1

wma AT (s)  TT™(s)

) < oY@
W) <2505

(think, why), provided that V}" exists.
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Combining it with

we get

which proves (6d9).
If (s,a) € R but 1/V] is not differentiable at a, it means that (s, a) belongs to a horizontal
segment of R.

|
1 ~
a

In such a case V{(a) does not exists, however, one-sided derivatives exist:®

Vi(a— 1 Vi 1
Vi(a) 51— a Vi(a) 59— @
Now, understanding the auxiliary function V;, we return to the winning probability func-
tion W;. The two functions coincide P4,-almost everywhere (recall 6d5). Do not think that

they must coincide everywhere on the support of A;.

6d13. Lemma. Vi(a) = Wi(a) whenever ¢ is an interior point of the support of A;.

Proof. The support of A; contains a neighborhood (a — ¢,a + €) of a. The functions V;
and W; coincide Pg4,-almost everywhere, therefore they coincide on a dense subset E of
(a — €,a + ¢). However, V; is continuous (since 1/V; is convex, therefore continuous), and
Wi is monotone. We have

Wi@) < lim  Wi(b)= lim V() = Vi(a),
b—a,be EN(a,a+e€) b—a,beEN(a,a+e)
> li = li =
M (a) B b—)a,bEJIE‘IrrWl(a—s,a) Wi (b) b—)a,bellﬂrf?(a—s,a) Vi(b) Vi (a) ’
thus Wi(a) = Vi(a). O

81t may be interpreted as V{(a+) = lim. o4 2(Vi(a + &) — Vi(a)) or, equally well, as V{(a+) =
lim, o4 V{(a + €); in the latter formulation € must be such that V/(a + €) exists. In general it may happen
that the former limit exists but the latter does not. However, for our functions existence of both is ensured
by convexity of 1/V;.
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6d14. Lemma. If a € (¢,00) is such that Vi(a) = W;(a) then the following two conditions
are equivalent for every s:
(a) a is an optimal action for s;

(b) (s,a) € R.
Proof. Condition (a) means that IT;(a,s) = II7™(s), that is, (s — a)Wi(a) = II**(s).
Condition (b) means that (s — a)V;(a) = II7"**(s) > 0 (recall (6d7)). O
For such a, the set of all s € (a, 00) such that a is optimal for s is either a single point, or

a closed interval (bunch), or an empty set. The latter may happen only if P ( A < a) =1
(think, why).

6d15. Proposition. Let a € (¢,00) be an interior point of the support of A;. If a is optimal
for one and only one s, then W, is differentiable at a, and

Wi(a) 1

Wi(a) s—a

Otherwise, the set of all s € (a, 00) such that a is optimal for s is an interval [sq, so], $1 < So,
and W, has one-sided derivatives’ at a, and

Wia—) 1 Wi(a+) 1

Wi(a) s, —a’ Wi(a) sy—a’

Proof. By Lemma 6d13, Vi(a) = Wi(a). By Lemma 6d14, a is optimal for s if and only if
(s,a) € R. Also, P (A1 < a) < 1. Thus, the set of s such that a is optimal for s is either a
single point s € (a,00) or a closed bounded interval [sq, 5] C (a, ).

By Lemma 6d13 again, functions V; and W coincide on a neighborhood of a. Therefore
we may replace Vi with Wy in (6d9) or (6d12). O

We want to describe these s, s1, so (for a given a) in terms of distributions. If everything
is continuous and strictly increasing then clearly

s=Fg'(Fa,(a)).

What happens in general? Introduce the quantile function S} (known also as the inverse
distribution function Fg'); it is an increasing function Sj : (0,1) — R such that Sj(p) is a
p-quantile of S7, in other words,

P(S1<Si(p)) <p<P(S <Si(p)) forallpe (0,1).

If (and only if) S; have gaps then S} is discontinuous. We could assume it to be right-
continuous, or alternatively, left-continuous, but I prefer not to specify it at jumping points.

9Recall the footnote to (6d12).
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Anyway, the arbitrariness does not influence on-sided limits S;(p—) and S5 (p+). We cannot
say that p = Fs,(s) <= S7(p) = s, but the following equivalences hold in every case:

p< Fs(s—) <= Si(p+)<s
p>Fs(st) < 5i(p-)
(6d16) p< Fo(s+) < Si(p-)
p2Fg(s—) <= Si(pt) =s;

Fs (s—) <p<Fg(s+) <= Si(p—)<s<Si(p+).
The set of all pairs (s,p) satisfying the two equivalent relations in the last line of (6d16)
is a connected line on the (s,p) plane (the quantile line), and describes a weakly monotone
relation between s and p.

P P ,
1 1
/_/F_S1 7 *
quantile line »
s s p
1

Being equipped with the quantile functions ST, we return to S;, A; and R. Recall the
case of a bunch:

S

S1 S9
6d17. Lemma. Let a € (t,00) be such that Fa,(a —¢) < Fa,(a) < F (a + ¢) for every
e >0, and {s : (s,a) € R} = [s1,89], 851 < 9.1 Then s, = S} ( —) and s =

St (Fa,(a+)4+).

Proof. Denote p; = Fa,(a—), po = Fa,(a+). We have s < Sf(p1—) <= Fs,(s+) < p; and
s> St(pe+) <= Fs,(s—) > pe- In order to prove that s; = S7(p1—) and sy = S} (pa+), it
suffices to prove that

s<s8 <= Fs(s+)<p1,
§> 8§ < FSI(S—)>p2.

Clearly, Ay < a = S; < s (almost surely), thus p; = Fa,(a—) < Fg,(s1+) and
s < s <= Fs,(s+) < p;. Similarly, A; > a = S; > s9, thus py = Fa,(a+) > Fs,(s2—)
and s > s, <= Fs,(s—) > po. It remains to prove “ = ” implications. Let s < s, then
the point (s,a) does not belong to the closed set R, therefore its e-neighborhood does not
intersect R if € is small enough.

10Both cases, s1 = s5 and s; < sy are covered at once.
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Clearly, S; < s = A; < a —¢ (a.s). Therefore Fs,(s+) < Fa,(a —¢) < Fa,(a—) = p;.
So, s < 81 = Fs,(s+) < p1.

Similarly, if s > sy then S} > s = A; > a+¢, thus 1 — Fg,(s—) < 1— Fy,(a+¢-),
0, Fs,(s—) > Fa,(a+¢e—) > Fa,(a+) = po. O

6d18. Theorem. !! Let a € (¢,00) be an interior point of the support of A;. Then W, has
one-sided derivatives'? at a, and

Wi(a—) 1 Wi(a+) 1

Wi(a) s1—a’ Wi(a) so—a’

where
s1 =S5} (Fa,(a—)-), so = St (Fa,(a+)+)
(here ST stands for the quantile function of S;).
Proof. Follows immediately from Proposition 6d15 and Lemma 6d16. O

6d19. Corollary. Under the conditions of Theorem 6d18, the function W, is differentiable
at a if and only if S (Fa,(a—)—) = S} (Fa, (a+)+).

6d20. Exercise. If S7(F4,(a—)—) = S;(Fa, (a+)+), does it follow that Fy, is continuous
at @ and S} is continuous at Fla, (a)?

6d21. Exercise. Let a € (t,00) be such that the support of A contains [a, a + €] for some
€ > 0. Then W; has the right-hand side derivative at a, and

Wi(a+) 1
= h = SJ(F .
W (0) p— where s, = S} (Fa, (a+)+)

The same for the other case, [a — ¢, a.
Prove it.
What happens for a =t7

6e Two players

Consider an asymmetric first price auction with 2 players, assuming (6b2). Let (p1, o) be
an equilibrium. We have

s <A< S, s < A, < S, (almost surely)
by 6b4 and 6b10;

Sy > Ml = Wt 4 < S, S>> st = o4, < S, (as.)

HRecall the framework (stated in the beginning of 6d): p; is a best response to pa, . . ., fin, that is, to the
corresponding Wi. And, of course, (S1, A1) is distributed py.
12Recall the footnote to (6d12).
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by 6b6 and 6b12;

Hrlna.x(smin) — Hénax(smin) =0

by 6b9;
M*(s) >0, TI3*(s) >0 forall s€ (s™, 00)
by 6bb;
Ay, Ay have no atoms on (5™, 00)
by 6¢3; and

Wi(a) = Fu,(a), Ws(a) = Fa,(a) forall a € (s™®,00)

(think, why).
Denote a®* = sup{a : Fa,(a) < 1}, then

max ___ max ,
a’l - a2 J

indeed, if, say, a™®* < a$®* then ps is not optimal (since a'®* is strictly better than A,
whenever Ay > a}"®*).

6el. Exercise. A, A5 have no gaps.
Prove it.
Hint: use 2b10(b).

So, A; and A, have the same support

[Smin max] ;

7

here a™* = a"® = a5"®*. We apply Theorem 6d18, taking into account that the threshold ¢
introduced by (6d11) is nothing but s™ (for both players).

6e2. Theorem. Functions F,, F4, are continuous on (s™", 00), have one-sided derivatives

on that interval, and

Fl (a—) 1 Fi (a+) 1
Fa(a) — S5(Fay(a)—) —a’ Fa(a)  S3(Fa(a)+) —a’
P (a—) 1 Fi(a+) 1
Fa,(a) — Si(Fa(a)=) —a’ Fa,(a) — Si(Fa(a)+) —a

for all a € (s™in, ™M),

I3 A finite number or 4+o00. Or is the latter impossible?
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We see that A;, A, have densities'*
fa, =Fy , fa,=Fy,

except for possible atoms at s™"; the density fa, is continuous except, maybe, a finite or
countable number of jumps downwards. Each jump of f4, corresponds to a gap of Ss_y,
except for the last jump, at a™?*.

min

6e3. Corollary. If S; has no gaps then f4, is continuous on (s™", a™¥), and

fAl(a’) —
Fa(a)  S3(Fa,(a)) —a

The same for S; and fa,.

for all a € (s™*, ™).

6e4. Exercise. The density f4, has a jump at a™® if and only if S, is bounded.'®
Prove it.
Hint: recall 6d21.

We turn to a symmetric action with two players;
St(p) = S3(p) forall p € (0,1);

its symmetric equilibrium was found in 3d; now we address the question, whether other,
asymmetric equilibria exist, or not.
If the distribution Ps (= Ps, = Ps,) has no gaps, then we have
d

(6e5) o (In Fya, (a) — In Fa,(a))

_ 1 _ 1
S (Fay(a)) —a  S*(Fa,(a) —a

for all @ € (s™®, ™), which shows that the function a — F,(a)/Fa,(a) increases whenever
it exceeds 1 and decreases whenever it is less than 1. Gaps of Ps (if any) do not invalidate
the statement, since (6e5) still holds everywhere except, maybe, a finite or countable set,
of no influence to the integral of the derivative.!® Here is an exact formulation. If [a,b] C

min ,max] j; Fa,(a) Fa, (b)
[smin) gmax] jg such that Fa, (z) > Fa,(z) for all z € [a, b], then Fi:(z) < Fﬁl(”)'

Assume that Fy,(a) > Fy,(a) for some a € (s™2,a™*]. Recall that Fy,(a™) =
Fu,(a™3) = 1, and Fy,, F, are continuous on (s™%, ¢™@). Consider the least b € [a, a™*]

such that Fa,(b) = Fa,(b), then Fa,(-) > Fa,(-) on [a,b], therefore 11::28; < ?ﬁ;gg, which

is a contradiction. So, Fy,(a) < Fyu,(a) for all a € (s™® ¢™*]. Similarly, Fa,(a) < Fa,(a).
The following result is thus proven.

6e6. Theorem. A symmetric first price auction with two players has one and only one
equilibrium, and the equilibrium is symmetric.

14Tn order to be a density, the derivative F' must return the distribution function F' by integration, which
means that F' must be absolutely continuous. In fact, convexity of 1/F;, 1/F5 ensures absolute continuity
of Fl, F2 .

5Though, if Sy is unbounded, it could happen that a™® = +o00. Or maybe that is excluded by assuming
ES; <00, ES: < 00? Ido not know.

6Once again, absolute continuity is relevant.
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6f Equilibrium, supports, cells

We return to an asymmetric first price auction with n players, assuming (6b2) and an
equilibrium. We have

A < S for all & (almost surely)

by 6b4; though, for some (but not all) k it may happen that A, < s™® when S = s™o.
Further,

Sp > ™Mt = MM < 4, <8, forallk (as.)
by 6b6 and 6b12;
H;cnax(smin) =0

by 6b9;
I (s) > 0 for all s € (s™", 00) and all k
by 6bb5;
Ay, ..., A, have no atoms on (s™", c0)
by 6¢3; and
Wi(a) = FZZC(LC)L) for all a € (s™™, 00)

where F(a) = Fa,(a)...Fa,(a)

(think, why).

Unfortunately it is far from being evident, whether all A, have the same support, or not,
even for a symmetric auction, as far as the equilibrium is not assumed to be symmetric.
Assume for a while that the auction is symmetric, and all Ay have the same support, and
moreover, it is an interval, that is,

(6f1) the support of Ay, is [s™®,a™] for all &

for some a™* € (s™", 00). Theorem 6d18 gives
Wi(a) 1

Wi(a) ~ S*(Fa,() —a
for all k¥ and all ¢ € (s™", ™) except maybe a finite or countable set (of discontinuity
points). We have'” W/ (a)/Wi(a) = L InWy(a) = L InF(a) — &L In Fu,(a), hence

d d 1 1

da M) = g M) = S @) e T S (R@) —a

for all k,1. It shows that the function F4, (a)/F4,(a) increases whenever it exceeds 1, and
decreases whenever it is less than 1. Similarly to 6e we conclude that F4, = F4, on the
whole (s™8, ¢™3] which proves the following result.

THowever, it is not evident that functions Fy, are differentiable. We know that W}, are absolutely contin-
uous, therefore In T}, are absolutely continuous, therefore }°, InWy = (n — 1)In F' is absolutely continuous,
as well as In Fj, = In F' — In W}, are, which means that F}, are absolutely continuous. See also 6g10.
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6f2. Proposition. A symmetric first price auction has one and only one equilibrium satis-
fying (6f1), and the equilibrium is symmetric.

What happens beyond (6f1)? Generally, I do not know. The rest of Sect. 6 assumes that
(6£3) the support of A consists of a finite number of intervals

for each k. Note that supports need not be equal. The assumption excludes such supports
as, say,

©—1—H—t=t PR—
o i+HH i —i

(an infinite sequence of intervals accumulating to a point), or a Cantor-type set

H———as

(with a dense set of gaps).

Accordingly to (6f3), every player may have any finite number of gaps in his Ay, and
gaps of different players may overlap arbitrarily. The boundary of the support of Ay is a
finite set of endpoints of all its intervals. The union of all these boundaries is a finite set; it
divides [s™", 00) into a finite number of intervals; these will be called cells. An example:

support of A;

support of Ay

support of As

w1 2 (3) @) 6) © @ ® © 10
Here, the support of A; consists of 2 intervals, and its boundary contains 4 points. Also A,
and Aj contribute 4 boundary points each. Some of these points coincide; the union contains
9 points, and we have 10 cells, the last one being unbounded from above.

Given a cell and a player, we have two possible cases; the support of the action Ay of the
player contains either all points of the cell, or no one of them. Accordingly we say that the
player is active or passive on that cell.'®

6f4. Exercise. The number of active players on a cell cannot be equal to 1.
Prove it.
Hint: if only player 1 is active then W; is constant on the cell.

6f5. Exercise. The number of active players on a cell cannot be equal to 0, except for the
last (unbounded) cell.

Prove it.

Hint: use 2b10(b).

80n the example shown above, say, on the cell number 4, only player 3 is active; on the cell number 8,
all players are active; on the cell number 10, all players are passive. The next exercise shows that such a
case is in fact impossible. You may also note that all players must be active on the first cell. Still, a lot of
possibilities persist.
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6g Convexity on cells

The following purely analytical fact will be essential.

6gl. Lemma. Let fi,..., f,: (a,b) = (0,00) be increasing functions such that

fi-fa
i
forallk=1,...,n, and n > 2. Then

is convex on (a, b)

fi... fn is convex on (a,b).

Proof. Assume for a while that functions fi,..., f,, are smooth, namely, twice continuously
differentiable. We need to deduce the inequality (fi---fa)"/(fr-.- fa) >0, that is,

Jefl
622 > ey B,
1<k<n 1<k<i<n K/
from n similar inequalities, one of these being
s Jefi
+2 >0.
2 k 2 Tt

1<k<n—1 1<k<I<n—1

The sum of these n given inequalities is

f;i' fefi o
—1
g )1§k§n fr 1<kz<l< f’“fl

we divide the sum by n — 1; taking into account that f, > 0 for all k, we get (6g2), which
proves the lemma for smooth functions.

We turn to the general (not just smooth) case.!® Convexity of f; ... f,/fx implies that the
derivative (fi... fn/fr) exists everywhere except for a finite (maybe empty) or countable
set of jumps, and returns the original function by integration. The same holds for the
product [[,_, . % = (f1... fa)""', therefore for f,...f, and further, for the quotient
(fi-- fu)/(fr--- fa/fe) = fe- In other words, fi is locally absolutely continuous, f; is locally
bounded and has left and right limits f;(z—), fi(z+) for all z € (a, b).

In order to generalize our argument for non-smooth functions, we rewrite it in a form
free of second derivatives, using integration by parts:

" "
[ ((fl...fn) Loy GBS 2 5 fkfl>¢( Jdz=0
flfn n—1 flfn/fk n—1 fkfl

1<k<n 1<k<I<n

turns into

(683) —/(f1 fn)'<f1 *”fn> oty 3 ( ) (fl__f;n/fk)'dx_

2 fifi
n—1 Z fkfl pdr =0

1<k<I<n

9Maybe, the rest of the proof is of interest for mathematicians only.
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for an arbitrary smooth function ¢ whose support lies strictly inside (a,b). The standard
approximation generalizes the latter equality to a wider class of functions fi,..., f,. Namely,
instead of a continuous second derivative, it is enough to be absolutely continuous and have
a locally bounded first derivative.?’ Similarly, instead of smoothness of ¢ it is enough if ¢ is
absolutely continuous and has a bounded derivative.

If ¢ > 0 on (a,b) then

fioo ) @ L %) fioo fa)
/( i )(fl...fn/fk) o = /fl...fn/fkd< fi )50’

since (f1 ... fn/fr)" increases (due to convexity of fi ... f,/fx). Combining it with (6g3) we

get [(fi-.. fn)’(fl_‘f’_fn)’dx < 0. However, fl-(ﬁfn is as arbitrary as ¢, and so,

(64) / (1w fu)ddz <0

for every ¢ > 0 of the class considered. For any given u,v,w such that a < u <v <w < b
we define ¢ as the piecewise linear ‘triangle’ function

AN

a u v w b

then (6g4) becomes just the three-point inequality that expresses convexity of f; ... f,.

O

6g5. Note. If f,... f, are as in Lemma 6gl then each f; is the quotient of two convex
functions,

_ hiehn
fooo ful B
therefore one-sided derivatives f(z—), f;.(z+) exist (and are finite) for all z € (a,b), and

fi.(z) is well-defined and continuous for all z € (a,b) except for a finite (maybe empty) or
countable set, and f; returns fj by integration.?!

Jr

6g6. Note. If f,... f, as in Lemma 6gl are strictly increasing on (a,b) then f;...f, is
strictly convex on (a, b).

Sketch of the proof: [ %cp dx > 0, since {z € (a,b) : fi(z=) =0or fi(z+) =0} is a
closed nowhere dense set; the same for f.

(It is enough if only two functions among fi,..., f, are strictly increasing.)

20Local boundedness of f; may be replaced with a weaker condition of local square integrability. Such a
function is the limit of a sequence f 1, fx.2,. .. of smooth functions such that fz ; — fi for i — oo uniformly
on compact subsets of (a,b), and f:;; |f1.(x) = fi.:(2)]? dz — 0 for i — oo. That is enough for the limiting
procedure.

21'Well, all that was already said in the proof of Lemma 6g1.
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We return to the framework of 6f, assuming (6f3). We simplify the notation, denoting
Fy, by Fj.

6g7. Lemma. For every k =1,...,n, the function 1/Wj, is convex on every cell.

Proof. Consider a cell (a,b). If player k is active on (a,b) then 1/Wy = 1/Vj on (a,b) by
6d13, and 1/V} is convex by (6d10).

Let players 1,...,m be active on (a,b) and players m + 1,...,n be passive; here m €
{2,...,n —1}.?2 Functions F,,1,..., F, are constant on (a, b), therefore

1 F, 1

— =———=const-—...— on (a,b)fork=m+1,...,n;

W, F...F, Fi F,, (a,)
1 F, e
— =——"— =const- —+—" on (a,b) fork=1,...,m.
W~ F...F T (4,0)

Using the first part of the proof we see that functions 1/Wj, as well as (I/FIE/#,

convex on (a,b) for k =1,...,m. We apply Lemma 6f1 to functions 1/F7, ..., 1/F,; though,
they decrease, but we may reverse the argument by considering functions = — 1/Fy(—x)
increasing on (—b, —a). We conclude that the function (1/F})...(1/F,,) is convex, therefore

are

1/Wy is convex for k =m+1,...,n. O
6g8. Exercise. If player k is passive on a cell (a,b), b # oo, then 1/W}, is strictly convex
on (a,b).

Prove it.

Hint: use 6g6, 6f4, 6f5.

6g9. Exercise. If player k is active on a cell (a,b) and Sy has no atoms on (s™®, 00), then
1/Wy is strictly convex on (a,b).

Prove it.

Hint: \

6g10. Exercise. Each action Ay has a density f; = F}, on (s™®,00);% f is continuous on
(5™ 00) except for a finite (maybe empty) or countable set; one-sided limits fi(a—), fx(a+)
exist? for every a € (s™®, 00).25

Prove it.

Hint: recall 6gb.

min

221f all players are active, convexity is already proven. If all players are passive then 1/W} is constant,
therefore convex. The case m = 1 is excluded by 6f4.

ZHowever, Aj, may have atoms outside (s™", o0) if S}, has an atom at s

2For now, fr(a+) = oo is allowed if a separates two adjacent cells. Such a situation will be excluded
soon. In fact, only fx(s™"+) can be infinite.

25Gee also 6h8.

min
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6h Jumps between cells, and global convexity
Still, the framework is that of 6f, assuming (6b2), an equilibrium, and in addition (6f3).
6h1. Exercise. If a € (s™", 00) is such that W;(a) = V;(a), then

(e e
Prove it.

Hint: Wy < V; (recall (6d5)), and 1/V] is convex.

Let (a,b) and (b,c) be two adjacent cells. Due to 6h1, (1/Wy)'(b—) < (1/Wy)'(b+) for
all £ such that player k is active on at least one of the two cells.

Now we’ll transfer the property from active to passive players using an argument some-
what similar to 6g but much, much simpler. First, some elementary mathematics.

6h2. Exercise. Let zq,..., 1, € R satisfy
(1 +-4x)—2, >0
forall k=1,...,n,and n > 2. Then
1+ 4+x, >0.

Prove it.
Hint: n(zy + -+ 2,) > 21 + - - + 2, (though, you may find another argument).

6h3. Lemma. Let (a,b) and (b, ¢) be two adjacent cells, then
1Y 1
Y o) < [ ==
(7)< (7))

Proof. Let each of players m + 1,...,n be passive on both cells (a,b) and (¢, d), while each
of players 1,...,m active on at least one of the two cells; here m € {2,...,n}, since m =1
is excluded by 6f4. We know that the inequality holds for £k = 1,...,m.

Consider numbers

fork=1,...,n.

Ty = (ln Fk)l(b+) - (ln Fk)l(b—);

existence of these one-sided derivatives is ensured by existence of (In Wy)'(b—) and (In W) (b+),
since

InFy=InF+---+InkF,) —InW, =

n_l(an1+---+ann)—ank.

Note that z =0 for k =m +1,...,n, since these F} are constant on (a,c). Also,

(InWy)' (b+) — In W) (b=) =21 +---+x, fork=m+1,...,n;
(In W) (b+) — InWe)'(b—) = (@1 + -+ z,) — 2 fork=m+1,...,n.
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Fork =1,...,mwehave (1/W;)'(b—) < (1/Wy)'(b+), thus®® (In(1/Wy))'(b—) < (In(1/Wy))'(b+)
and (InWy)'(b—) > (In Wy)'(b+), that is,

(x14+--+zy) —2, <0 fork=1,...,m.
Applying 6h2 to numbers (—z,),...,(—x,), we conclude that
144z, L0,
therefore (In W) (b+) < (In Wy)'(b—) for k = m+1,...,n,and so, (1/Wy)'(b+) > (1/W)'(b—)

fork=m+1,...,n. O
6h4. Proposition. Functions 1/W}, are convex on (s™", o00) for k =1,...,n.
Proof. Follows immediately from 6g7 and 6h3. O

6h5. Exercise. The function 1/Wj is strictly convex on every gap (if any) of Ay.
Prove it.
Hint: use 6g8 and 6h3.

6h6. Exercise. Every gap of A; on (s™©" 0c0) corresponds to a gap of Sy. Namely, if
p € (0,1) is such that s™® < A%(p—) < A;(p+) then s™8 < S} (p—) < Si(p+).

Prove it.
1/ W,
Hint:
A-) AL Si-) 5t (1)
6h7. Theorem. If a signal S, has no gaps then the corresponding action A; has no gaps
on (smin’ OO).27
Proof. Follows immediately from 6h6. O

By the way, our assumptions do not forbid atoms of signals.

6h8. Theorem. Ifsignals Sy, ..., S, have no gaps then actions Ay, ..., A, have continuous
densities fi,..., f, on (s™" a™¥), where a™* = sup{a : Fi(a)...F,(a) < 1}.?8

Proof. Consider an arbitrary point a € (s™", ¢™?) and numbers
7 = (In Fy)'(a+) — (In Fy)' (a—)

(used before, in the proof of Lemma 6h3). It suffices to prove that xy = 0 for all k. It
may happen that for some players k, the support of A; does not contain a; these players are
irrelevant, and will be ignored. Thus, 6h1 is applicable to all players, giving?

(@1 +-+x,) —2, <0 fork=1,...,n;

26You see, (1/Wy)(b=) = (1/Wy,)(b+).

2TBelow s™" everything may happen, if S}, has an atom at s™i",
ZHowever, Aj, may have atoms on [0, s™"] if Sy has an atom at s™i".
29Gimilarly to the proof of 6h3.
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therefore
T+ +x, <0
by 6h2 (applied to (—z1),...,(—xz,)). Let

Fi(a) <1 fork=1,...,m,
Fi(a)=1 fork=m+1,...,n;

here m € {2,...,n}.%
We have

2, <0 fork=m+1,...,n,
since (In Fy)'(a+) =0 for k =m +1,...,n. On the other hand,
(x14+--+z,) —x,=0 fork=1,...,m,

since (z1+---+z,) —x = (In Wy)' (a+) — (In Wy)'(a—), which cannot be (strictly) positive,
since Ay cannot have an atom at a, and Sy cannot have a gap.

We have
1+, <Ti4+F T =m(a A+ Ty,

therefore 1 +--- +x, > 0, thus z; +--- + x, = 0, and then z; = 0,...,2,, = 0. Hence
Typr1+ - +zrp=21+--+2z,=0and 2,41 =0,...,2, =0. O

6i Symmetric auctions: uniqueness

Consider a symmetric first price auction with n players. Condition (6b2) is satisfied auto-
matically. We know (recall 6f2) that every equilibrium satisfying (6f1) is symmetric. Of
course, such an equilibrium is unique. The question is, whether every equilibrium satisfies
(6f1), or not.

Generally, I do not know. However, assume (6f3), then Theorem 6h7 ensures that actions
have no gaps, provided that signals have no gaps. We have to prove that all actions Ay, ..., A,
have the same support, that is, a)?®** = ¢™® for all k; here a®** = sup{a : Fj(a) < 1} and
™ = maxy ap®™ =sup{a : Fi(a)...F,(a) < 1}; as before, Fj, = Fjy,.

Assume the contrary; say, a"* < a™**. By Theorem 6h8, densities F}, are continuous at
a?®. Clearly, F}(a®+) = 0, and it follows that F}(a?"®—) = 0. However,!

1 1
In F,) (a™**=) — (In F}) (a™*=) = —
(I Fie)'(ar™ =) = (In By ) (o™ —) S*(Fy(am™)—) — @@ S*(1—) — afP™

~~
=0

30m #£ 0 since a < a™®; m # 1 by 6f4.
31Gimilarly to the argument before 6f2.
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for all k£ such that a® > a"**. It may happen that a®** < a"** for some players k; these
players are irrelevant and will be ignored. Thus, for all £ the left-hand side is > 0, while the
right-hand side evidently is < 0. It means that both sides vanish. So, (In F})'(a™**) = 0 for
all k, therefore (In Wy)'(a**) = 0 for all k. However, that can happen only if Fy(a®*) =1
for all k. The contradiction proves the final result of Sect. 6.

6i1l. Theorem. A symmetric first price auction with no gaps of signals has one and only
one*? equilibrium satisfying (6f3), and the equilibrium is symmetric.

32Except for arbitrary never-winning actions, if s™® is an atom of signals.



