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6 Harris lows as Brownian rotations

6a Some diffeomorphisms

On the circe T = {z € C: |z| = 1} = {€"® : a € R} we consider the differential equation (for
a particle that moves on T)
d z+z1,

d
(6al) 3E= g W that is, 0 = cosa.

It can be solved explicitly,

z+z ' 241 (=) (z+1)

g == 5 i
2 dz 1 1 z+1
- =dt; - — -=dt; In +.=t+const.
i(z—1)(z+1) z4+i  z—1 z—1
Or, in terms of «,
e +i . cosa 1+sina 1+tan§ o ( N )
A =1 =1 = =3 n _ _ .
el — g 1 —sina coSs o 1—tan? 2 4/’

1 ‘ta (a+7r>‘ t + const
n n{— — = 11 .
2 A4

The solution,

_ et i) + (20— 0)
o T )~ o)

is well-defined for all t € R. However, its power series z; = Y ¢xt* has only a finite radius of
convergence, since the solution has poles for ¢ € C.
Another differential equation,

d —z1 d
(6a3) = ? 2; iz, that is, 0= sina,
may be written as
d, . (—iz) + (—iz)™t ., .
4 L (—iz) = -
(6a4) 5 (782) 5 i(—iz),

which is (6al) for (—iz).

We have two one-parameter semigroups (in fact, groups) of diffeomorphisms of T, and
they do not commute with each other. We want to combine these two evolutions with
independent random coefficients. The idea is to get infinitesimally (for small ¢)

20+ 2" 20— 2"
2y = 29 + OTO’LZOBl (t) + 0271,012032(75) ;

ay = o + By(t) cosag + Ba(t) sinayp ;
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the motion starting at g is driven by the Brownian motion B; cos oy + By sin o just as the
motion starting at 0 is driven by B;. The model should be homogeneous, that is, invariant
(in distribution) under rotations of T.

In order to use the technique of Sections 3, 4 we treat the group of diffeomorphisms T — T
as embedded into the group of rotations (invertible linear isometries) Ly(T) — Lo(T). I mean
Ly(T,R) (but Ly(T,C) can be used as well). For each ¢ the diffeomorphism ¢, defined by
(6a2),

gives us a rotation Uy of Ly(T),

(625) Uif(2) = VG £ ()
017 = [ U@ da= [ 1f (o) Pleien)ida = [ 7P ds = 1712

According to (6al),

0 z) + 2))7
awt(z) — Sot( ) é@pt( )) ZQOt(Z) )
We have a one-parameter semigroup (in fact, group) (U;);, and we calculate its generator
A= %‘t:OUt’
d ! 1/2
AfD =0 G171 (o2) =
t=0
_ 1 ! —1/2 i ! ! 1/2 ¢t i _
= 5leo(2)] ei(2)] ) £ (0(2)) + 15 (2) 72 f" (00(2)) oi(z) =
2 dt|,_, dt|,_,
lz—2z1 z+z271
= I+ ) e,

which is easier to understand in terms of «:
pue) = €5 [ge)] = Yi(a)

%wt(a) = cos Y() ;

d , . 0 00 .
a0 = e t(@) = g (@)

d (o _i ! —32 _i .

dt t:O|90t(€ )| = dt t:owt(a) = Yot tzowt(a) = Ja cosa = —sina.

Of course, A is not defined on the whole Ly(T) (and is not a bounded operator). Our
calculation makes sense only for f analytic in a neighborhood of T.
We introduce the differential operator d, = %, that is,

L

daf(éa)==da
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thus, d, f(z) = izf'(z) for analytic f), and a multiplication operator M, that is,
2

()@=,

2 2
then
(6a6) 4 24271 p 1 z—|—z’1d d z+2z71
= (@] = — - .
2 2 aT o\ T g feThT
Indeed, applying d,, to the function z — 22— we get the function z — —2=2—. The formula
g 2 21

(6a6) holds on C*(T).

The other differential equation (6a3) leads similarly to another generator, Z_;z.fl 0d,.

6b Analytic vectors

In a finite dimension, if A is the generator of a one-parameter semigroup (U;):, then necessar-
ilyU=et=Y, ';c—k!Ak for all ¢. In the infinite dimension the situation is more complicated
(since a generator is not bounded, in general).

A function f € C*(T) is called an analytic vector for the operator A = % odg, (or
another differential operator. .. ), if the (vector-valued) power series!

(6b1) > Z—k'Ak f
— !

has a non-zero radius of convergence. In other words: if

(6b2) VIAkf]| = O(k) for k — oo.

6b3 Exercise. For every n € Z, the function f(z) = 2" is an analytic vector for the operator
dyz.2

Prove it.

Hint: d,z" = inz"; ||(de2)*2"|| = (n +1)...(n + k)||z""*|| for n > 0. (Do not forget
negative n.)

1

6b4 Exercise. The same (as 6b3) for the operator A = #£— o d,,.
Hint: ||A%2"|| < (n+1)...(n+ k)|[z"*]| for n > 0.

We see that the series

tk
tA p __ k
e f—E _k!Af
k

converges for small ¢, if f is one of 2" or their linear combination, thus, for a set dense in
Ly(T). In fact, any function analytic in a neighborhood of T is an analytic vector.

!Here (in 6b) I write operators on the left: (BA)f = B(Af) etc. But afterwards (in 6¢) I will return to
the opposite notation: f(AB) = (fA)B etc.
2Here we consider complex-valued functions (just for convenience).
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6b5 Exercise. (e/1f,e!g) = (f, g) if f, g are analytic vectors and ¢ is small enough.
Prove it.

Hint: <Afa g> = _<fa Ag>: since <dafa g> = _<fa dag>'

Extending by continuity, we get a rotation e of Ly(T), and e*4e!4 = esT94 for |s|, [¢|
small enough. Extending by multiplicativity we get rotations ¢4 for all t € R (a one-
parameter group). In fact, U; = e for all t € [0, 00).

Dealing with two operators, A; = Z+§71 od, and Ay = Z’Qz;l o dg, we call f € C(T) an
analytic vector for the pair (A4, As), if

max |A;, ... A fll=0(k) fork— oo.
k=1

Similarly to 6b4, each z" is an analytic vector for the pair. Any analytic vector for (A4;, Ay)
is analytic for every linear combination ¢; A; + ¢ As.

6¢c Stochastic integrals: does the series converge?

As was said in 3b (for a finite dimension), a stochastic integral of a vector-function is treated
coordinate-wise. Now, given a function f; € Lg([(), o0), H ) where H is a Hilbert space, we
define [;° f1(t) dB(t) by

(6¢1) < /0

)
“h0as0.g) = [ (0.0a50 foraige n.
Clearly,

(6c2) “J/,fldza

The same for [[ fo(s,t) dB(s)dB(t) etc. A generalization to By(+),..., By(-) is straightfor-
ward.

0

2 o0
0= [ Mol at.
LZ(QaH)

We take
, z4+ 271 . z—z1
(6C3) H = LQ(T), 101 = 5 Oda, 109 = % Oda-
)
6c4 Exercise. 0? + 05 = —d? + 1.
Prove it.
Hint: Z+Z_1da — daM _ g’ etC.

2 2 24

We want to define YV, = Texp(i f(f dXS), where X; = 01Bj(t) + 09Bs(t), following the
formulas of 3¢ (with v = 0):

(0? + og)t) +

J/

N~

(65) 1Y, = fexp (-

+ /Ot fexp ( - %(af + Jg)s) (io1 dBi(s) + ios dBs(s)) exp ( - %(af +02)(t - s)) +...

7

()
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However, convergence of the series Zk k(t) is not evident (since operators oi,0, are
not bounded). We take (for now) f(z) = z” By 6¢4, f(o? + 03) = (n* + })f, there-

fore fexp(—2%(o? + 02)t) = exp(—3(n® + 1)t)f and ||fL(t)|| < ||f]| = V2. Further,
| fexp(...)iorexp(...)|| < ||for]] < (n+ 1)||f|| and the same for oy; so,

I L) |za@m < V2(n+ DVEISI].

Similarly to 6b4,

k
1Ol < VE 1+ 1)+ By 151,

but it is useless; the right-hand side tends to oo (when k& — o) for every ¢ > 0. We should
not refuse a help from exp(—2%(o? + 03)t).

For a while we consider a simplified version fI?(¢) of the integral fIy(f); namely, we
replace each (ioy dBi(s) + i02 dBy(s)) with just io; dBi(s). We have for f(z) =

I fIRON 0, m / /
||f||2 0<s1< <8<t

1 Z Z.no-l-nl ink—l'i‘nk.

ﬁ 2 2
ng N1ye-eNp—1
4n2 + 1 4n? 4+ 1 4n2 + 1 2
cexp [ — —2 5 — —= (59— 81) —++»— —F (t—sk) )| dsy...dsg;
8 8 8
here ng,nq,...,nk_1, Nk are integers satisfying ng = n, ny = ng £ 1, no = ny £ 1,

N =Nk + 1.
We take into account that

Y X

Nk N1y Np—1

_Qk Z - Ppr(ng — ),

N1y..Ng

where pg(ng —n) = 2% > mnm,, L is the (binomial) probability of the random walk to come
to ng. Return from I to Iy costs a factor 2%, and we get

1F T, 0,
/11> N

Density (t; ng + 1,...,np + 3)pk(ne — n) ;

L(n+1)? (n+k—1)?
2% 241 T (np k)2 4
<y (no+n1) (n—1 + ni)?

dnf+1 7 4dnZ+1

Den51ty(t; n? + i, (k) + ) <

N1y Np

here Density(t; Co, - - -, C) denotes the density at ¢ of the (distribution of the) random variable
E" +-- 4 §’° , where &, ..., & are independent random variables distributed Exp(1) each.

The lower bound is about 1/2* (for large k), since the series 3, % = converges

The upper bound is large. Indeed, let the walk ng, ni,...,n; go up to n —|— = and return
back to n. Then Density(...) is not small, and py(ng—n) = pk(O) is of order 1/\/E However,
the number of relatively close paths (of the walk) is much larger than v/k.

Does the series (6¢5) converge, or not?
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6d Finite-dimensional approximation

In the space H = Ly(T,R) we consider the orthogonal projection P, onto the (2n + 1)-

dimensional subspace P, H spanned by real and imaginery parts of z*, k = 0,1,...,n; that
is, by 1,cosa, ..., cos na and sina, . .., sin na. (Alternatively, in H = Ly(T, C) the (2n+1)-
dimensional subspace P, H is spanned by 2%, k = —n,—n +1,...,n.)

Operators ia@, iazn) on P,H are defined by

(6d1) fio™ = fio\P,, fio\" = fio,P, for f € PH.

Note that (0@)* = o™ and (aé"))* = o{™. We consider the Brownian rotation Y, =
Texp (i fot(oyl) dBy(s) + oV dBs(s))) on P,H. For n — oo we may hope for convergence of
FY™ in L,(, H), at least for f(z) = z*. To this end we investigate the pair (fYt(m), fYt(")),
striving to estimate E [fY;"™ — fY,[2. But first we need two quite general digressions.

The first digression. In the algebra M, ,(R) we consider the subalgebra M,,(R)® M, (R)
of matrices of the form A& B = (4 %), A € Mu(R), B € M,(R). Similarly to 4b, the
two algebras M,,(R) and M, (R) are embedded as commuting subalgebras. In contrast to
4b, embeddings do not conserve units, and commutativity is trivial: (A @ 0)(0 @ B) = 0.
Similarly to 4b4 (but simpler),

(A® B)(C® D)= AC & BD.

In contrast to 4b, every vector of R™*" is of the form z ® y, x € R™, y € R*. Of course,
|z ® y|? = |z]|* + |y|2. We have

(zdy)(A®B)=2AdyB.

If A€ SO(m) and B € SO(n) then A® B € SO(m + n).

Similarly to 4c¢, having a morphism (By,Y})s, ¥; : © — SO(m), and a morphism (By, Z;);,
Z; : Q — SO(n), we may form a morphism (B;,Y; @ Z;);. The same holds for several driving
Brownian motions.

6d2 Exercise. (a) Let V; = Texp (i [, (0¥ dB,+v"ds)) and Z; = Texp (i [, (07dB,+v?ds)),
then

t
V0 Z, = Texp(i/ ((c¥ ®@0”)dB; + (v ®v”)ds)).
0

Prove it.
(b) Generalize it for several driving Brownian motions.
Hint. If Y; = Texp (i [, (01 dBi(s) + - - - + 0 dBy(s) + v ds)) then (for t — 0)

Y,=1 +iZUkBk(t) +0(\/%),
k
EY, — EY," = 2ivt + o(t).
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The second digression. A matrix U € M, (R) may be treated as a linear map R” — R,
namely x — zU. Similarly, a matrix U € M,,2(R) may be treated as a linear map M, (R) —
M, (R),

M,(R) 3 A — AU € M, (R);

note that AU is not a usual product of matrices. There are several reasonable actions of
M,2(R) on M, (R); I choose this one:

AB®C)=B*AC forall A,B,C € M,(R);

the right-hand side is the usual product of matrices, and B* is the transpose of B. In terms
of indices,

(zU) = ZxﬁUg, (AU)g = ZAgUg;g :
B

7,6

indeed, (B*AC)§ = 3", 5(B*)2AJCS =Y s BIAJCS =" ; AJ(B® C)}}. Note that
A(UV) = (AU)V for A € M,(R), U,V € M,2(R).
Let (Y;); be a Brownian motion in SO(n) and B € M, (R), then
EY,* BY; = Be'*?;
indeed, EY,*BY; = EB(Y; ® Y;) = BE(Y; ® ;) = Be'42. Similarly,
EY,BY; = Be':.

Thus,
E(yY,B,9Y;) = (pBe'z, ) ;

in this sense, A} is the generator of the dynamics on quadratic forms on R*.3 Note that
(BetA’Z‘)*:B*etAg’ (BA;)*ZB*A;,

since (Y;BY;*)* = Y;B*Y,*. If B = B* then (BAj})* = BA}. It is important that

(6d3) B >0 implies Be! >0;

here B > 0 means that B* = B and (¢ B,v¢) > 0 for all ¢p. We have |¢|> = E[¢Y;]? =
(1€ 1b), which means that
1et = ; ].A; =0.

However, (145)§ =3__; 1}(A;)Z;"; =Y (A9)27; the equality 145 = 0 becomes Y (A45)%f =
0, just (4g14). (The end of the second digression.)

31t is also the generator of the dynamics on quadratic functions on SO(n), see 4f14.
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6d4 Exercise. Let (Y});, (Z;); be as in 6d2, and AY, AZ, A, correspond to (Y;):, (Z;):,
(Y; ® Z); respectively. Then

B 0\ i _ Bet™ 0 B 0) ,._(BA" 0

0 C - 0 CetAs™ | 0o C) 2% 0 CAZ~
for all B, C.
Prove it.

Hint: (% 2)(58)(% z) = ("% zez ).

The same holds for several driving Brownian motions.

We return to the problem of estimating E|fY;'™ — ;"™ |2. Of course, fY,™ : Q — P,,H,
fYt(n) : Q — P,H. We may identify P, H with R?"*tl P, H with R***! assume that m <n
and treat R?™*! as a subspace of R?"*!; then

fYt(m) & fy;(") Q) — R2@n+1)
On R*™ we consider the quadratic form

y®z—ly—z=(y@2)B,y®2),

wods=w-20c-n, B=() 1) eMuma®,

then

ElfY™ - [P =E(f @ N @ Y,")B, (fe NV e ¥")) =
= ((f @ NBexp(tA™™).f @ ),
where A™™ describes the combined process Y™ @ Y,™.
6d5 Exercise. Let (Y});, (Z)¢ be as in 6d2, m =n, and B= (1, 7') € Ma,(R). Then
BAL = 1 ( 0 (JY—UZ)2>+£ ( 0 i[aY,aZ]—i-QvZ—QUY) ‘
2 \ (oY — 0?%)? 0 2 \i[oZ,0Y] + 20Y — 202 0

Prove it.
Hint: recall (4g3), (4g5): A=A, ®1+1® A1+ D; B(A;®1+1® A}) = A, B+ BAj;

oY) —oYoZ .
Y

For several driving Brownian motions the formula is quite similar; (6¥ —o%)? is replaced
with Y°, (op — 0f)?, and [0, 07] is replaced with Y, [0} , o7].

6d6 Lemma. Let (Y;); be a Brownian motion in SO(n) and M, B € M,(R), A € (0,00) be
such that M* = M, B* = B,

MA; <AM; BA,<M.

Then
A 1

A

€

Bet4 < B+ M

for all ¢ € [0, 00).
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(Of course, A < B means B— A > 0.)

Proof. Using (6d3)
M, that is,

, %Me“‘; = MAjet4: < A\Me'4:, thus e’\t%(e_)‘tMetAg) < 0and e MMet4: <

Met: < MM .
Further,

d * * *
aBet% = BA;eM2 < Metts < MM ;

. ¢ eM—1
BetA2§B+/ eMMds =B+
0

M.
A

]
In order to estimate E | fY,"™ — Y| we need M and ) such that MA™™* < AM and

(6d7) - 0 (0" = o) + (03" = ")) |
o\ (oM _ (e | ( (m) _ _(m)y2 0
(o1 01")" + (03 03")
i 0 ilot™, 01" +ilos™, 05”1\ _ 4,
Tol i m) o m) () s M.
iloy 7,01 —iloy ", 05 ] 0

The task looks frightening. However, our setup is invariant under rotations of T, thus
the operators on H = Lo(T,R), written above, should commute with rotations of T, and
hopefully M will also be found among operators that commute with rotations of T and in
addition, are of the form M = M’ & M", which reduces the inequality M AT™* < AM to

two separate inequalities, M'AT™* < AM' and M" A" < AM" (recall 6d4).

6e Birth and death on a commutative subalgebra

Elements f of the space H = Ly(T,R) are of the form

fR) = fd feC, Y Il <oo, fr=Tfk.
k

kEZ

Operators diagonal in the basis (2*); commute with rotations. More exactly, the group of
rotations of T splits H into two-dimensional subspaces Hy = {az* + a@z7% : a € C}, and
operators C' commuting with rotations leave Hy invariant,

(fO) =crfx +bife, c=¢F, b = by .

We are mostly interested in the case by = 0,

(fO) = crfr; C =diag(ce)r; c—k =Ck.

Such operators are a commutative subalgebra. Especially (recall 6¢4),

1 .
ol +o5=—d>+ 1= diag(k* + 1)« ,



Tel Aviv University, 2003 Brownian motions and stochastic flows 65

since
d,, = diag(ik)y, .

However, ioq,i09 are not diagonal (but ‘three-diagonal’); namely, ioy = #— o diag(ik)y;

(fio )k = %Z( )fk 1+ 3 (k + )fk+1; similarly, ioy = *5 Z, odlag(zk)k, (fioo)r =
s(k—3)fr1— 5(k+ 3) fet1- We hope to construct the infinite-dimensional process

3@:1@m<547md34@+@émg@»>

and get A3 = Ay = —1((01®141Q®01)*+ (0291 +1®03)?) = A, ®1+1Q A; + D (where
A = ——(01 +02) and D = i0y ® io; + 10y ® 109, recall (4g3), (4g5)), the generator of the
dynamics on quadratic forms. The dynamics should preserve invariance under rotations of
T. And indeed, a formal calculation gives: if C' = diag(cy), then

.. (1 1\2 1 1\2
(661) CA2 = dlag <§(l€ — 5) (Clc—l — Ck) + 5 (]C + 5) (Ck+1 — Clc)) =

k

. 1 1 Crt1 — Cl—
= diag | = (k2 + —) (k1 — 2¢ + Cpy1) + AR R
2 1 2 .

You see, A; = —z diag(k* + 1)x;

C’(A1®1—|—1®A ) A*C’+CA1 = 2A4,0C = —diag(k*+ )kOdlag(ck) = —diag((kQ-i-i)ck)k;
CD = C(ioy Q@ io1 + 109 ® i03) = (i01)*Clioy + (io)* 07/0-2,

(fiolciol)k = %Z(k - %)(fiolC)k,1 + %Z(k + %)(fl.(flc)k+1 ==

= 5i(k — 3k 1(fior)k 1 + 5i(k + %)Ck+1(fi01)k+1 =

= 2i(k — 3)ck1350(k — 2) fuo + 3i(k — 3k 150(k — 3) fi +

+ 31(k + 3)chr150(k + 5) fr + 31k + 3)chr150(k + 2) frro;

similarly, ( fiagCiog)k =

= 5(k — Hex—15(k = 3) fi- 2—%(k—%)0k 15(k = 5)fe =

—ak+)%ﬂgk+)ﬁ+ (k+ 2)ckr13(k + 3) furz;

thus, (fio,Cioy + fwngQ) =—2(k— ) 1(k—3)fr — 3k + 3)cus1(k + 3) fi;
(fCD), = 5((k = 5)%ch—1 + (k + '

CD = Ldiag((k — 1) %chor + (K +
(6el) follows.

The difference operator (6el) is nothing but the infinitesimal generator of a birth-and-
death process; namely, the birth &k — k + 1 has the rate 3(k + )%, and the death k+1 — k
has the same rate. The rate being unbounded (in k), we should bother: does the process
explode? According to the general theory of such processes, explosion depends on solutions
of two difference equations on (cg)k, cx € R, ¢y = ¢x; namely, CA; = 0 and CA5 = 1. If
both solutions are bounded (in k), the process explodes, otherwise it does not. However, in
our case it is easier to use eigenfunctions, C A5 = A\C.

The difference operator (6el) is a discrete counterpart of the differential operator

%) Ck+1)k = diag((k2 )Ck 1-2FCk+1 +kck+120k l)kS

oA d _1d ,d

1
53: dz? xdm 2dx dz
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corresponding to the so-called Euler differential equation. Its eigenfunctions are just powers,?

1d ,d , 1
e Sl I 1) 2P
2dx$ dxx 2p(p+ e
and we may hope for similar eigenfunctions of the difference operator.
We try first p = 1, ¢ = |k|, C = diag(|k|)x; for k > 0 (6el) gives (CA3), = 3(k* + 1) -
0+k-1 = k. However, (CA3)o = 5(0+ 1) -2+ 0 = 7. We did not find an eigenfunction, but
we get M and A such that M A3 < AM; namely,

M1 :dlag(|k|+i)k, MlA; S Ml;

since My A; = diag(|k| V ;). For the birth and death process it means non-explosion and
moreover, a finite first moment, bounded by O(e’) (assuming of course that it holds for the
initial state).

For p = 2 the situation is even simpler, — we get an eigenfunction:

1
— diag (k2 12); Mo A = 3M, .

The birth and death process has a finite second moment, bounded by O(e*).
Higher eigenfunctions may be found by using

Gy =diag (k= 21) (k=22 +1) . (k+25Y))

1 1
CpAy = 5p(p+1)Gp + gps(p —1)Cpes

for p=2,4,6,... The p-th moment of the birth and death process is finite and bounded by
O (exp(3p(p + 1)t)). Especially,
13

. 27 .
M4 = dlag (k‘4 ﬁkQ + %> M4A2 = 10M4 .

6f Convergence of finite-dimensional approximations

Properties of the birth and death process give us a hope that the desired Brownian rota-
tion (Y;); can be constructed. To this end, however, we need estimations of Yt(n). The
cut-off (6d1) being rotation-invariant (since subspaces P,H are), we may hope that the
quadratic-evolution generator Agn), corresponding to (Y;(n))t, also preserves the commuta-
tive subalgebra. Here is a finite-dimensional counterpart of (6el): if C' = diag(cg)k=—n,..n

then
CA(")* = diag(bk)k=—n,...n ,
be = 3 (k- 3)(c 1—Ck) 3(k+3) (k1 — ) for [k <n,
bw = 20 2 min e ),

n=%( —3) (a1 —ca)

(6£1)

“In general p € C, but we need p € R only.
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For |k| < n the calculation (and the result) is the same as before (for (6el)), but this time it
is rigorous. The case kK = —n is similar to the case k = n. The latter is obtained as follows.
First,

"2 4+ (gén))Z = diag(ak)k=—n,..n ;

—
Q
=~
=
N

(6£2) ar=3k—3)7+3k+1)?>=k+1 forlkl<n,
a_p = Qp = %(n — %)2
Indeed, (fwl io{)a = 3i(n — D(fiot)u 1 = Filn = $)(Filn — 3 fu s + 3i(n — 1) 1)
and (wa wg >)n = L= D(fiod )1 = 0= HE0 = Y fas — Sn = 1) f,), thus
(fwl Z‘71 e f’1,02 i én) n = —%(n - %)2fn
— 1\2 ¢ .
- 5) fna

Further, (fA™), —1(n—
(FOAP ©1+1@ AM)), = (F2A7 0 O)), = ~L(n — Lee, fo
fiof" Cio")a = giln = 3)(£i01" Cnor = il = )ena (fio} ) =

—~

- %Z(n B %)cnfléi(n - %)fnﬁQ + 5i(n — %)Cnflél(n _ %)fm
similarly, (fio$” Cioy”)n = L(n — Denid(n = 2) faz — 2(n = Deassl(n — 1) fu;
thus, (fio"Cio™ + fiol"Cio™), = =L(n = Yea 1(n = 1) fu; (FOD)y = S(n =520 1 fu:

(6f1) follows.
Comparing (6f1) with (6el) we see that (CP,) A, (mx < < (CA3)P, for C = diag(ck)g, cx € R,
c_ = ¢k, provided that ¢, < ¢,11. The latter holds for My, My and My; thus,

MPAP < M, M AP <aMf | M AP < oM,

where My" = M, P,.
Now we are in position to return to (6d7). Another calculation similar to (6f2) gives (for
m < n)
(o)~ o)+ (" — )" = ding(ak e,
ap=1k-12+1k+1?=kK+1 form<|k|<n,
A_pm = Qm = %(m+ %)2’
_ 1y

We see that

(0™ — ™2 4 (o5™ — 652 < diag ((K? + 1)L (K]) =
= (0} 4+ 03)(Pn = Pn1) = (Py = P1) (0} 4 03) -
Also,
(01", o) + 03, 03V = 0,
since both o\™ o™ +6{™ (™ and o{o{™ 4+ 6{M5{™ appear to be equal to (0§m))2+ (aém))z.

For (6d7), it is sufficient to ensure

1 0 (0 4+ 03)(Pn — Prn1)
- <M.
2 <(‘7% + 0%)(Pn - mel) 0 o
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Taking into account that (9§) < (§9) (these are 2 x 2 matrices), we get

((o%+a§>(?3n—Pm1) AR 1)>§
S i I S

We see that (6d7) holds for M = 3M{™ @3M™, since k2 + 1 <3(k*+3). Also, MAT <
3M since MM AI™* < 3M{™ and M{™ A" < 3M{™. So, for every f € P,H, using Lemma,
6d6,

E|fY,"™ — Y, =((f ® [)Bexp(tAS™™", f & f) <

3t _q

<({(fef)B,fof)+ <(feaf)M,f@f>=

e3t — 3t
; (<fM2"’,f>+3< M, f)) = S

(&

=|f -2+ 6(f M, f).

So what?! It does not tend to 0 for m — oo (and n — oo0). How to use the fact that m is
large? The projection P, — P,,_; should be small in some sence, much smaller than P,. In
which sense?

We should use My, not M,. We have

I
(01 +02)(P P 1) < ﬁMi )Q

ideod, 17+ | = (K44 LA < (K4 + i +
M = %(Min) @ Min)) and get

+ 25)/m? for |k| € [m,n]. Thus, we use

e —11

o XM )

E|fY, ™ — ry " <

for all f € P,H, whenever m < n. If m — oo (and n — oo) while f and ¢ are fixed, the
right-hand side tends to 0, and we get a Cauchy sequence ( f Yt("))g":1 in Ly(Q2, H). We define
fY, by
1Yy = lim v,
t—00

for f € (U2 ,P,H) C H = Ly(T,R). Choosing a subsequence that converges almost ev-
erywhere (on €2, for a given t) we get (for almost every w) a linear isometric map Y;(w) :
(U2 ,P,H) — H. We extend it by continuity to an isometric linear map Y;(w) : H — H.
Note that
E|fY; = fY"F —0
n—oo

for all f € H (not just a dense subspace).
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6g The infinite-dimensional process

Many questions about (Y;); have to wait more. Is Y;(w) an invertible operator? Is fY;(w)
continuous in ¢ ? Does Y;(w) correspond to a diffecomorphism T — T? Etc, etc. But some
properties are easy to prove now.

Let G be the set of all isometric linear operators U : H — H (not just invertible);
H = Ly(T,R), as before. Clearly, G is a semigroup. We equip it with the o-field generated
by the functions U +— (fU, g) for f,g € H. Now G is a measurable semigroup, and

Y, € Ly(,G) fort e [0,00).

In the finite dimensional group SO(P, H) we have not only the Brownian motion (Y;™), but
also the abstract stochastic flow (Y;(,?))sgt, and we may introduce Y;, by

E|fYer - fY P ——0 forall f € H;

convergence follows from 6f and stationarity (indeed, E|fY;; — fl/;(;,'f)|2 depends on t — s
only).

6g1 Exercise. (Y;;)s<: is a G-valued abstract stochastic flow, and ((Bi(s,t), Ba(s,1)), Ys1)s<t
is a morphism.

Prove it.

Hint: for each n, ((Bi(s,t), Ba(s,t)), Ys(’?))sgt is a morphism.

The group T acts on H by rotations U,, z € T;
(fU,)(z1) = f(zz1) for z; € T.
The flow (Y;:)s<: is homogeneous not only in time but also in space, in the following sense.

6g2 Exercise. For every z € T, random variables U,Y, U ! (for s < t) are an abstract
stochastic flow, distributed identically to (Y;;)s<;-

Prove it.

Hint: consider first a finite dimension; recall 4d (namely, Y, there).



