## 6 Harris flows as Brownian rotations

#### 6a Some diffeomorphisms

On the circe  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\} = \{e^{i\alpha} : \alpha \in \mathbb{R}\}$  we consider the differential equation (for a particle that moves on  $\mathbb{T}$ )

(6a1) 
$$\frac{d}{dt}z = \frac{z + z^{-1}}{2}iz, \text{ that is, } \frac{d}{dt}\alpha = \cos\alpha.$$

It can be solved explicitly,

$$\frac{z+z^{-1}}{2}iz = \frac{z^2+1}{2}i = \frac{(z-i)(z+i)}{2}i;$$

$$\frac{2}{i}\frac{dz}{(z-i)(z+i)} = dt; \quad \frac{1}{z+i} - \frac{1}{z-i} = dt; \quad \ln\frac{z+i}{z-i} = t + \text{const}.$$

Or, in terms of  $\alpha$ ,

$$\frac{e^{i\alpha} + i}{e^{i\alpha} - i} = i \frac{\cos \alpha}{1 - \sin \alpha} = i \frac{1 + \sin \alpha}{\cos \alpha} = i \frac{1 + \tan \frac{\alpha}{2}}{1 - \tan \frac{\alpha}{2}} = i \tan \left(\frac{\alpha}{2} + \frac{\pi}{4}\right);$$

$$\ln \left| \tan \left(\frac{\alpha}{2} + \frac{\pi}{4}\right) \right| = t + \text{const}.$$

The solution,

(6a2) 
$$z_t = i \frac{e^t(z_0 + i) + (z_0 - i)}{e^t(z_0 + i) - (z_0 - i)},$$

is well-defined for all  $t \in \mathbb{R}$ . However, its power series  $z_t = \sum c_k t^k$  has only a finite radius of convergence, since the solution has poles for  $t \in \mathbb{C}$ .

Another differential equation,

(6a3) 
$$\frac{d}{dt}z = \frac{z - z^{-1}}{2i}iz, \text{ that is, } \frac{d}{dt}\alpha = \sin\alpha,$$

may be written as

(6a4) 
$$\frac{d}{dt}(-iz) = \frac{(-iz) + (-iz)^{-1}}{2}i(-iz),$$

which is (6a1) for (-iz).

We have two one-parameter semigroups (in fact, groups) of diffeomorphisms of  $\mathbb{T}$ , and they do not commute with each other. We want to combine these two evolutions with independent random coefficients. The idea is to get infinitesimally (for small t)

$$z_{t} = z_{0} + \frac{z_{0} + z_{0}^{-1}}{2} i z_{0} B_{1}(t) + \frac{z_{0} - z_{0}^{-1}}{2i} i z_{0} B_{2}(t);$$
  

$$\alpha_{t} = \alpha_{0} + B_{1}(t) \cos \alpha_{0} + B_{2}(t) \sin \alpha_{0};$$

the motion starting at  $\alpha_0$  is driven by the Brownian motion  $B_1 \cos \alpha_0 + B_2 \sin \alpha_0$  just as the motion starting at 0 is driven by  $B_1$ . The model should be homogeneous, that is, invariant (in distribution) under rotations of  $\mathbb{T}$ .

In order to use the technique of Sections 3, 4 we treat the group of diffeomorphisms  $\mathbb{T} \to \mathbb{T}$  as embedded into the group of rotations (invertible linear isometries)  $L_2(\mathbb{T}) \to L_2(\mathbb{T})$ . I mean  $L_2(\mathbb{T}, \mathbb{R})$  (but  $L_2(\mathbb{T}, \mathbb{C})$  can be used as well). For each t the diffeomorphism  $\varphi_t$  defined by (6a2),

$$\varphi_t(z) = i \frac{e^t(z+i) + (z-i)}{e^t(z+i) - (z-i)},$$

gives us a rotation  $U_t$  of  $L_2(\mathbb{T})$ ,

(6a5) 
$$U_t f(z) = \sqrt{|\varphi'_t(z)|} f(\varphi_t(z));$$

$$||U_t f||^2 = \int |U_t f(e^{i\alpha})|^2 d\alpha = \int |f(\varphi_t(e^{i\alpha}))|^2 |\varphi'_t(e^{i\alpha})| d\alpha = \int |f(e^{i\beta})|^2 d\beta = ||f||^2.$$

According to (6a1),

$$\frac{\partial}{\partial t}\varphi_t(z) = \frac{\varphi_t(z) + (\varphi_t(z))^{-1}}{2}i\varphi_t(z).$$

We have a one-parameter semigroup (in fact, group)  $(U_t)_t$ , and we calculate its generator  $A = \frac{d}{dt}|_{t=0} U_t$ ,

$$Af(z) = \frac{d}{dt}\Big|_{t=0} |\varphi'_t(z)|^{1/2} f(\varphi_t(z)) =$$

$$= \frac{1}{2} |\varphi'_0(z)|^{-1/2} \left(\frac{d}{dt}\Big|_{t=0} |\varphi'_t(z)|\right) f(\varphi_0(z)) + |\varphi'_0(z)|^{1/2} f'(\varphi_0(z)) \frac{d}{dt}\Big|_{t=0} \varphi_t(z) =$$

$$= -\frac{1}{2} \frac{z - z^{-1}}{2i} f(z) + f'z) \frac{z + z^{-1}}{2} iz,$$

which is easier to understand in terms of  $\alpha$ :

$$\varphi_t(e^{i\alpha}) = e^{i\psi_t(\alpha)}; \quad |\varphi_t'(e^{i\alpha})| = \psi_t'(\alpha);$$

$$\frac{\partial}{\partial t}\psi_t(\alpha) = \cos\psi_t(\alpha);$$

$$\frac{d}{dt}\psi_t'(\alpha) = \frac{\partial^2}{\partial t \partial \alpha}\psi_t(\alpha) = \frac{\partial}{\partial \alpha}\frac{\partial}{\partial t}\psi_t(\alpha);$$

$$\frac{d}{dt}\Big|_{t=0}|\varphi_t'(e^{i\alpha})| = \frac{d}{dt}\Big|_{t=0}\psi_t'(\alpha) = \frac{\partial}{\partial \alpha}\frac{\partial}{\partial t}\Big|_{t=0}\psi_t(\alpha) = \frac{d}{d\alpha}\cos\alpha = -\sin\alpha.$$

Of course, A is not defined on the whole  $L_2(\mathbb{T})$  (and is not a bounded operator). Our calculation makes sense only for f analytic in a neighborhood of  $\mathbb{T}$ .

We introduce the differential operator  $d_{\alpha} = \frac{d}{d\alpha}$ , that is,

$$d_{\alpha}f(e^{i\alpha}) = \frac{d}{d\alpha}f(e^{i\alpha})$$

(thus,  $d_{\alpha}f(z) = izf'(z)$  for analytic f), and a multiplication operator  $\frac{z+z^{-1}}{2}$ , that is,

$$\left(\frac{z+z^{-1}}{2}f\right)(z) = \frac{z+z^{-1}}{2}f(z),$$

then

(6a6) 
$$A = \frac{z + z^{-1}}{2} \circ d_{\alpha} = \frac{1}{2} \left( \frac{z + z^{-1}}{2} d_{\alpha} + d_{\alpha} \frac{z + z^{-1}}{2} \right).$$

Indeed, applying  $d_{\alpha}$  to the function  $z \mapsto \frac{z+z^{-1}}{2}$  we get the function  $z \mapsto -\frac{z-z^{-1}}{2i}$ . The formula (6a6) holds on  $C^1(\mathbb{T})$ .

The other differential equation (6a3) leads similarly to another generator,  $\frac{z-z^{-1}}{2i} \circ d_{\alpha}$ .

### 6b Analytic vectors

In a finite dimension, if A is the generator of a one-parameter semigroup  $(U_t)_t$ , then necessarily  $U_t = e^{tA} = \sum_k \frac{t^k}{k!} A^k$  for all t. In the infinite dimension the situation is more complicated (since a generator is not bounded, in general).

A function  $f \in C^{\infty}(\mathbb{T})$  is called an *analytic vector* for the operator  $A = \frac{z+z^{-1}}{2} \circ d_{\alpha}$  (or another differential operator...), if the (vector-valued) power series<sup>1</sup>

(6b1) 
$$\sum_{k} \frac{t^k}{k!} A^k f$$

has a non-zero radius of convergence. In other words: if

(6b2) 
$$\sqrt[k]{\|A^k f\|} = O(k) \quad \text{for } k \to \infty.$$

**6b3 Exercise.** For every  $n \in \mathbb{Z}$ , the function  $f(z) = z^n$  is an analytic vector for the operator  $d_{\alpha}z$ .<sup>2</sup>

Prove it.

Hint:  $d_{\alpha}z^n = inz^n$ ;  $\|(d_{\alpha}z)^kz^n\| = (n+1)\dots(n+k)\|z^{n+k}\|$  for  $n \geq 0$ . (Do not forget negative n.)

**6b4 Exercise.** The same (as 6b3) for the operator  $A = \frac{z+z^{-1}}{2} \circ d_{\alpha}$ . Hint:  $||A^k z^n|| \le (n+1) \dots (n+k) ||z^{n+k}||$  for  $n \ge 0$ .

We see that the series

$$e^{tA}f = \sum_{k} \frac{t^k}{k!} A^k f$$

converges for small t, if f is one of  $z^n$  or their linear combination, thus, for a set dense in  $L_2(\mathbb{T})$ . In fact, any function analytic in a neighborhood of  $\mathbb{T}$  is an analytic vector.

Here (in 6b) I write operators on the left: (BA)f = B(Af) etc. But afterwards (in 6c) I will return to the opposite notation: f(AB) = (fA)B etc.

<sup>&</sup>lt;sup>2</sup>Here we consider complex-valued functions (just for convenience).

**6b5 Exercise.**  $\langle e^{tA}f, e^{tA}g \rangle = \langle f, g \rangle$  if f, g are analytic vectors and t is small enough.

Prove it.

Hint:  $\langle Af, g \rangle = -\langle f, Ag \rangle$ , since  $\langle d_{\alpha}f, g \rangle = -\langle f, d_{\alpha}g \rangle$ .

Extending by continuity, we get a rotation  $e^{tA}$  of  $L_2(\mathbb{T})$ , and  $e^{sA}e^{tA}=e^{(s+t)A}$  for |s|,|t| small enough. Extending by multiplicativity we get rotations  $e^{tA}$  for all  $t \in \mathbb{R}$  (a one-parameter group). In fact,  $U_t = e^{tA}$  for all  $t \in [0, \infty)$ .

Dealing with two operators,  $A_1 = \frac{z+z^{-1}}{2} \circ d_{\alpha}$  and  $A_2 = \frac{z-z^{-1}}{2i} \circ d_{\alpha}$ , we call  $f \in C^{\infty}(\mathbb{T})$  an analytic vector for the pair  $(A_1, A_2)$ , if

$$\sqrt[k]{\max_{j_1,\dots,j_k=1,2} ||A_{j_1}\dots A_{j_k}f||} = O(k) \quad \text{for } k \to \infty.$$

Similarly to 6b4, each  $z^n$  is an analytic vector for the pair. Any analytic vector for  $(A_1, A_2)$  is analytic for every linear combination  $c_1A_1 + c_2A_2$ .

### 6c Stochastic integrals: does the series converge?

As was said in 3b (for a finite dimension), a stochastic integral of a vector-function is treated coordinate-wise. Now, given a function  $f_1 \in L_2([0,\infty), H)$  where H is a Hilbert space, we define  $\int_0^\infty f_1(t) dB(t)$  by

(6c1) 
$$\left\langle \int_0^\infty f_1(t) dB(t), g \right\rangle = \int_0^\infty \left\langle f_1(t), g \right\rangle dB(t) \quad \text{for all } g \in H.$$

Clearly,

(6c2) 
$$\left\| \int f_1 dB \right\|_{L_2(\Omega, H)}^2 = \|f_1\|^2 = \int_0^\infty \|f_1(t)\|^2 dt.$$

The same for  $\iint f_2(s,t) dB(s) dB(t)$  etc. A generalization to  $B_1(\cdot), \ldots, B_m(\cdot)$  is straightforward.

We take

(6c3) 
$$H = L_2(\mathbb{T}), \qquad i\sigma_1 = \frac{z + z^{-1}}{2} \circ d_\alpha, \qquad i\sigma_2 = \frac{z - z^{-1}}{2i} \circ d_\alpha.$$

**6c4 Exercise.**  $\sigma_1^2 + \sigma_2^2 = -d_\alpha^2 + \frac{1}{4}$ .

Prove it.

Hint: 
$$\frac{z+z^{-1}}{2}d_{\alpha} = d_{\alpha}\frac{z+z^{-1}}{2} - \frac{z-z^{-1}}{2i}$$
, etc.

We want to define  $Y_t = \text{Texp}(i \int_0^t dX_s)$ , where  $X_t = \sigma_1 B_1(t) + \sigma_2 B_2(t)$ , following the formulas of 3c (with v = 0):

(6c5) 
$$fY_t = \underbrace{f \exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)t\right)}_{fI_0(t)} + \underbrace{\int_0^t f \exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)s\right) \left(i\sigma_1 dB_1(s) + i\sigma_2 dB_2(s)\right) \exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)(t - s)\right)}_{fI_1(t)} + \dots$$

However, convergence of the series  $\sum_k fI_k(t)$  is not evident (since operators  $\sigma_1, \sigma_2$  are not bounded). We take (for now)  $f(z) = z^n$ . By 6c4,  $f(\sigma_1^2 + \sigma_2^2) = (n^2 + \frac{1}{4})f$ , therefore  $f \exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)t\right) = \exp\left(-\frac{1}{2}(n^2 + \frac{1}{4})t\right)f$  and  $||fI_0(t)|| \leq ||f|| = \sqrt{2\pi}$ . Further,  $||f \exp(\dots)i\sigma_1 \exp(\dots)|| \leq ||f\sigma_1|| \leq (n+1)||f||$  and the same for  $\sigma_2$ ; so,

$$||fI_1(t)||_{L_2(\Omega,H)} \le \sqrt{2}(n+1)\sqrt{t}||f||.$$

Similarly to 6b4,

$$||fI_k(t)||_{L_2(\Omega,H)} \le \sqrt{2^k} (n+1) \dots (n+k) \sqrt{\frac{t^k}{k!}} ||f||,$$

but it is useless; the right-hand side tends to  $\infty$  (when  $k \to \infty$ ) for every t > 0. We should not refuse a help from  $\exp\left(-\frac{1}{2}(\sigma_1^2 + \sigma_2^2)t\right)$ .

For a while we consider a simplified version  $fI_k^0(t)$  of the integral  $fI_k(t)$ ; namely, we replace each  $(i\sigma_1 dB_1(s) + i\sigma_2 dB_2(s))$  with just  $i\sigma_1 dB_1(s)$ . We have for  $f(z) = z^n$ ,

$$\frac{\|fI_{k}^{0}(t)\|_{L_{2}(\Omega,H)}^{2}}{\|f\|^{2}} = \int \cdots \int_{0 < s_{1} < \cdots < s_{k} < t} \sum_{n_{k}} \left| \frac{1}{2^{k}} \sum_{n_{1}, \dots, n_{k-1}} i \frac{n_{0} + n_{1}}{2} \dots i \frac{n_{k-1} + n_{k}}{2} \cdot \exp \left( -\frac{4n_{0}^{2} + 1}{8} s_{1} - \frac{4n_{1}^{2} + 1}{8} (s_{2} - s_{1}) - \dots - \frac{4n_{k}^{2} + 1}{8} (t - s_{k}) \right) \right|^{2} ds_{1} \dots ds_{k};$$

here  $n_0, n_1, \ldots, n_{k-1}, n_k$  are integers satisfying  $n_0 = n, n_1 = n_0 \pm 1, n_2 = n_1 \pm 1, \ldots, n_k = n_{k-1} \pm 1$ .

We take into account that

$$\sum_{n_k} \left| \frac{1}{2^k} \sum_{n_1, \dots, n_{k-1}} \dots \right|^2 \le \frac{1}{2^k} \sum_{n_1, \dots, n_k} |\dots|^2 p_k(n_k - n),$$

where  $p_k(n_k - n) = \frac{1}{2^k} \sum_{n_1, \dots, n_{k-1}} 1$  is the (binomial) probability of the random walk to come to  $n_k$ . Return from  $I_k^0$  to  $I_k$  costs a factor  $2^k$ , and we get

$$\frac{1}{2^{k}} \frac{(n + \frac{1}{2})^{2}}{n^{2} + \frac{1}{4}} \dots \frac{(n + k - \frac{1}{2})^{2}}{(n + k)^{2} + \frac{1}{4}} \operatorname{Density}(t; n^{2} + \frac{1}{4}, \dots, (n + k)^{2} + \frac{1}{4}) \leq \frac{\|fI_{k}(t)\|_{L_{2}(\Omega, H)}^{2}}{\|f\|^{2}} \leq \\
\leq \sum_{n_{1}, \dots, n_{k}} \frac{(n_{0} + n_{1})^{2}}{4n_{0}^{2} + 1} \dots \frac{(n_{k-1} + n_{k})^{2}}{4n_{k}^{2} + 1} \operatorname{Density}(t; n_{0}^{2} + \frac{1}{4}, \dots, n_{k}^{2} + \frac{1}{4}) p_{k}(n_{k} - n);$$

here Density $(t; c_0, \ldots, c_k)$  denotes the density at t of the (distribution of the) random variable  $\frac{\xi_0}{c_0} + \cdots + \frac{\xi_k}{c_k}$ , where  $\xi_0, \ldots, \xi_k$  are independent random variables distributed Exp(1) each.

The lower bound is about  $1/2^k$  (for large k), since the series  $\sum_k \frac{\xi_k}{k^2}$  converges.

The upper bound is large. Indeed, let the walk  $n_0, n_1, \ldots, n_k$  go up to  $n + \frac{k}{2}$  and return back to n. Then Density(...) is not small, and  $p_k(n_k - n) = p_k(0)$  is of order  $1/\sqrt{k}$ . However, the number of relatively close paths (of the walk) is much larger than  $\sqrt{k}$ .

Does the series (6c5) converge, or not?

### 6d Finite-dimensional approximation

In the space  $H = L_2(\mathbb{T}, \mathbb{R})$  we consider the orthogonal projection  $P_n$  onto the (2n + 1)-dimensional subspace  $P_nH$  spanned by real and imaginery parts of  $z^k$ ,  $k = 0, 1, \ldots, n$ ; that is, by  $1, \cos \alpha, \ldots, \cos n\alpha$  and  $\sin \alpha, \ldots, \sin n\alpha$ . (Alternatively, in  $H = L_2(\mathbb{T}, \mathbb{C})$  the (2n + 1)-dimensional subspace  $P_nH$  is spanned by  $z^k$ ,  $k = -n, -n + 1, \ldots, n$ .)

Operators  $i\sigma_1^{(n)}$ ,  $i\sigma_2^{(n)}$  on  $P_nH$  are defined by

(6d1) 
$$fi\sigma_1^{(n)} = fi\sigma_1 P_n, \quad fi\sigma_2^{(n)} = fi\sigma_2 P_n \quad \text{for } f \in P_n H.$$

Note that  $(\sigma_1^{(n)})^* = \sigma_1^{(n)}$  and  $(\sigma_2^{(n)})^* = \sigma_2^{(n)}$ . We consider the Brownian rotation  $Y_t^{(n)} = \text{Texp}(i\int_0^t (\sigma_1^{(n)} dB_1(s) + \sigma_2^{(n)} dB_2(s)))$  on  $P_nH$ . For  $n \to \infty$  we may hope for convergence of  $fY_t^{(n)}$  in  $L_2(\Omega, H)$ , at least for  $f(z) = z^k$ . To this end we investigate the pair  $(fY_t^{(m)}, fY_t^{(n)})$ , striving to estimate  $\mathbb{E}|fY_t^{(m)} - fY_t^{(n)}|^2$ . But first we need two quite general digressions.

The first digression. In the algebra  $M_{m+n}(\mathbb{R})$  we consider the subalgebra  $M_m(\mathbb{R}) \oplus M_n(\mathbb{R})$  of matrices of the form  $A \oplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ ,  $A \in M_m(\mathbb{R})$ ,  $B \in M_n(\mathbb{R})$ . Similarly to 4b, the two algebras  $M_m(\mathbb{R})$  and  $M_n(\mathbb{R})$  are embedded as commuting subalgebras. In contrast to 4b, embeddings do not conserve units, and commutativity is trivial:  $(A \oplus 0)(0 \oplus B) = 0$ . Similarly to 4b4 (but simpler),

$$(A \oplus B)(C \oplus D) = AC \oplus BD.$$

In contrast to 4b, every vector of  $\mathbb{R}^{m+n}$  is of the form  $x \oplus y$ ,  $x \in \mathbb{R}^m$ ,  $y \in \mathbb{R}^n$ . Of course,  $|x \oplus y|^2 = |x|^2 + |y|^2$ . We have

$$(x \oplus y)(A \oplus B) = xA \oplus yB$$
.

If  $A \in SO(m)$  and  $B \in SO(n)$  then  $A \oplus B \in SO(m+n)$ .

Similarly to 4c, having a morphism  $(B_t, Y_t)_t$ ,  $Y_t : \Omega \to SO(m)$ , and a morphism  $(B_t, Z_t)_t$ ,  $Z_t : \Omega \to SO(n)$ , we may form a morphism  $(B_t, Y_t \oplus Z_t)_t$ . The same holds for several driving Brownian motions.

**6d2 Exercise.** (a) Let  $Y_t = \text{Texp}(i \int_0^t (\sigma^Y dB_s + v^Y ds))$  and  $Z_t = \text{Texp}(i \int_0^t (\sigma^Z dB_s + v^Z ds))$ , then

$$Y_t \oplus Z_t = \operatorname{Texp} \left( i \int_0^t ((\sigma^Y \oplus \sigma^Z) dB_s + (v^Y \oplus v^Z) ds) \right).$$

Prove it.

(b) Generalize it for several driving Brownian motions.

Hint. If  $Y_t = \text{Texp}\left(i \int_0^t (\sigma_1 dB_1(s) + \cdots + \sigma_k dB_k(s) + v ds)\right)$  then (for  $t \to 0$ )

$$Y_t = \mathbf{1} + i \sum_k \sigma_k B_k(t) + o(\sqrt{t}),$$
  
$$\mathbb{E}Y_t - \mathbb{E}Y_t^* = 2ivt + o(t).$$

The second digression. A matrix  $U \in \mathrm{M}_n(\mathbb{R})$  may be treated as a linear map  $\mathbb{R}^n \to \mathbb{R}^n$ , namely  $x \mapsto xU$ . Similarly, a matrix  $U \in \mathrm{M}_{n^2}(\mathbb{R})$  may be treated as a linear map  $\mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R})$ ,

$$M_n(\mathbb{R}) \ni A \mapsto AU \in M_n(\mathbb{R})$$
;

note that AU is not a usual product of matrices. There are several reasonable actions of  $M_{n^2}(\mathbb{R})$  on  $M_n(\mathbb{R})$ ; I choose this one:

$$A(B \otimes C) = B^*AC$$
 for all  $A, B, C \in M_n(\mathbb{R})$ ;

the right-hand side is the usual product of matrices, and  $B^*$  is the transpose of B. In terms of indices,

$$(xU)_{\alpha} = \sum_{\beta} x_{\beta} U_{\alpha}^{\beta}, \qquad (AU)_{\beta}^{\alpha} = \sum_{\gamma,\delta} A_{\delta}^{\gamma} U_{\alpha,\beta}^{\gamma,\delta};$$

indeed,  $(B^*AC)^{\alpha}_{\beta} = \sum_{\gamma,\delta} (B^*)^{\alpha}_{\gamma} A^{\gamma}_{\delta} C^{\delta}_{\beta} = \sum_{\gamma,\delta} B^{\gamma}_{\alpha} A^{\gamma}_{\delta} C^{\delta}_{\beta} = \sum_{\gamma,\delta} A^{\gamma}_{\delta} (B \otimes C)^{\gamma,\delta}_{\alpha,\beta}$ . Note that

$$A(UV) = (AU)V$$
 for  $A \in \mathcal{M}_n(\mathbb{R}), \ U, V \in \mathcal{M}_{n^2}(\mathbb{R})$ .

Let  $(Y_t)_t$  be a Brownian motion in SO(n) and  $B \in M_n(\mathbb{R})$ , then

$$\mathbb{E} Y_t^* B Y_t = B e^{tA_2};$$

indeed,  $\mathbb{E}Y_t^*BY_t = \mathbb{E}B(Y_t \otimes Y_t) = B\mathbb{E}(Y_t \otimes Y_t) = Be^{tA_2}$ . Similarly,

$$\mathbb{E} Y_t B Y_t^* = B e^{t A_2^*} .$$

Thus,

$$\mathbb{E}\langle \psi Y_t B, \psi Y_t \rangle = \langle \psi B e^{tA_2^*}, \psi \rangle;$$

in this sense,  $A_2^*$  is the generator of the dynamics on quadratic forms on  $\mathbb{R}^n$ . Note that

$$(Be^{tA_2^*})^* = B^*e^{tA_2^*}, \qquad (BA_2^*)^* = B^*A_2^*,$$

since  $(Y_tBY_t^*)^* = Y_tB^*Y_t^*$ . If  $B = B^*$  then  $(BA_2^*)^* = BA_2^*$ . It is important that

(6d3) 
$$B \ge 0 \text{ implies } Be^{tA_2^*} \ge 0;$$

here  $B \geq 0$  means that  $B^* = B$  and  $\langle \psi B, \psi \rangle \geq 0$  for all  $\psi$ . We have  $|\psi|^2 = \mathbb{E}|\psi Y_t|^2 = \langle \psi \mathbf{1} e^{tA_2^*}, \psi \rangle$ , which means that

$$\mathbf{1}e^{tA_2^*} = \mathbf{1}; \qquad \mathbf{1}A_2^* = 0.$$

However,  $(\mathbf{1}A_2^*)^{\alpha}_{\beta} = \sum_{\gamma,\delta} \mathbf{1}^{\gamma}_{\delta} (A_2^*)^{\gamma,\delta}_{\alpha,\beta} = \sum_{\gamma} (A_2)^{\alpha,\beta}_{\gamma,\gamma}$ ; the equality  $\mathbf{1}A_2^* = 0$  becomes  $\sum_{\gamma} (A_2)^{\alpha,\beta}_{\gamma,\gamma} = 0$ , just (4g14). (The end of the second digression.)

 $<sup>^{3}</sup>$ It is also the generator of the dynamics on quadratic functions on SO(n), see 4f14.

**6d4 Exercise.** Let  $(Y_t)_t$ ,  $(Z_t)_t$  be as in 6d2, and  $A_2^Y$ ,  $A_2^Z$ ,  $A_2$  correspond to  $(Y_t)_t$ ,  $(Z_t)_t$ ,  $(Y_t \oplus Z_t)_t$  respectively. Then

$$\begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} e^{tA_2^*} = \begin{pmatrix} Be^{tA_2^{Y*}} & 0 \\ 0 & Ce^{tA_2^{Z*}} \end{pmatrix} , \qquad \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} A_2^* = \begin{pmatrix} BA_2^{Y*} & 0 \\ 0 & CA_2^{Z*} \end{pmatrix}$$

for all B, C.

Prove it.

Hint:  $\begin{pmatrix} Y_t & 0 \\ 0 & Z_t \end{pmatrix} \begin{pmatrix} B & 0 \\ 0 & C \end{pmatrix} \begin{pmatrix} Y_{t^*} & 0 \\ 0 & Z_{t^*} \end{pmatrix} = \begin{pmatrix} Y_t B Y_t^* & 0 \\ 0 & Z_t C Z_t^* \end{pmatrix}$ .

The same holds for several driving Brownian motions. We return to the problem of estimating  $\mathbb{E}|fY_t^{(m)}-fY_t^{(n)}|^2$ . Of course,  $fY_t^{(m)}:\Omega\to P_mH$ ,  $fY_t^{(n)}: \Omega \to P_nH$ . We may identify  $P_mH$  with  $\mathbb{R}^{2m+1}$ ,  $P_nH$  with  $\mathbb{R}^{2n+1}$ , assume that m < nand treat  $\mathbb{R}^{2m+1}$  as a subspace of  $\mathbb{R}^{2n+1}$ ; then

$$fY_t^{(m)} \oplus fY_t^{(n)} : \Omega \to \mathbb{R}^{2(2n+1)}$$

On  $\mathbb{R}^{2n}$  we consider the quadratic form

$$y \oplus z \mapsto |y - z|^2 = \langle (y \oplus z)B, y \oplus z \rangle,$$
  
$$(y \oplus z)B = (y - z) \oplus (z - y), \qquad B = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \in \mathcal{M}_{2(2n+1)}(\mathbb{R}),$$

then

$$\begin{split} \mathbb{E}|fY_t^{(m)} - fY_t^{(n)}|^2 &= \mathbb{E}\left\langle (f \oplus f)(Y_t^{(m)} \oplus Y_t^{(n)})B, (f \oplus f)(Y_t^{(m)} \oplus Y_t^{(n)})\right\rangle = \\ &= \left\langle (f \oplus f)B\exp(tA_2^{(m,n)*}), f \oplus f\right\rangle, \end{split}$$

where  $A_2^{(m,n)}$  describes the combined process  $Y_t^{(m)} \oplus Y_t^{(n)}$ 

**6d5 Exercise.** Let  $(Y_t)_t$ ,  $(Z_t)_t$  be as in 6d2, m=n, and  $B=\begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \in \mathrm{M}_{2n}(\mathbb{R})$ . Then

$$BA_2^* = \frac{1}{2} \begin{pmatrix} 0 & (\sigma^Y - \sigma^Z)^2 \\ (\sigma^Y - \sigma^Z)^2 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & i[\sigma^Y, \sigma^Z] + 2v^Z - 2v^Y \\ i[\sigma^Z, \sigma^Y] + 2v^Y - 2v^Z & 0 \end{pmatrix}.$$

Prove it.

Hint: recall (4g3), (4g5): 
$$A_2 = A_1 \otimes \mathbf{1} + \mathbf{1} \otimes A_1 + D$$
;  $B(A_1^* \otimes \mathbf{1} + \mathbf{1} \otimes A_1^*) = A_1 B + B A_1^*$ ;  $BD = -\begin{pmatrix} (\sigma^Y)^2 & -\sigma^Y \sigma^Z \\ -\sigma^Z \sigma^Y & (\sigma^Z)^2 \end{pmatrix}$ ;  $A_1 + A_1^* + \sigma^2 = 0$ .

For several driving Brownian motions the formula is quite similar;  $(\sigma^Y - \sigma^Z)^2$  is replaced with  $\sum_{k} (\sigma_{k}^{Y} - \sigma_{k}^{Z})^{2}$ , and  $[\sigma^{Y}, \sigma^{Z}]$  is replaced with  $\sum_{k} [\sigma_{k}^{Y}, \sigma_{k}^{Z}]$ .

**6d6 Lemma.** Let  $(Y_t)_t$  be a Brownian motion in SO(n) and  $M, B \in M_n(\mathbb{R}), \lambda \in (0, \infty)$  be such that  $M^* = M$ ,  $B^* = B$ ,

$$MA_2^* \le \lambda M$$
;  $BA_2^* \le M$ .

Then

$$Be^{tA_2^*} \le B + \frac{e^{\lambda t} - 1}{\lambda}M$$

for all  $t \in [0, \infty)$ .

(Of course,  $A \leq B$  means  $B - A \geq 0$ .)

Proof. Using (6d3),  $\frac{d}{dt}Me^{tA_2^*} = MA_2^*e^{tA_2^*} \le \lambda Me^{tA_2^*}$ , thus  $e^{\lambda t}\frac{d}{dt}\left(e^{-\lambda t}Me^{tA_2^*}\right) \le 0$  and  $e^{-\lambda t}Me^{tA_2^*} \le M$ , that is,

$$Me^{tA_2^*} \le e^{\lambda t}M$$
.

Further,

$$\begin{split} \frac{d}{dt}Be^{tA_2^*} &= BA_2^*e^{tA_2^*} \leq Me^{tA_2^*} \leq e^{\lambda t}M \,; \\ Be^{tA_2^*} &\leq B + \int_0^t e^{\lambda s}M \,ds = B + \frac{e^{\lambda t} - 1}{\lambda}M \,. \end{split}$$

In order to estimate  $\mathbb{E} |fY_t^{(m)} - fY_t^{(n)}|^2$  we need M and  $\lambda$  such that  $MA_2^{(m,n)*} \leq \lambda M$  and

$$(6d7) \quad \frac{1}{2} \begin{pmatrix} 0 & (\sigma_1^{(m)} - \sigma_1^{(n)})^2 + (\sigma_2^{(m)} - \sigma_2^{(n)})^2 \\ (\sigma_1^{(m)} - \sigma_1^{(n)})^2 + (\sigma_2^{(m)} - \sigma_2^{(n)})^2 & 0 \end{pmatrix} + \frac{i}{2} \begin{pmatrix} 0 & i[\sigma_1^{(m)}, \sigma_1^{(n)}] + i[\sigma_2^{(m)}, \sigma_2^{(n)}] \\ -i[\sigma_1^{(m)}, \sigma_1^{(n)}] - i[\sigma_2^{(m)}, \sigma_2^{(n)}] & 0 \end{pmatrix} \leq M.$$

The task looks frightening. However, our setup is invariant under rotations of  $\mathbb{T}$ , thus the operators on  $H = L_2(\mathbb{T}, \mathbb{R})$ , written above, should commute with rotations of  $\mathbb{T}$ , and hopefully M will also be found among operators that commute with rotations of  $\mathbb{T}$  and in addition, are of the form  $M = M' \oplus M''$ , which reduces the inequality  $MA_2^{(m,n)*} \leq \lambda M$  to two separate inequalities,  $M'A_2^{(m)*} \leq \lambda M'$  and  $M''A_2^{(n)*} \leq \lambda M''$  (recall 6d4).

### 6e Birth and death on a commutative subalgebra

Elements f of the space  $H = L_2(\mathbb{T}, \mathbb{R})$  are of the form

$$f(z) = \sum_{k \in \mathbb{Z}} f_k z^k$$
,  $f_k \in \mathbb{C}$ ,  $\sum_k |f_k|^2 < \infty$ ,  $f_{-k} = \overline{f_k}$ .

Operators diagonal in the basis  $(z^k)_k$  commute with rotations. More exactly, the group of rotations of  $\mathbb{T}$  splits H into two-dimensional subspaces  $H_k = \{az^k + \overline{a}z^{-k} : a \in \mathbb{C}\}$ , and operators C commuting with rotations leave  $H_k$  invariant,

$$(fC)_k = c_k f_k + b_k \overline{f_k}, \quad c_{-k} = \overline{c_k}, \qquad b_{-k} = \overline{b_k}.$$

We are mostly interested in the case  $b_k = 0$ ,

$$(fC)_k = c_k f_k; \quad C = \operatorname{diag}(c_k)_k; \quad c_{-k} = \overline{c_k}$$

Such operators are a commutative subalgebra. Especially (recall 6c4),

$$\sigma_1^2 + \sigma_2^2 = -d_\alpha^2 + \frac{1}{4} = \operatorname{diag}(k^2 + \frac{1}{4})_k$$

since

$$d_{\alpha} = \operatorname{diag}(ik)_{k}$$
.

However,  $i\sigma_1, i\sigma_2$  are not diagonal (but 'three-diagonal'); namely,  $i\sigma_1 = \frac{z+z^{-1}}{2} \circ \operatorname{diag}(ik)_k$ ;  $(fi\sigma_1)_k = \frac{1}{2}i(k-\frac{1}{2})f_{k-1} + \frac{1}{2}i(k+\frac{1}{2})f_{k+1}$ ; similarly,  $i\sigma_2 = \frac{z-z^{-1}}{2i} \circ \operatorname{diag}(ik)_k$ ;  $(fi\sigma_2)_k = \frac{1}{2}(k-\frac{1}{2})f_{k-1} - \frac{1}{2}(k+\frac{1}{2})f_{k+1}$ . We hope to construct the infinite-dimensional process

$$Y_t = \text{Texp}\left(i \int_0^t \left(\sigma_1 dB_1(s) + \sigma_2 dB_2(s)\right)\right)$$

and get  $A_2^* = A_2 = -\frac{1}{2} \left( (\sigma_1 \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_1)^2 + (\sigma_2 \otimes \mathbf{1} + \mathbf{1} \otimes \sigma_2)^2 \right) = A_1 \otimes \mathbf{1} + \mathbf{1} \otimes A_1 + D$  (where  $A_1 = -\frac{1}{2} (\sigma_1^2 + \sigma_2^2)$  and  $D = i\sigma_1 \otimes i\sigma_1 + i\sigma_2 \otimes i\sigma_2$ , recall (4g3), (4g5)), the generator of the dynamics on quadratic forms. The dynamics should preserve invariance under rotations of  $\mathbb{T}$ . And indeed, a formal calculation gives: if  $C = \operatorname{diag}(c_k)_k$  then

(6e1) 
$$CA_2^* = \operatorname{diag}\left(\frac{1}{2}\left(k - \frac{1}{2}\right)^2(c_{k-1} - c_k) + \frac{1}{2}\left(k + \frac{1}{2}\right)^2(c_{k+1} - c_k)\right)_k =$$

$$= \operatorname{diag}\left(\frac{1}{2}\left(k^2 + \frac{1}{4}\right)(c_{k-1} - 2c_k + c_{k+1}) + k\frac{c_{k+1} - c_{k-1}}{2}\right)_k.$$

You see,  $A_1 = -\frac{1}{2}\operatorname{diag}(k^2 + \frac{1}{4})_k$ ;  $C(A_1 \otimes \mathbf{1} + \mathbf{1} \otimes A_1) = A_1^*C + CA_1 = 2A_1 \circ C = -\operatorname{diag}(k^2 + \frac{1}{4})_k \circ \operatorname{diag}(c_k)_k = -\operatorname{diag}\left((k^2 + \frac{1}{4})c_k\right)_k$ ;  $CD = C(i\sigma_1 \otimes i\sigma_1 + i\sigma_2 \otimes i\sigma_2) = (i\sigma_1)^*Ci\sigma_1 + (i\sigma_2)^*Ci\sigma_2$ ;  $(fi\sigma_1Ci\sigma_1)_k = \frac{1}{2}i(k - \frac{1}{2})(fi\sigma_1C)_{k-1} + \frac{1}{2}i(k + \frac{1}{2})(fi\sigma_1C)_{k+1} = \frac{1}{2}i(k - \frac{1}{2})c_{k-1}(fi\sigma_1)_{k-1} + \frac{1}{2}i(k + \frac{1}{2})c_{k+1}(fi\sigma_1)_{k+1} = \frac{1}{2}i(k - \frac{1}{2})c_{k-1}\frac{1}{2}i(k - \frac{3}{2})f_{k-2} + \frac{1}{2}i(k - \frac{1}{2})c_{k-1}\frac{1}{2}i(k - \frac{1}{2})f_k + \frac{1}{2}i(k + \frac{1}{2})c_{k+1}\frac{1}{2}i(k + \frac{1}{2})c_{k+1}\frac{1}{2}i(k + \frac{3}{2})f_{k+2}$ ; similarly,  $(fi\sigma_2Ci\sigma_2)_k = \frac{1}{2}(k - \frac{1}{2})c_{k-1}\frac{1}{2}(k - \frac{1}{2})c_{k-1}\frac{1}{2}(k - \frac{1}{2})f_k - \frac{1}{2}(k + \frac{1}{2})c_{k+1}\frac{1}{2}(k + \frac{1}{2})f_{k+1}\frac{1}{2}(k + \frac{1}{2})f_{k+2}$ ; thus,  $(fi\sigma_1Ci\sigma_1 + fi\sigma_2Ci\sigma_2)_k = -\frac{1}{2}(k - \frac{1}{2})c_{k-1}(k - \frac{1}{2})f_k - \frac{1}{2}(k + \frac{1}{2})c_{k+1}f_k$ ;  $(fCD)_k = \frac{1}{2}((k - \frac{1}{2})^2c_{k-1} + (k + \frac{1}{2})^2c_{k+1})f_k$ ;  $(fD)_k = \frac{1}{2}\operatorname{diag}\left((k - \frac{1}{2})^2c_{k-1} + (k + \frac{1}{2})^2c_{k+1}\right)f_k$ ; (6e1) follows.

The difference operator (6e1) is nothing but the infinitesimal generator of a birth-and-death process; namely, the birth  $k \mapsto k+1$  has the rate  $\frac{1}{2}(k+\frac{1}{2})^2$ , and the death  $k+1 \mapsto k$  has the same rate. The rate being unbounded (in k), we should bother: does the process explode? According to the general theory of such processes, explosion depends on solutions of two difference equations on  $(c_k)_k$ ,  $c_k \in \mathbb{R}$ ,  $c_{-k} = c_k$ ; namely,  $CA_2^* = 0$  and  $CA_2^* = 1$ . If both solutions are bounded (in k), the process explodes, otherwise it does not. However, in our case it is easier to use eigenfunctions,  $CA_2^* = \lambda C$ .

The difference operator (6e1) is a discrete counterpart of the differential operator

$$\frac{1}{2}x^{2}\frac{d^{2}}{dx^{2}} + x\frac{d}{dx} = \frac{1}{2}\frac{d}{dx}x^{2}\frac{d}{dx}$$

corresponding to the so-called Euler differential equation. Its eigenfunctions are just powers,<sup>4</sup>

$$\frac{1}{2}\frac{d}{dx}x^2\frac{d}{dx}x^p = \frac{1}{2}p(p+1)x^p,$$

and we may hope for similar eigenfunctions of the difference operator.

We try first p=1,  $c_k=|k|$ ,  $C=\operatorname{diag}(|k|)_k$ ; for k>0 (6e1) gives  $(CA_2^*)_k=\frac{1}{2}(k^2+\frac{1}{4})\cdot 0+k\cdot 1=k$ . However,  $(CA_2^*)_0=\frac{1}{2}(0+\frac{1}{4})\cdot 2+0=\frac{1}{4}$ . We did not find an eigenfunction, but we get M and  $\lambda$  such that  $MA_2^*\leq \lambda M$ ; namely,

$$M_1 = \operatorname{diag}(|k| + \frac{1}{4})_k; \quad M_1 A_2^* \le M_1,$$

since  $M_1A_2^* = \operatorname{diag}(|k| \vee \frac{1}{4})_k$ . For the birth and death process it means non-explosion and moreover, a finite first moment, bounded by  $O(e^t)$  (assuming of course that it holds for the initial state).

For p=2 the situation is even simpler, — we get an eigenfunction:

$$M_2 = \operatorname{diag}\left(k^2 + \frac{1}{12}\right)_k; \quad M_2 A_2^* = 3M_2.$$

The birth and death process has a finite second moment, bounded by  $O(e^{3t})$ .

Higher eigenfunctions may be found by using

$$C_p = \operatorname{diag}\left(\left(k - \frac{p-1}{2}\right)\left(k - \frac{p-1}{2} + 1\right) \dots \left(k + \frac{p-1}{2}\right)\right)_k;$$

$$C_p A_2^* = \frac{1}{2}p(p+1)C_p + \frac{1}{8}p^3(p-1)C_{p-2}$$

for p = 2, 4, 6, ... The p-th moment of the birth and death process is finite and bounded by  $O\left(\exp\left(\frac{1}{2}p(p+1)t\right)\right)$ . Especially,

$$M_4 = \operatorname{diag}\left(k^4 + \frac{13}{14}k^2 + \frac{27}{560}\right); \qquad M_4 A_2^* = 10M_4.$$

# 6f Convergence of finite-dimensional approximations

Properties of the birth and death process give us a hope that the desired Brownian rotation  $(Y_t)_t$  can be constructed. To this end, however, we need estimations of  $Y_t^{(n)}$ . The cut-off (6d1) being rotation-invariant (since subspaces  $P_nH$  are), we may hope that the quadratic-evolution generator  $A_2^{(n)}$ , corresponding to  $(Y_t^{(n)})_t$ , also preserves the commutative subalgebra. Here is a finite-dimensional counterpart of (6e1): if  $C = \operatorname{diag}(c_k)_{k=-n,\ldots,n}$  then

(6f1) 
$$CA_{2}^{(n)*} = \operatorname{diag}(b_{k})_{k=-n,\dots,n},$$

$$b_{k} = \frac{1}{2} \left(k - \frac{1}{2}\right)^{2} (c_{k-1} - c_{k}) + \frac{1}{2} \left(k + \frac{1}{2}\right)^{2} (c_{k+1} - c_{k}) \quad \text{for } |k| < n,$$

$$b_{-n} = \frac{1}{2} \left(n - \frac{1}{2}\right)^{2} (c_{-n+1} - c_{-n}),$$

$$b_{n} = \frac{1}{2} \left(n - \frac{1}{2}\right)^{2} (c_{n-1} - c_{n}).$$

<sup>&</sup>lt;sup>4</sup>In general  $p \in \mathbb{C}$ , but we need  $p \in \mathbb{R}$  only.

For |k| < n the calculation (and the result) is the same as before (for (6e1)), but this time it is rigorous. The case k = -n is similar to the case k = n. The latter is obtained as follows. First,

(6f2) 
$$(\sigma_1^{(n)})^2 + (\sigma_2^{(n)})^2 = \operatorname{diag}(a_k)_{k=-n,\dots,n}, a_k = \frac{1}{2}(k - \frac{1}{2})^2 + \frac{1}{2}(k + \frac{1}{2})^2 = k^2 + \frac{1}{4} \text{ for } |k| < n, a_{-n} = a_n = \frac{1}{2}(n - \frac{1}{2})^2.$$

Indeed,  $(fi\sigma_1^{(n)}i\sigma_1^{(n)})_n = \frac{1}{2}i(n-\frac{1}{2})(fi\sigma_1^{(n)})_{n-1} = \frac{1}{2}i(n-\frac{1}{2})(\frac{1}{2}i(n-\frac{3}{2})f_{n-2} + \frac{1}{2}i(n-\frac{1}{2})f_n)$ and  $(fi\sigma_2^{(n)}i\sigma_2^{(n)})_n = \frac{1}{2}(n-\frac{1}{2})(fi\sigma_2^{(n)})_{n-1} = \frac{1}{2}(n-\frac{1}{2})(\frac{1}{2}(n-\frac{3}{2})f_{n-2} - \frac{1}{2}(n-\frac{1}{2})f_n)$ , thus  $(fi\sigma_1^{(n)}i\sigma_1^{(n)} + fi\sigma_2^{(n)}i\sigma_2^{(n)})_n = -\frac{1}{2}(n-\frac{1}{2})^2f_n$ .

Further,  $(fA_1^{(n)})_n = -\frac{1}{4}(n - \frac{1}{2})^2 f_n$ ;  $(fC(A_1^{(n)} \otimes \mathbf{1} + \mathbf{1} \otimes A_1^{(n)}))_n = (f(2A_1^{(n)} \circ C))_n = -\frac{1}{2}(n - \frac{1}{2})^2 c_n f_n$ ;  $(fi\sigma_1^{(n)}Ci\sigma_1^{(n)})_n = \frac{1}{2}i(n - \frac{1}{2})(fi\sigma_1^{(n)}C)_{n-1} = \frac{1}{2}i(n - \frac{1}{2})c_{n-1}(fi\sigma_1^{(n)})_{n-1} =$   $= \frac{1}{2}i(n - \frac{1}{2})c_{n-1}\frac{1}{2}i(n - \frac{3}{2})f_{n-2} + \frac{1}{2}i(n - \frac{1}{2})c_{n-1}\frac{1}{2}i(n - \frac{1}{2})f_n$ ; similarly,  $(fi\sigma_2^{(n)}Ci\sigma_2^{(n)})_n = \frac{1}{2}(n - \frac{1}{2})c_{n-1}\frac{1}{2}(n - \frac{3}{2})f_{n-2} - \frac{1}{2}(n - \frac{1}{2})c_{n-1}\frac{1}{2}(n - \frac{1}{2})f_n$ ; thus,  $(fi\sigma_1^{(n)}Ci\sigma_1^{(n)} + fi\sigma_2^{(n)}Ci\sigma_2^{(n)})_n = -\frac{1}{2}(n - \frac{1}{2})c_{n-1}(n - \frac{1}{2})f_n$ ;  $(fCD)_n = \frac{1}{2}(n - \frac{1}{2})^2c_{n-1}f_n$ ; (6f1) follows.

Comparing (6f1) with (6e1) we see that  $(CP_n)A_2^{(n)*} \leq (CA_2^*)P_n$  for  $C = \operatorname{diag}(c_k)_k$ ,  $c_k \in \mathbb{R}$ ,  $c_{-k} = c_k$ , provided that  $c_n \leq c_{n+1}$ . The latter holds for  $M_1, M_2$  and  $M_4$ ; thus,

$$M_1^{(n)}A_2^{(n)*} \leq M_1^{(n)} \,, \quad M_2^{(n)}A_2^{(n)*} \leq 3M_2^{(n)} \,, \quad M_4^{(n)}A_2^{(n)*} \leq 10M_4^{(n)} \,,$$

where  $M_p^{(n)} = M_p P_n$ .

Now we are in position to return to (6d7). Another calculation similar to (6f2) gives (for m < n)

$$(\sigma_1^{(m)} - \sigma_1^{(n)})^2 + (\sigma_2^{(m)} - \sigma_2^{(n)})^2 = \operatorname{diag}(a_k)_{k=-n,\dots,n},$$

$$a_k = \frac{1}{2}(k - \frac{1}{2})^2 + \frac{1}{2}(k + \frac{1}{2})^2 = k^2 + \frac{1}{4} \quad \text{for } m < |k| < n,$$

$$a_{-m} = a_m = \frac{1}{2}(m + \frac{1}{2})^2,$$

$$a_{-n} = a_n = \frac{1}{2}(n - \frac{1}{2})^2.$$

We see that

$$(\sigma_1^{(m)} - \sigma_1^{(n)})^2 + (\sigma_2^{(m)} - \sigma_2^{(n)})^2 \le \operatorname{diag}((k^2 + \frac{1}{4})\mathbf{1}_{[m,n]}(|k|) =$$

$$= (\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) = (P_n - P_{m-1})(\sigma_1^2 + \sigma_2^2).$$

Also,

$$[\sigma_1^{(m)}, \sigma_1^{(n)}] + [\sigma_2^{(m)}, \sigma_2^{(n)}] = 0$$

since both  $\sigma_1^{(m)}\sigma_1^{(n)}+\sigma_2^{(m)}\sigma_2^{(n)}$  and  $\sigma_1^{(n)}\sigma_1^{(m)}+\sigma_2^{(n)}\sigma_2^{(m)}$  appear to be equal to  $(\sigma_1^{(m)})^2+(\sigma_2^{(m)})^2$ . For (6d7), it is sufficient to ensure

$$\frac{1}{2} \begin{pmatrix} 0 & (\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) \\ (\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) & 0 \end{pmatrix} \le M.$$

Taking into account that  $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \leq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  (these are  $2 \times 2$  matrices), we get

$$\begin{pmatrix}
0 & (\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) \\
(\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) & 0
\end{pmatrix} \le \\
\le \begin{pmatrix}
(\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) & 0 \\
0 & (\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1})
\end{pmatrix}.$$

We see that (6d7) holds for  $M = 3M_2^{(n)} \oplus 3M_2^{(n)}$ , since  $k^2 + \frac{1}{4} \le 3(k^2 + \frac{1}{2})$ . Also,  $MA_2^{(m,n)*} \le 3M$  since  $M_2^{(n)}A_2^{(m)*} \le 3M_2^{(n)}$  and  $M_2^{(n)}A_2^{(n)*} \le 3M_2^{(n)}$ . So, for every  $f \in P_nH$ , using Lemma 6d6,

$$\mathbb{E}|fY_{t}^{(m)} - fY_{t}^{(n)}|^{2} = \langle (f \oplus f)B \exp(tA_{2}^{(m,n)*}, f \oplus f) \leq$$

$$\leq \langle (f \oplus f)B, f \oplus f \rangle + \frac{e^{3t} - 1}{3} \langle (f \oplus f)M, f \oplus f \rangle =$$

$$= |f - f|^{2} + \frac{e^{3t} - 1}{3} (3\langle fM_{2}^{(n)}, f \rangle + 3\langle fM_{2}^{(n)}, f \rangle) = \frac{e^{3t} - 1}{3} \cdot 6\langle fM_{2}^{(n)}, f \rangle.$$

So what?! It does not tend to 0 for  $m \to \infty$  (and  $n \to \infty$ ). How to use the fact that m is large? The projection  $P_n - P_{m-1}$  should be small in some sence, much smaller than  $P_n$ . In which sense?

We should use  $M_4$ , not  $M_2$ . We have

$$(\sigma_1^2 + \sigma_2^2)(P_n - P_{m-1}) \le \frac{1}{m^2} M_4^{(n)};$$

indeed,  $k^2 + \frac{1}{4} = (k^4 + \frac{1}{4}k^2)/k^2 \le (k^4 + \frac{13}{14}k^2 + \frac{27}{560})/m^2$  for  $|k| \in [m, n]$ . Thus, we use  $M = \frac{1}{m^2} (M_4^{(n)} \oplus M_4^{(n)})$  and get

$$\mathbb{E}|fY_t^{(m)} - fY_t^{(n)}|^2 \le \frac{e^{10t} - 1}{10} \frac{1}{m^2} \cdot 2\langle fM_4^{(n)}, f \rangle$$

for all  $f \in P_nH$ , whenever m < n. If  $m \to \infty$  (and  $n \to \infty$ ) while f and t are fixed, the right-hand side tends to 0, and we get a Cauchy sequence  $(fY_t^{(n)})_{n=1}^{\infty}$  in  $L_2(\Omega, H)$ . We define  $fY_t$  by

$$fY_t = \lim_{t \to \infty} fY_t^{(n)}$$

for  $f \in (\bigcup_{n=1}^{\infty} P_n H) \subset H = L_2(\mathbb{T}, \mathbb{R})$ . Choosing a subsequence that converges almost everywhere (on  $\Omega$ , for a given t) we get (for almost every  $\omega$ ) a linear isometric map  $Y_t(\omega)$ :  $(\bigcup_{n=1}^{\infty} P_n H) \to H$ . We extend it by continuity to an isometric linear map  $Y_t(\omega) : H \to H$ . Note that

$$\mathbb{E}|fY_t - fY_t^{(n)}|^2 \xrightarrow[n \to \infty]{} 0$$

for all  $f \in H$  (not just a dense subspace).

### 6g The infinite-dimensional process

Many questions about  $(Y_t)_t$  have to wait more. Is  $Y_t(\omega)$  an invertible operator? Is  $fY_t(\omega)$  continuous in t? Does  $Y_t(\omega)$  correspond to a diffeomorphism  $\mathbb{T} \to \mathbb{T}$ ? Etc, etc. But some properties are easy to prove now.

Let G be the set of all isometric linear operators  $U: H \to H$  (not just invertible);  $H = L_2(\mathbb{T}, \mathbb{R})$ , as before. Clearly, G is a semigroup. We equip it with the  $\sigma$ -field generated by the functions  $U \mapsto \langle fU, g \rangle$  for  $f, g \in H$ . Now G is a measurable semigroup, and

$$Y_t \in L_0(\Omega, G)$$
 for  $t \in [0, \infty)$ .

In the finite dimensional group  $SO(P_nH)$  we have not only the Brownian motion  $(Y_t^{(n)})_t$  but also the abstract stochastic flow  $(Y_{s,t}^{(n)})_{s < t}$ , and we may introduce  $Y_{s,t}$  by

$$\mathbb{E}|fY_{s,t}-fY_{s,t}^{(n)}|^2 \xrightarrow[n\to\infty]{} 0 \text{ for all } f\in H;$$

convergence follows from 6f and stationarity (indeed,  $\mathbb{E}|fY_{s,t} - fY_{s,t}^{(n)}|^2$  depends on t-s only).

**6g1 Exercise.**  $(Y_{s,t})_{s \le t}$  is a G-valued abstract stochastic flow, and  $((B_1(s,t), B_2(s,t)), Y_{s,t})_{s \le t}$  is a morphism.

Prove it.

Hint: for each n,  $((B_1(s,t), B_2(s,t)), Y_{s,t}^{(n)})_{s \le t}$  is a morphism.

The group  $\mathbb{T}$  acts on H by rotations  $U_z, z \in \mathbb{T}$ ;

$$(fU_z)(z_1) = f(zz_1)$$
 for  $z_1 \in \mathbb{T}$ .

The flow  $(Y_{s,t})_{s < t}$  is homogeneous not only in time but also in space, in the following sense.

**6g2 Exercise.** For every  $z \in \mathbb{T}$ , random variables  $U_z Y_{s,t} U_z^{-1}$  (for  $s \leq t$ ) are an abstract stochastic flow, distributed identically to  $(Y_{s,t})_{s \leq t}$ .

Prove it.

Hint: consider first a finite dimension; recall 4d (namely,  $Y_{\alpha}$  there).