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3 Symmetric equilibria and revenue equivalence

3a Our framework

The game under consideration (throughout Section 3) is a symmetric single unit auction'
with the standard allocation rule but an arbitrary payment rule. It means that the profit II
is a gain G minus a loss L (for each player),

(3al) II(aq, s51;a2) = G(ay, s1;a2) — L(as; ag),

the gain being

0 ifa; < ag,
1 : _
351 if a1 = ay,

(3a2) G(ai, 51502) =

S1 if a; > Qg,

while the loss L(a;ay) is an arbitrary function of the actions aq, as. Note that the loss does
not depend on signals, and the gain is proportional to s;; therefore the profit is linear in s;.
Symmetry of the game means that II; = IT, = II. Action spaces and signal spaces still are

SlZSQZR; A1:A2=[0,00).

Signals are still independent, but their distribution Ps (= Ps, = Ps,) is now arbitrary, except
for assuming PS([O, oo)) =1, that is,

P(S>0)=1.

We have I1(a, 1; as) — (a1, 0; as) = G(as, 1;a2). The value I1(aq, 1; Pa,) — I1(aq,0; Pa,) =
G (a1, 1; Pa,) is nothing but the winning probability.

We search for a symmetric equilibrium (p, 1), in other words, a strategy p that is a best
response to itself.

Of course, the ‘very simple auction’ game (1b4) is a special case, namely,

if a1 < ag,
aq if a; = a9, PS :U(O,l)

a if a1 > a2,

o= O

L(ahaz) =

3b Monotonicity

Every action a has its winning probability

P(A<a)+ %P(A: a) = %FA(U:—) —i—%FA(a—i-);

here F is the cumulative distribution function of the marginal distribution P4 (the pro-
jection of u to the action space). The joint distribution g of random variables S and A

Independent private values, sealed bid, symmetric single unit auction with two bidders.
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determines the joint distribution of S and the winning probability; the latter joint distribu-
tion is weakly increasing by Lemma 2c3. What about the former? The following general
probabilistic lemma will help. It shows that an action is uniquely determined by its winning
probability. Note that the argument works only for the symmetric case, P4, = P4,. Roughly
speaking, a random variable never falls into a gap of its own distribution.

3bl. Lemma. For every random variable X there exists an increasing function ¢ such that
X = ¢(W(X)) almost surely; here W (z) = 1Fx(z—) + + Fx(z+) for all z.

2
Sketch of the proof. The increasing function W can be constant on some intervals. For every
such interval I we have P (X € I) = 0.

e —

I I I
Denoting by E the union of all such intervals, we have P (X ekl ) = 0.2 The restriction

W r\e of W to the complement of E is strictly increasing. It remains to define ¢ as the
inverse function to W g\ g. O

3b2. Theorem. Every symmetric equilibrium is supported by a weakly increasing strategy.

Sketch of the proof. We combine Lemma 2¢3 and Lemma 3bl. O

So, such a strategy is concentrated on a set with no incomparable points.
a
Some signals can correspond to many actions; however, these exceptional signals are at most
a countable set, and may be neglected, unless at least one of them is an atom.

S

3b3. Corollary. If the distribution of signals is nonatomic, then every symmetric equilib-
rium is supported by an increasing pure strategy.

Note that the results hold for an arbitrary payment rule (in contrast to Corollary 2¢5). In
particular, the payment rule can stipulate a large fine (penalty) for submitting a non-integer
as a bid,® which effectively turns the continuous action space [0, c0) into the discrete action
space {0,1,2,...}.

S

Similarly, entry cost and reserve price are within the reach of Theorem 3b2 (and Corollary
3b3).

2Consider mazimal constancy intervals. Their interiors are nonempty and pairwise disjoint. Therefore
there exist at most countably many such intervals.
3You see, we did not assume monotonicity of the loss Ly (a1, az) in a;.
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3c Revenue equivalence

Let a strategy u support a symmetric equilibrium and P4 be the corresponding action
distribution. Being a best response to P4, the strategy p is concentrated on pairs (s, a)
such that a is an optimal action for s, that is,

H(U,, S, PA) = Hmax(s; PA) .

Existence of the best response ensures existence of optimal actions for Pg-almost all s, not
for all s. Especially, outside the support of Ps, optimal actions need not exist. Nevertheless,
the winning probability may be treated as an increasing function p“* defined for all s except
for at most countable set of jumps (recall 2d), and

sll

(3c1) (5" P) — T (5 Pa) = [ 9™ ()

3’

for all s, s".
Assume for a moment that the optimal action is a strictly increasing function ¢ of a
signal; that is, for every s there exists one and only one optimal action a = ¢(s). Then

. 1 1
P (s) =P (A <p(s)) + 5P (A=0(s)) =P ((S) <¢(s)) + 5P (#(S) = p(s)) =
1 1 1
= IP(S < S) + §P(S= S) = éps(s—) + §F5(8+);
the result is uniquely determined by the signal distribution only! It does not depend on
e the strategy p (supporting a symmetric equilibrium),
e the payment rule L.

Knowing p*"(-) we can find II™(-; P4) by (3cl); then sometimes (but not always) we can
find ¢(-) such that

H((P(S)a S5 PA) = HmaX(s; PA) .

and check that it is an equilibrium, thus proving its existence, but not uniqueness. Striving
also to uniqueness, we abandon the assumption about a strictly increasing function ¢(-) and
return to the general case.

Recall that a single action can be optimal for many signals,

1151 A

7 s
/s /6
/S
77,
2

3|
I (a,1) T (a,0) @‘?}‘\%@\‘5

single action

S1

g ) 1
7 I.Ila:n
signals

—Hl(a,O)

which is known as bunching. Here is the definition.
A bunch is a maximal interval of linearity of the function s — IT™*(s; Py).
Note that Pg is not mentioned in the definition.
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3c2. Exercise. Let s, s” be two interior points* of a bunch. Then:
(a) All optimal actions (if any) for s’ are equivalent to each other.
(b) If @ is an optimal action for s’ then a is also an optimal action for s”.
(c) If actions aj,as,... are such that II(a,,s’) —— TII™(s’) then also

n—oo
H(an, 8”) - HmaX(S”).5
n—0o0
(d) If the bunch is of positive probability (w.r.t. Ps) then an optimal action exists for s'.

Prove it.
Does it hold for endpoints of a bunch?

The set of all bunches is finite (maybe empty) or countable.®

It follows from (3c1) (and monotonicity of p™™®) that up to endpoints, bunches are max-
imal intervals of constancy of the function p™™.

If sy does not belong to any bunch, then p¥"(s') < p¥"(s¢) < p™"(s") whenever s’ <
sp < §" (indeed, if p™"(s’) = p""(sp) then [s', sy is contained in a bunch). Assume in
addition that there exists an optimal action ay for so. Note that p*™(sy) = W (aqg); here
W(a) = 1Fa(a—) 4+ 1F4(a+) is the winning probability function on the action space. If
a' is an optimal action for s’ and s’ < s, then W(a') = p™2(s') < p"®(sq) = W(ap),
therefore a' < ag (indeed, monotonicity of W means that a' > ay = Wi(d') >
W (ap)). Thus, P(S < s9) <P(A<ag), that is, Fs(so—) < Fa(ap—). Similarly, P (S >
80) S ]P(A > ao), that iS, 1-— F5(80+) S 1-— FA(G,0+), and F5(80+) Z FA(a0+). SO,
[Fs(so—), Fs(so+)] D [Fa(ao—), Fa(ao+)]. Assuming in addition that sy is not an atom of
Ps we get Fa(ag—) = Falao+) = Fs(so—) = Fs(so+). Taking into account that p¥i*(s¢) =
W (ao) = 5Fa(ao—) + 5Fa(ap+) we get

P (s0) = Fs(s0)

whenever s, satisfies three conditions:
e sy does not belong to any bunch;
e there exists an optimal action for sg;
® sp is not an atom of Ps.

The third condition is harmless; atoms of Pg, being at most a countable set, do not contribute
to the integral of winning probability (3cl). The second condition is harmful, and will be
eliminated in the next lemma. The first condition will be weakened. And another harmless
condition will be added, namely, continuity of p™(-) at s (it excludes at most a countable
set). In fact, the latter condition can be eliminated, see 3c5.

3c3. Lemma. Assume that
(a) so does not belong to a bunch of positive probability (w.r.t. Ps);’

4Not endpoints.

5This item is especially useful when no optimal action exists.

6Since their interiors are disjoint nonempty open intervals.

"In other words: either sy does not belong to any bunch, or so belongs to a bunch [s',s"] such that
Fs(s'—) = Fs(s"+). Note that a bunch of positive probability is forbidden, even if all the positive probability
is concentrated in an atom at an endpoint of the bunch, and even if s is also an endpoint of the bunch.
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(b) sq is not an atom of Ps;
(C) pwm(so_) — pwm(50+)-
Then

P""(s0) = Fis(s0) -
Sketch of the proof. Take a sequence (a,) such that (recall 2d and use (c))

II(ay,, sg) —— I (so),

n—oo

W(an) — P (s0) ;

here W (a) = 3Fa(a—) + 3Fa(a+).
We may assume that the sequence (a,) is monotone (otherwise we take a monotone
subsequence).® Assume increase,

CL1SCL2<...'

— ’

the other (decreasing) case, being similar, is left to the reader.
On one hand, Ps-almost all s such that s < s satisfy p*"(s) < p™(s¢) due to (a).
Thus, p-almost all pairs (s, a) such that s < sq satisfy

W(a) = p""(5) < p""(s0) = lim W(a)

which implies W(a) < W(a,) and a < a, for n large enough.® Therefore P (S < s5) <
lim,, . P (A < a, ) However, P (A < an) < Wi(an) = p™™®(sp)- So,

Fs(so—) < p"™(s0) -

On the other hand, Ps-almost all s such that s > s; satisfy p™(s) > p"®(sy) due to
(a). Thus, p-almost all pairs (s, a) such that s > s satisfy

W(a) = p™™(s) > p"(s¢) = lim W(a,),

n—oo

which implies W (a) > W (a,) and a > aj, for all n. Therefore P (S > so) <P (A > a,) for
all n. However, P(A > a,) <1—W(a,) = 1 —p"®(sp). So, 1 — Fs(so+) <1 —p"(sp),
that is,

Fs(so+) > p™™(s0) -

It remains to note that Fs(so—) = Fs(so+) due to (b). O

8Every sequence of real numbers has a monotone subsequence. Of course, an infinite sequence (and
infinite subsequence) is meant. ‘Monotone’ does not mean ‘strictly monotone’. The case a1 = a2 = ...
allows treating an optimal action (when exists) in the same framework.

90f course, the needed n may depend on (a, s).
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3c4. Theorem. Let y be a strategy supporting a symmetric equilibrium, with no bunch of
positive probability (w.r.t. Ps). Then

II7%(s; Py) — II™™(0; Pa) = / Fs(s')ds'
0

for all s € [0, 00).

Proof. Follows from (3cl) and Lemma 3c3. O

3c5. Exercise. Let u be a strategy supporting a symmetric equilibrium, with no bunch of
positive probability. Then functions p*"(-) and Fs(-) have the same continuity points, and
are equal at these points.

Prove it.

Hint: by 3c3, the two increasing functions coincide on a dense set, therefore p*i®(s—) =
Fs(s—) and p"'"(s+) = Fg(s+) for all s.

3c6. Corollary. Let u be a strategy supporting a symmetric equilibrium, with no bunch
of positive probability. If a is an optimal action for s, and s is not an atom of Pg, then

L(a; P4) = sFs(s) — /OS Fs(s') ds' — II™*(0; Pa) .

Proof. By Exercise 3¢5, p*®(s—) = p“(s+). By Lemma 3c3, p"®(s) = Fs(s). Also,
p"%(s) = W(a) = 3Fa(a—) + 3Fa(a+). We have G(a,s; P4) = sW(a) = sFs(s) and
L(a; P4) = G(a,s; Pa) — I(a, s; Pa) = sFs(s) — II™(s; P4). It remains to use Theorem
3c4. 0

3c7. Exercise. Assume that L(a;;ay) > 0 for all aj,as € [0,00), and L(0;as) = 0 for all
as € [0,00). Then II™*(0; P4) = 0 for every distribution Pj.

Prove it.

Hint: TI™*(0; a2) = 0 for every ay € [0, 00), since G(aq, 0;a2) = 0 and inf,, L(ai, az) = 0.

Note that
SFS(S)-/OSFS(S') ds’:/os(FS(s)—Fs(s’)) ds’:/oslP’(SE (s',5]) ds' =
= /0 Ely 4(S)ds' =E ( /0 (s s] ds’) (S) =E(S1p4(9)) =
=E(S|0<S5<s5)-P(0<S<s);

though, the conditional expectation is well-defined only when P (0 <5< s) > (; otherwise
our expression vanishes anyway. Under the conditions of 3c6 and 3c7, and taking into account
that lP’(S > O) =1, we get

(3c8) L(a;PA):]E(S|S§s)-]P’(S§s).
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Recall that L(. . .) is the mean loss, averaged over all situations (not only wins). If the player
pays only when he wins, then the mean payment conditioned on winning is

L(a; PA)

(309) E(L1|51=S,Win) :W:

]E(S‘Sgs)

The mean payment is equal to the mean signal of the losing competitor! That holds for an
arbitrary payment rule, as far as bunching does not appear.

All that is about necessary conditions for supporting a symmetric equilibrium. The next
result gives a sufficient condition.

3c10. Theorem. Let Ps be nonatomic, and p be a pure strategy A = (S) where ¢ is
an increasing function such that P4 is nonatomic. Assume that L(a; P4) is an increasing
function of a € [0, 00), and L(0; P4) = 0. Then the following two conditions are equivalent,
and if they are satisfied then u supports a symmetric equilibrium:

(a) II(p(s), s; Pa) fo FS ") ds' for Ps-almost all s;

(b) L(¢(s); Pa) = sFs(s fo Fs(s') ds' for Pg-almost all s.

Proof. Foreverys,lP’(A<90(s))S]P’(S<S)§ (S<s) P(A<¢(s)) = 1P’(A<
¢(s) ), therefore Fu(p(s)) = Fs(s). We have G(p(s), s; Pa) = SFA( ) = sFs(s), there-
fore I1(p(s), s; Pa) = sFs(s) —L(p(s); Pa), which shows that (a), (b) are equivalent. Assume
that they are satisfied for all s € E, Pg(F) = 1.

Let sy € E and ap = ¢(sp). The linear function s — II(ao, s; P4) and the convex function
S fo Fs(s') ds' are equal at sq. Their derivatives at sy are also equal, since the winning
probability FA(ao) is equal to Fs(so). Therefore II(ao, s; Pa) < [, Fs(s')ds' for all s. It
means that

II(a, s; P4) < II(p(s),s; P4) forall s€ E,a€ p(F).

In order to prove that u supports a symmetric equilibrium, it suffices to prove that
II(a, s; Pa) < II(¢(s),s; P4) forall s € E and a € [0,00). Assume the contrary: Il(a, s; P4) >
II(¢(s), s; P4) for some s € E and a € [0,00). Note that II(p(s),s; P4) > 0, therefore
II(a, s; P4) > 0, that is, sF4(a) — L(a; P4) > 0; it follows that F4(a) > 0 (since L(a; P4) >
L(0; P4) = 0), in other words, lP’((p(S) < a) > 0. We choose an increasing sequence
51 <89 < ..., 8, € E, such that ¢(s,) < a and Fs(s,) — Fa(a).'® Denote a, = ¢(s,), then
a, < a, Fa(a,) — Fa(a), and a, € ¢(E). The latter implies II(a,, s; Pa) < II(p(s), s; Pa).
However, I1(ay,, s; P4) = sFa(an) — L(ay; Pa) > sFa(a,) — L(a; P4) due to monotonicity
of L(-, Pa). Thus, sFa(an) — L(a; Pa) < II(p(s),s; Pa) for all n; the limit n — oo gives
sFs(a) — L(a; Pa) < II(@(s),s; Pa), that is, II(a, s; P4) < II(¢(s),s; Pa). A contradic-
tion. 0

The monotonicity of L(-; P4) is essential. Consider for example a discount for integer a,
or for large a beyond the support of A.

0We do not claim that ¢(s,) — a. You see, a need not belong to the support of A.
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3d First price auction
The simplest payment rule says, ‘winner, pay your bid’, which means the (expected) loss

0 ifa; < ag,
(3d1) L(ay;az) = § a1 if a1 = ao,
a; if a1 > as.
Assume that Ps is nonatomic. Let u be a strategy supporting a symmetric equilibrium, and
denote by P4 the corresponding action distribution. Corollary 3b3 (or 2c6) ensures that
/4 s an increasing pure strategy; it is concentrated on the graph of an increasing function,
A = ¢(S). Exercise 3c¢7 shows that

HmaX(O; PA) =0.

Lemma 2b7 shows that P4 cannot have atoms except, maybe, a single atom at the low end
of the support. However, the only possible atom is excluded by 2b9. So, P, is nonatomic.
Any bunch of nonzero probability would give an atom to P4 due to 3c2. Therefore there is
no such bunch, and Theorem 3c4 is applicable:

HmaX(S;PA)z/ Fs(s')ds'
0

for all s € [0,00). It follows that never-winning actions are not in use (think, why; and
formulate it more accurately). Theorem 3c10 is also applicable, and we get the following
result.

3d2. Lemma. Let Ps be nonatomic. Then a strategy p supports a symmetric equilibrium
if and only if it is a pure strategy A = ©(S) where ¢ is an increasing function such that Py
is nonatomic and equivalent conditions 3c10(a,b) are satisfied.

Condition 3¢10(b) may be rewritten using (3c8) as
L(p(s); Pa) =E(S[S<s)-P(S<s).
On the other hand, the ‘first price’ payment rule (3d1) gives
L((s); Pa) = ¢(s)p"™(s)

for Pg-almost all s. However, p*"(s) = P (S < s) for Ps-almost all s.'' So, Condition
3c10(b) becomes

(s)=E(S|5<s)

for Pg-almost all s. (Using monotonicity one can show that the equality holds for every s
such that 0 < Fs(s) < 1, but we do not need it.) And so, Lemma 3d2 gives the next result.

Tt follows easily from monotonicity of ¢ and nonatomicity of P4. Complicated arguments in the proof
of 3c3 give much more: the same for all s except for a countable set.
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3d3. Theorem. If Pg is nonatomic then the first price auction has one and only one sym-
metric equilibrium, namely,

A=¢(S), where p(s)=E(S|S<s).

3d4. Exercise. Describe the support of P4 for an arbitrary nonatomic Ps.
Hint. Prove and use continuity of ¢. Or alternatively, use 2b10.

3e A note on nonatomicity and participation

Our allocation rule (3a2) is somewhat unnatural; namely, if a; = ay = 0, the auctioneer
should keep the object; that is,

0 ifa; < a2,

0 if a; = Qg = 0,
(3el) G(ay, s1502) = 1 | )
351 ifa; =az >0,

S1 if aip > Go.

From now on we use (3el) instead of (3a2). It does not invalidate results of 3a-3d (only the
function W in 3bl should be corrected at 0).

The action a = 0 is now interpreted as non-participation (quitting). An atom of P4 at 0
can appear naturally (out of nonatomic Ps), if entry cost or/and reserve price is stipulated
by the loss function L. Any atom (including 0) is forbidden by 2b7, 2b9, but only for a single
loss function (3d1). The argument still works after replacing (3a2) with (3el) (think, why).
However, we need a more general argument. Similarly to 2b7-2b9, it deals with optimal
actions (not equilibria).

3e2. Lemma. Assume that the loss function L satisfies two conditions:
1

1
(a) §L(a1—;a2) + §L(a1+; as) = L(ay; as) for all a; € (0,00), ag € [0,00);

here L(a;—; az) = limy_,q, a<a, L(@;a2) and L(a1+; a2) = limg_q, 4>a, L(a; as) (existence of
these limits is also required);

(b) sup sup L(aj;as) < oo for all M.
a1€[0,M] az€[0,00)

If a; is an optimal action (against P,,) for more than a single s;, and a; # 0, then a; is not
an atom of Py,.

Sketch of the proof. Assume the contrary: a is an atom. Similarly to the proof of 2b7, on
the plane (expected loss, winning probability) we have

v,
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where the points have the coordinates
o= (L(al_; PA2)7 FAz(a’l_)) )
1 1
p= (L(al;PAQ), 3 Ag(al_) + §FA2(GI+)) ,
7= (L(a’1+; PAZ): FA2(a1+)) .

However,

L(a;—; Ps,) = lim L(a; ag) dPa,(az) =

a—a1,a<al

:/( lim L(a;aQ)) dPAz(ag):/L(al—;az) dPa,(as)

a—a1,a<al

by the bounded convergence theorem. The same for a;+. It follows that %L(al—; Py,) +
sL(a1+; Pa,) = L(a1; Pa,). So, B is the center of the interval [a,7]. The straight line
containing the points determines a single signal; a cannot be optimal for any other signal. [

3e3. Exercise. Explain, why the proof does not work for a = 0.
We return from optimal actions to a symmetric equilibrium supported by a strategy pu.

3e4. Corollary. Assume that Ps is nonatomic, and conditions 3e2(a,b) are satisfied by the
loss function L. Then P4 has no atoms on (0, 00).

3f Second price auction

The second-price payment rule (for two players) says, ‘winner, pay the bid of the loser’,
which means the (expected) loss

(3f1) L(ai; as) =

Assume that Pg is nonatomic. Let u be a strategy supporting a symmetric equilibrium, and
denote by P4 the corresponding action distribution. Corollary 3b3 (but not 2c6!) ensures
that p is an increasing pure strategy; it is concentrated on the graph of an increasing function,
A = ¢(S). Exercise 3c7 shows that IT™*(0; P4) = 0. The loss function (3fl) satisfies
Conditions 3e2(a,b) (check it). Thus, Corollary 3e4 shows that P4 cannot have atoms on
(0,00). In order to exclude an atom at 0 we need an additional argument.

3f2. Exercise. In addition to 3e2(a,b) assume that L satisfies the condition
L(0+,a2) =0 for all ay € [0,00).

Then nonatomicity of Ps implies nonatomicity of Pj.
Prove it.
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So, P4 is nonatomic. Any bunch of nonzero probability would give an atom to P4 (due
to 3c2). Therefore there is no such bunch, and Theorem 3c4 is applicable:

HmaX(S;PA)z/ Fs(s')ds'
0

for all s € [0,00). Theorem 3c10 is also applicable, and we get the following result.

3f3. Lemma. Let Ps be nonatomic. Then a strategy p supports a symmetric equilibrium
if and only if it is a pure strategy A = ¢(S) where ¢ is an increasing function such that P,
is nonatomic and equivalent conditions 3c10(a,b) are satisfied.

Condition 3c¢10(b) may be rewritten using (3c8) as
L(p(s); Pa) :E(S‘S <s)-P(S<s).

Till now, everything is quite similar to 3d. However, the ‘second price’ payment rule (3f1)
gives L(p(s); Pa) =E(A| A< ¢(s)) -P (A< ¢(s)), that is,

L(p(s); Pa) =E(p(S)|S <s)-P(S<s)
for Ps-almost all s. Thus, 3¢10(b) becomes
E(¢(5)[S<s) —E(S[S <),

which is very easy to satisfy: ¢(s) = s, that is, A = S. The simplest strategy indeed; just
bid your signal! No other ¢ can satisfy the condition, since the equality

/Os (s —¢(s') dPs(s') =0 for all s

implies s — ¢(s) = 0 for Ps-almost all s. And so, Lemma 3f3 gives the next result.

3f4. Theorem. If Ps is nonatomic then the second price auction has one and only one
symmetric equilibrium, namely,

A=S.

Interestingly, the distribution of A can have gaps, which never happens to the first price
auction.

The very simple form of the strategy may suggest that it should follow from an elementary
argument. And indeed, the strategy A = S is a best response to every strategy (not just to
itself) for a simple reason; find it! Such a strategy is called dominant.

You see, Lemma 3f3 is an awkward way to an almost evident solution of the second price
auction. However, my goal here is illustrating a general method rather than solving a special
case.
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3g Reserve price and entry cost

We return to the first price auction, however, we introduce a reserve price r € [0, 00) and an
entry cost ¢ € [0,00); it means that, first, the auctioneer does not want to sell the object for
r (or cheaper), and second, participation itself has a cost ¢ (irrespective of winning). Now,
the (expected) loss is

0 ifa1=0,

c if 0 < a; < ao,
(3g1) L(ai;az) = ) . e

c+5(r+a1) if0<a; = ay,

c+r1r+a if a; > as.

An action a > 0 is now treated as bidding r+a.'? The action 0 is treated as non-participation,
see (3el). Note that the game of 3d is the special case r =0, ¢ = 0.

Assume that Pg is nonatomic. Let u be a strategy supporting a symmetric equilibrium,
and denote by P4 the corresponding action distribution. Corollary 3b3 ensures that p
is an increasing pure strategy; it is concentrated on the graph of an increasing function,
A = ¢(S). Exercise 3¢7 shows that II™®(0; P4) = 0. The loss function (3gl) satisfies
Conditions 3e2(a,b) (check it). Thus, Corollary 3e4 shows that P4 cannot have atoms on
(0, 00).

Till now, everything is as before. However, 3f2 is now inapplicable, and an atom at 0 is
quite possible; it happens when there is a bunch of the form [0, so]. Possible absence of the
atom is described as so = 0. Though, there is one more possibility: sy = 400, which means
that the whole [0, c0) is a bunch. Note that

s<sy = II™™(s;P4) =0,

3g2
(382) s>s) = IIM¥(s;P4) >0.

Other bunches can exist, but they necessarily are of zero probability. Also, it may happen
that sq lies in a gap of Ps; do not think that its place within the gap does not matter!

3g3. Exercise.

win (g) 0 for s < sy,
S) =
P Fs(s) for s > sq.

Prove it.
Hint: use Lemma 3c3.

However, p¥®(s) > 0 (therefore Fs(s) > 0) whenever s > sy (by (3g2) and (3c1)). It
follows (recall 3b1) that

©(s) =0 for Ps-almost all s € (0, sg),

3g4
(384) ©(s) >0 for Pg-almost all s € (sq,0) .

120f course, we may also treat it as bidding a but consider the action space {0} U (r, 00), which leads to
the same theory in a slightly different form.
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Note that L(a;;as) > ¢ whenever a; > 0; thus L(a;; P4) > ¢ for a; > 0. For Ps-almost
all s € (sg,00) we have L(p(s); P4) > c and G(p(s), s; P4) = sp™®(s) = sFs(s), therefore
0 < IT™(s; Pa) = IL(g(s),s; Pa) = G(p(s),s; Pa) — L(p(s); Pa) < sFs(s) — ¢, that is,
sFg(s) > c. Tt follows that!?

(3g5) P(A=0)=P(S<s)>0 ifc>0.
Combining 3g3 with (3cl) we get (instead of 3c4)

0 for s < s,

3g6 T (s; Py) = { .,
(386) (55 Pa) {fSOFS(s')ds' for s > s.

That is necessary; in order to support a symmetric equilibrium, ¢ must satisfy (3g6) for
some so. What about sufficiency? If ¢ satisfies (3g6) for some sy, does it mean that
¢ supports a symmetric equilibrium? Hopefully, it does not (otherwise we would get a
continuum of equilibria). Theorem 3c10 about sufficiency is designed only for nonatomic
P,. Reconsidering its proof we see that it fails when P4 has a gap immediately after an
atom,' or an atom is the last (maximal) point of the support.

The case Fs(sg) = 1, in other words, P (A = O) = 1, must be treated separately (our
sufficient condition cannot help, when the atom a = 0 is the maximal point of the support
of A).

3g7. Exercise. The trivial strategy A = 0 supports a symmetric equilibrium if and only if
P ( S>c+ 7") =0.

Prove it.

Hint. Assuming P ( S>c+r+ 6) > 0 try the strategy

Ao 0 ifS<c+r+e,
e ifS>c+r+te.

Now assume that ¢ > 0 and P (S > ¢+ r) > 0; then 0 < Fg(so) < 1 by (3g5), 3g7 and
(3g4). The argument of Theorem 3c10 fails if P4 has a gap of the form (0, a).

3g8. Exercise. P4 cannot have a gap.
Prove it.
Hint: recall the proof of 2b10(b).

Introduce
(3g9) sy = inf{s: Fs(s) > Fs(so)};
note that sy < s; and F(sq) = F(s;). It follows from 3g8 that'®

o(s) >0 fors> s,
o(s) >0 fors— s+ .

3However, it does not follow that soFs(sg) > ¢; think, why.

14Tn that case an action inside the gap can be better than ((s) for some s.

15Trye, the function ¢ may be changed at will on a set of probability zero. However, we may (and will)
assume that ¢ is monotone.
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We have

c if ap > 0,
L(0+;a2) =
( 2) {c—H" if ay = 0;

L(0+; P4) =c+rpo, WherepozFS(so):P(A:())_

Let s, — s1+ and a, = ¢(s,), then a, — 0+ and L(a,; P4) — c+rpy. Also, G(ayn, sp; Pa) =
$nFs(sn) — s1Fs(s1+) = s1po- Thus, II™*(s,; Pa) = I(an, $n; Pa) = Glan, $p; Pa) —
L(an; Pa) — s1po — (c+7po) = (s1 — 7)po — ¢, that is,

IT™*(s1; Pa) = (81 — 7)po — .
On the other hand, TI™*(s¢; P4) = 0 (just by (3g2)), and by 3g3, p™(s) = Fs(s) = po

for s € (sg,51)."® Thus, the equality IT™*(s1; Pa) — II™*(s; Pa) = [, p*"(s) ds becomes
(s1=7)po—c—0= f;ol pods = (81 — 50)Po, O (89 — 7)po = ¢, that is,

(3g10) (s —7)Fs(sp) =c.

Note also that IT(0+, s; Pa) = spo — (¢ + rpo) = (s — r)py — ¢, which may be used for
deriving (3gl0) without considering ¢;, and also for checking sufficiency in the next result
that combines all arguments together.

3gll. Lemma. Let Ps be nonatomic, ¢ > 0, and IF’(S > c+ 7“) > 0. Then a strategy u
supports a symmetric equilibrium if and only if it is a pure strategy A = ¢(S) where ¢ is
an increasing function such that P4 has no gap of the form (0, a), no atoms on (0, c0), and
there exists sy € (0, 4+00) such that

a) o(s) =0 fors < sgp;

b) ©(s) >0 for s> sqg;

c) (so —1)Fs(so) = c;

d) L(p(s); Pa) = sFs(s) — / Fs(s')ds' for s> sq.

S0

(
(
(
(

Condition 3gl1(c) is an equation for sq. It has one and only one solution, since the left-
hand side is a continuous strictly increasing (as far as Fs(s) > 0) function on [r, o), equal
to 0 at r and tending to +o00 at +00. Note that

Sog>T.

The condition ]P’(S > c+7") > 0, that is, Fs(c + r) < 1, ensures that IP’(S > 50) >0
(think, why).

16You see, if sg < s; then [sg, s:1] is the second bunch; in contrast to the first bunch [0, so], the second
bunch is of probability zero. No optimal action exists for s € (s, $1); in some sense, the optimum is located
at a = 0+.
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For a; > 0 we have L(ay; P4) = ¢+ (r + a1)Fa(ay); thus 3gl1(d) for s > sy becomes

¢+ (r + o(s) Fa(io(s)) = sFs(s) - / Fs(s) ds';

S0

taking into account that F4(p(s)) = Fs(s) we get

F;(S) < e+ sFs(s) — / Fy(s') ds’)

for s > sq. Similarly to the calculation before (3c8),

(3g12) o(s) =—-r+

(S—SO)Fs(s)—/st(s’) d8'=/s(Fs(8)—Fs(8')) ds'=/s1E1[S,,S](s) ds' =

50 50 50

=E((S — 50)1[s,5)(S)) = E(S1s,41(S)) — 50(Fs(s) — Fs(s0)) ;

—C+SFS(5)—/SFS(S')CZS':—c—i—sOFS(S)—i-(S—So)Fs(S)—/"':

50

= —c+50Fs(8) +E (S1s,6(S)) = —s0Fs(s) +50Fs(s0) = —c+80Fs(s0) + E (S1ps,5(S)) -

However, 3gll(c) gives —c + soFs(so) = rFs(so), thus —c + sFs(s) — [ -+ = rFs(so) +
E(Sl[so,s](s)) =E (Tl[O,so](S)) +E(Sl[so,s](s)) = ]E(h’(S)l[O,s](S))a where

hs) = r for s €0, s), /l
s for s e (s0,00). 2

7
S

S0

Now (3g12) becomes

o(s) = —r+ E (h(S)110,5(S)) = —r +E(h(S) | S < 5)

Fs(s)

for s > sg. It is easy to see that such ¢ increases strictly on the support of S (intersected
with (sg, +00)); the conclusion follows.

3g13. Theorem. If Ps is nonatomic, ¢ > 0 and IF’(S > c+ 7") > 0, then the first price
auction has one and only one symmetric equilibrium, namely, A = ¢(S), where

0 for s < sg, r for s < sy,
p(s) = L W)= _
—r+E(h(S)|S<s) fors> s s for s > sq;

and the participation threshold sy € (r, +00) is the unique solution of the equation

(80 - T‘)Fs(So) =cC.
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Do not forget that the bid is not ¢(s) but 7+ ¢(s) = E (h(S)| S < s) . Compare it with
the formula of 3d, IE(S‘S < s) )

We turn to the case ¢ = 0 (no entry cost). We still have (3g1)—(3g7), and L(0+; P4) = rpo,
where py = Fs(so) = IP’(A = 0); also, G(0+, s; P4) = spo and II(0+,s; P4) = (s — r)po,
which suggests that sy = r provided that Fs(r) > 0.

No action is profitable when s < r; thus IT™*(s; P4) = 0 for s < r, therefore sy > 7.

If Fs(r) > 0 then py > 0, therefore IT™*(s; P4) > II(0+, s; P4) = (s—7)po > 0 for s > r,
therefore sy < r; so,

(3g14) if Fg(r) >0 then sy =r.

What happens if Fs(r) = 0? Recall that p¥"(s) = Fg(s) for s > s (by 3g3), and p*"(s) > 0
for s > sy (just from general facts); therefore Fg(s) > 0 for s > sy, which means sy > Spin,
where sy, = inf{s : Fs(s) > 0}; note that r < sy, (since Fg(r) = 0). We recall that py > 0
implies sy < r; now, however, sq < r implies py = 0; thus, the case py > 0 is now impossible.
We have py = 0, therefore sy < spin. SO0,

(3g15) if Fs(r) =0 then sy =inf{s: Fs(s) > 0}.

(Observe the distinction: a positive entry cost always implies a positive quitting probability,
which cannot be said about reserve price.)

If po > 0, that is, P4 has an atom at 0, then 3g8 works as before; otherwise we do not
need it (for sufficiency).

Lemma 3g11 works with (3g14), (3gl5) instead of item (c). And finally, Theorem 3g13
works with (3gl4), (3gl5) instead of the equation (sy — r)Fs(sg) = c¢. Note that the limit
¢ — 0+ gives the right result.

3h An all-pay auction

The payment rule ‘pay your bid anyway’, belonging to so-called all-pay auctions, means the
(expected) loss

(3h1) L(ai;a0) = ay .

3h2. Exercise. If Ps is nonatomic then the ‘pay your bid anyway’ auction has one and
only one symmetric equilibrium, namely,

A= p(95), Wheregp(s)z]E(S‘SSs)-]P’(Sgs).

Prove it.
Compare the support of P4 with that of the first-price auction (3d).
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3i Let the loser pay

A bizarre payment rule considered here says, ‘loser, pay your bid’; the winner get the object
for free; it means the (expected) loss

a1 if a1 < ag,
(3i1) L(ai;a2) =< ta; if a1 = ao,

0 if ai > as.

N[

Assume that Ps is nonatomic. Let p be a strategy supporting a symmetric equilibrium,
and denote by P,4 the corresponding action distribution. Corollary 3b3 ensures that y is an
increasing pure strategy; it is concentrated on the graph of an increasing function, A = ¢(.5).
Exercise 3¢7 shows that II™**(0; P4) = 0. The loss function (3i1) satisfies Conditions 3e2(a,b)
as well as 3f2; therefore P, is nonatomic. Any bunch of nonzero probability would give an
atom to P4 due to 3c2. Therefore there is no such bunch, and Theorem 3c4 is applicable:

HmaX(S;PA):/ Fs(s')ds'
0

for all s € [0,00). Theorem 3c10 does not work, since L(a;;as) does not increase in a;.
However, the following modification of Theorem 3c10 helps.

3i2. Exercise. Let Ps be nonatomic, and u be a pure strategy A = (S) where ¢ is
an increasing function such that P, is nonatomic. Assume that L(a; P4) is a continuous
function of a € [0, c0), increasing on every constancy interval of F4,'" and L(0; P4) = 0, and
L(a; P4) > 0 for all a. Then Conditions 3c10(a,b) are equivalent, and if they are satisfied
then p supports a symmetric equilibrium.

Prove it.

Hint: having an increasing sequence of s, € F such that a, = ¢(s,) < a and Fs(s,) —
F4(a) conclude that Fa(a,) = Fa(ax) = Fa(a) and L(a,; Pa) — L(ax; Pa) < L(a; Pa),
where a,, = lima,,.

So, necessity and sufficiency are both checked, as follows.

3i3. Lemma. Let Ps be nonatomic. Then a strategy p supports a symmetric equilibrium
if and only if it is a pure strategy A = ¢(S) where ¢ is an increasing function such that Py
is nonatomic and equivalent conditions 3c¢10(a,b) are satisfied.

Condition 3c10(b) may be rewritten using (3c8) as
L(p(s); Pa) =E(S[S<s)-P(S<s).

On the other hand, the ‘let the loser pay’ rule (3i1) gives L(¢(s); Pa) = ¢(s)P (A > ¢(s) ),
that is,

L(p(s); Pa) = ¢(s)P (S > s)

"Not just a gap of P4; the constant value is allowed to be 0 or 1.
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for Ps-almost all s. So, Condition 3c¢10(b) becomes

ols) = o)

_71_FS(S)]E(S|S§3)

for Pg-almost all s. Clearly, such a function increases strictly on the support of S. And so,
Lemma 3i3 gives the next result.

3i4. Theorem. If Ps is nonatomic then the ‘let the loser pay’ auction has one and only
one symmetric equilibrium, namely,

FS(S)

A=p(S), where p(s) = 1= Fs(s)

]E(S|S§s).

3i5. Exercise. Describe the support of Pjy.

Interestingly, a bounded strategy (that is, such that P (A < a) =1 for a large enough)
cannot support a symmetric equilibrium for an evident reason: the competitor bidding the
large a always wins and never pays.



