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5 Stochastic flows

5a Flows of maps: definition and simple examples

5al Definition. A representation of a measurable semigroup! G on a measurable space Z
is a measurable map Z X G 3 (z,9) — zg € Z satisfying

2(9192) = (291)g2 forall z € Z and ¢1,9, € G .

Given an abstract stochastic flow? (Xs,)s<t in a measurable semigroup G and a repre-
sentation of G on Z, we get a stochastic flow (of maps), — a family of Z-valued random
variables 2X,; for all s <¢ and z € Z. Note that

ZX’I‘,t = (ZXr’s)Xg,t;

X, s and X, being independent. Recall also that the distribution of X;; depends on ¢ — s
only. The Z-valued process (2X;); is called the one-point motion (of the flow) starting at z.
The Z"-valued process (21 Xo¢, - - -, 2, X0,t)¢ is called the n-point motion (of the flow) starting
at (z1,...,2, € Z". Thus, the n-point motion consists of n (dependent!) one-point motions.

5a2 Example. Using the standard Brownian motion (B;); in R and the representation
(z,9) — z+ g of R on R we get a flow of shifts R — R,

(2,s,t) = 2+ B, — B;.

A one-point motion t — z + B; is the Brownian motion starting at z. Any two one-point
motions (starting at different points) keep a constant distance.

5a3 Example. Every Brownian motion (Y;); in SO(n) leads (via the natural representation
of SO(n) on R") to a flow of rotations R* — R,

(2,8,t) > 2V, = 2V, 1Y,
Having ¥; = Texp( fot dX,) we may write informally
(z,t,t + dt) — zexp(idXy) = z + izdX — %z(dX)2 :
Especially, the case of 3c3 gives
(z,t,t + dt) — z +izo1 dBy(t) + iz09 dBs(t) + izo3 dBs(t) — z dt .

A one-point motion is a Brownian motion on a sphere. Any two one-point motions keep a
constant distance.

From Brownian motions in groups we turn now to abstract stochastic flows in semigroups.
It is straightforward to generalize Definition 3a3 (morphisms) to abstract stochastic flows.

1Recall 1a5.
2Recall 1b6.
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5a4 Example. Consider the measurable semigroup G of maps [0, 00) — [0, 00) of the form

fa,b

fap(x) = a + max(z,b), a+b

where b > 0, a + b > 0. It is indeed a semigroup:

a=a;+ay,

fal,b1fa2,bz = fa,,ba b _ max(bl, b2 _ al) )
Alternatively one may define Gy as the set {(a,b) : a,b € R, b > 0, a+ b > 0} equipped
with the composition law written above. Note that G5 is not commutative. Note also a
homomorphism Gy =+ R, fqp — a.

Here is a morphism of the standard Brownian motion (B;); in R to an abstract stochastic
flow in G;

a(r, t) = Brat 5 b(’f‘, t) =~ 812[1“1%] BT,s ; l (r,t)+b(r,t)
a(r,t) +b(r,t) = m[ax] By, . b(r,t) I 77777777777777777
se(r,t : !

r s t

In fact, the corresponding convolution semigroup (,u,EQ))t on G5 can be calculated explicitly:

P (dadb)  2(a+ 2b) (a + 2b)?

dadb 2t < 2
Using the natural representation of Gy on [0, c0) we get a stochastic flow (of maps) on [0, 00).
A one-point motion ¢ — a(0,¢) +max(b(0,t),z) = B, + max(z, max)(—B)) is the so-called
reflecting Brownian motion. In fact, the one-point motion ¢ — a(0,%)+b(0,%) = max,ecjo,q Bs,
starting at 0 is distributed like (| Bg;|);-> Two one-point motions keep a constant distance un-
til one of them reaches the origin. Generally, the distance decreases and ultimately vanishes
forever, — the two particles coalesce.

) forb>0,a+b>0.

5a5 Exercise. Find the support of the single-time distribution of a two-point motion. That
is, the support of (21X, 22X0.)-

5a6 Example. Consider the measurable semigroup G3 of maps [0, c0) — [0, 00) of the form

f O < < b’ a C
fa,b,c(ﬂf) = {C E=T= atb|oeeee %b,

z+a forx>0b c—e

where b > 0 and 0 < c < a+ b. It is indeed a semigroup:

fal,bl,cl faz,b2,62 = fa,b,c ) c=

b= maX(bl, b2 — 0,1) y

a=a +as, as + ¢ if e; > b,
Co otherwise

3Moreover, the pair (a(O,t) + 6(0,1), b(O,t))t is distributed like the pair of |B;| and the so-called local
time of B at 0. Note that b(0, -) increases (continuously) only when a(0,-) + b(0,-) = 0 (thus, on a closed set
of Lebesgue measure zero).
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Clearly, Gy C G, and the abstract stochastic flow in Gy (introduced by b5a4) is also an

abstract stochastic flow in G3. However, its convolution semigroup (,u@)t is only a special

case (A = 0) of a family of convolution semigroups (1"™); on Gg; the parameter A runs

over [0,00). Namely,

Mf’”*) is the joint distribution of a, b and ¢ = max(0,a+ b — Ap),

(5a7) where (a, b) ~ uf)
and 1 ~ Exp(1) is independent of (a, b) .

It is indeed a convolution semigroup, due to a property of the composition in G5: for every
ay, bla az, b?a

if ¢, ~max(0,a; + by — Anp) and ¢y ~ max(0,as + by — An)
then ¢ ~ max(0,a + b — An) .

(5a8) l’/‘ . W .

0 azfby 0 by artb
0 a2+ba a+b

Note that the measure MS”” has an absolutely continuous part (its three-dimensional density

can be written explicitly, using the two-dimensional density of uﬁz) and the one-dimensional
exponential density of ) and a singular part concentrated on the plane ¢ = 0; the singular
part has a two-dimensional density (it can also be written explicitly).

Having no appropriate morphism,* we use Theorem 1c¢3 for constructing an abstract
stochastic flow corresponding to (,ugs”\))t. We identify G5 with the subset {(a,b,c) : b >
0,0<c<a+b}of R® and equip G3 with the topology induced from R3. Say,

P0(fas prsers fazpaes) = max(|ar — asl, b1 — bo|, [c1 — c2l) -

It does not turn G3 into a topological semigroup! The composition is discontinuous (when
¢; = by). However,

po(9192,91) < po(g2,e) and  po(g192,92) < polgr,e)

(check it). Also, the convolution semigroup is continuous in probability® (check it). And of
(3,4) + . .

course, each measure p,~" is concentrated on a countable union of compact sets. Existence
of the abstract stochastic flow is thus ensured. Sample continuity follows from 1eb.

Note the homomorphism G3 — G2, fape — fap- It leads to a morphism of the flow
constructed here (irrespective of \) to the flow of 5a4.

The one-point motion (corresponding to the constructed flow) is the so-called sticky
Brownian motion. It spends a positive time at the origin, but never sits there during a time
interval. Two one-point motions keep a constant distance until one of them reaches the

origin. Generally, the distance is non-monotone. But ultimately two particles coalesce.

4We will prove (in 5¢) that it does not exist!
5Recall 1c2.
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5a9 Exercise. Find the support of the single-time distribution of a two-point motion (once
again). That is, the support of (21X, 22 Xo,)-

5b Flows of kernels: definition and simple examples®

Given a measurable space Z, we denote by P(Z) the set of all probability measures on Z. We
turn P(Z) into a new measurable space, equipping it with the o-field generated by functions
P(Z) > > u(A) € R where A runs over all measurable subsets of Z.7

We define a kernel on Z as a measurable map K : Z — P(Z). Some convenient notation:

zK rather than K(z),
zKA rather than K(2)(A),
pf rather than [ fdu,
zKf rather than [fdK(z),
Kf rather than zw— [fdK(2),
pkK  rather than A — [K(z)(A)du(z);

here K is a kernel, z € Z, A C Z a measurable set, f : Z — R a bounded measurable
function, and p € P(Z). Given two kernels K;, Ky on Z, their composition, the kernel
K = KK, on Z is defined by

2K = (zK,)K, forze Z.

Note that z(K Ky) f = (2K, )(Kaf).
A kernel on Z may be thought of as a map P(Z) — P(Z) (a very special map, of course),
and the composition of these maps conforms to the composition of kernels.

5b1l Definition. A kernel representation of a measurable semigroup G' on a measurable
space Z is a family of kernels (Kj)4eq on Z such that

(a) Ky g, = K4 Ky, for all g1, g2 € G

(b) the function Z x G 3 (2,9) — 2K, € P(Z) is measurable.

Note that (b) means just measurability of (z,g) — 2K, A for every A. We may identify
K, with g writing zg rather than zK; then z(g192) = (241)92-

A kernel representation of G on Z may be thought of as a representation of G on P(Z)
(a very special representation, of course).

5b2 Example. A kernel representation of the measurable semigroup G (introduced by 5a4)
on the measurable space R:

d(z — a) for x € (—o0, —b),
Tfop =1 26(—a—b)+L6(a+b) forz e [-b,b],
d(x+a) for x € (b, 00);

here §(z) is the atom at z (of mass 1).

6See also: Y. Le Jan, O. Raimond. Flows, coalescence and noise.
7Or equivalently, over an algebra that generates the o-field.



Tel Aviv University, 2003 Brownian motions and stochastic flows 52

Given a kernel representation of G on Z and an abstract stochastic flow (X,;)s<; in G,
we get a stochastic flow (of maps) p +— X, on P(Z) of a special kind; it corresponds to
a stochastic flow of kernels, — a family of P(Z)-valued random variables zX,, for all s <t
and z € Z. Still,

ZXr,t = (ZXT,S)Xs,t;

but now these are measures, not points.
5b3 Example. Combining the abstract stochastic flow in G5 (and the morphism), intro-

duced by 5a4, with the kernel representation introduced by 5b2 we get for £ > 0 such a
sample path in P(R):

Sz +a) for b < z,
xfa b=
’ 20(—a—b)+36(a+b) forz <b,
_ ) o(xz+ Boy) for —min,ep g Bos < 7,
50(—max,epoy Bsy) + 30(maxyepoy Bsy) for 2 < —mingepoy By o)

The atom at x moves according to  + By, until it reaches the origin. Then it splits in two
symmetric atoms. Sometimes the two halves meet at the origin and separate again.

The map R 3 z — |z| € [0, 00) transforms this stochastic flow of kernels to the stochastic
flow of maps on [0, c0) introduced by 5a4. Here we identify a stochastic flow of maps with
the corresponding stochastic flow of degenerate (deterministic) kernels.

wwaa,b w'_)fa,b(x)

the kernel the map

A particle moves according to the Brownian motion until reaching the origin. Here it
decides: to cross the origin, or reflect. (However, it visits the origin a continuum of times.)
Still, its law is Brownian.®

Particles are conditionally independent, given (B;);. That is, their decisions at the origin
(crossing or reflecting) are independent. Do not think that, introducing additional random-
ness, we could get a flow of maps that describes the motion of the continuum of particles.
This is impossible. Indeed, the additional randomness should contain a continuum of in-
dependent random variables. And even if two particles start together, they can (and will)
separate. Each point may contain a lot of particles. ..

8In fact, if the particle starts at the origin then its motion (ay); is distributed like (By);, and B; equals
to || minus the local time of a at 0.
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More formally, the one-point motion (c);, conditioned on (Xj;)s<;, at a time ¢ is dis-
tributed agXy4; in other words,

E( f(o) ‘X) = apXorf;

accordingly, its unconditional distribution is
(5b4) E f(c1) = E(aoXo,f) = E / F(2) (@0 Xor)(dz)
z

However, we did not really define the process (;);.° Rather, we define its single-time distri-
butions by (5b4), keeping E( f(y) | X ) an informal idea.
Similarly, we define the joint distributions (at time t) of n particles,

Ef(ai(t),...,an(t)) =E / . f(z1, .oy 2n) (01(0)Xo,)(d21) - . . (0 (0) X0 1) (d2n) ,

treating the particles as being conditionally independent given X. In other words, every
kernel K on Z leads to a kernel K®" on Z", namely,

K®(21,...,20) = K(21) X -+ X K(2,),
and so, the joint distribution (at time t) of n particles a4 (%), ..., a,(t) is
EKS?, (1(0),. .., a,(0)) .
Moreover, every kernel K on Z leads to a kernel K®® on Z® =7 x Z X ..., namely
K®®(z1,20...) = K(21) x K(22) X ...
and we may introduce another kernel P, ; on Z* by
Pyi(z1,22,...) = ]EK?;;’;’ )
5b5 Exercise. The family of kernels (Ps;): is a one-parameter semigroup. That is,
Poo,sPocjt = Poo,stt -
Prove it.

5b6 Exercise. Each kernel P, satisfies

/f(ykpyk‘z:"')Poo,t(xlax%"'; dyladyQa"') =

=/f(y1,yz,---)Poo,t(kal,fckz,---; dy, dy, . ..)
for all ky,kq,---€{1,2,3,...}.
Prove it.

In fact, under some conditions kernels on Z are in a natural one-to-one correspondence
with probability distributions on the space of kernels on Z.

Tt can be done, see Le Jan and Raimond, the section ‘Sampling the flow’.
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5c¢ Failure of the classical approach

By the classical approach I mean investigation of a given (abstract) stochastic flow by means
of a morphism of a standard Brownian motion in R™ to the given flow. According to Sect. 4,
the classical approach is successful for all Brownian motions in SO(n), thus, for all flows
considered in 5a3. Now we will see that it fails for the flow introduced in 5a6 (sticky at the
origin).

5c1 Theorem. No morphism exists from the standard Brownian motion in R™ (for whatever
m) to the abstract stochastic flow introduced in 5a6 (for A # 0).

The proof'® is based on the idea of influence of a variable, useful both in computer
science and probability theory. Given independent random variables Uy,...,U, and V =
f(U,...,Uy,), the influence of U, (on V) is, by definition,

E/Var (V| Us,...,Usr)

of course, the conditional variance Var (V ‘ ) =E(V? | L) = (]E(V| ...))% The
influence of Uy is defined similarly. (Think, what does it mean when Uy, ..., U,, V take on
two values only.) The sum of squared influences,

n

H(f)=Z(]E\/Var(v\Ul,...,Uk_l,UkH,...,Un) )2,

k=1

was used by Benjamini, Kalai and Schramm.!! Note that H(f) = Var(V) for the linear case,
V=cU +---+¢c,V,, but not in general.
Given a function X € Ly(9, ]:(fl, P) of a Brownian path B, we may define

H,(X) = i (]E\/Var(X‘]:(f% Vfg,l) )2’
k=1

where FJ is the o-field generated by B, for all (u,v) C (s,1).
5¢2 Lemma. If H,(X) — 0 for n — oo, then X = const.

5c3 Exercise. If Var(X) # 0 then there exist an interval (s,t) C (0,1) and a random
variable Y € Lo (Q, ¢, V FJ, P) such that E(XB,,;Y) # 0.

Prove it.

Hint. First, replace Loo(Q, Fg), V FZ, P) with Ly(Q, F, V F, P). Second, X =
Sou S [ fa(ti,... ) dBy, ... dBy,; consider the least n such that || f,|| # 0.

10Geveral proofs are known.

UThey proved, roughly speaking, that a small H(f) implies noise sensitivity of f. See Theorem 1.3
in: I. Benjamini, G. Kalai, O. Schramm (1999) Noise sensitivity of Boolean functions and applications to
percolation. Inst. Hautes Etudes Sci. Publ. Math. no. 90, 5-43.
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5c4 Exercise. Prove Lemma 5c2.
Hint. Use 5¢3. Prove that

E(XB,,Y)| < Vv —ullY|ey/Var (X | FE, v 7P,

for every subinterval (u,v) C (s,t).

If X € Ly(Q,FJ,, P) and Hy(X) — 0 then X € Ly(Q, 2, P). Similarly, for two
independent Brownian motions By, By, if X € Ly(, f(fll’Bz, P) and

n

> (E\/Var(x|f(f£2 VFZ L VF) )2 —— 0,

k1 n—»00
k=1 "

then X € Ly(, 72, P).

5c5 Lemma. Let (X,;);<; be the abstract stochastic flow introduced in 5a6 (for A # 0),
Xt = fasbisiteisit)- - Let ¢ : G3 — R be a bounded Borel function. Then

n

3 (E\/Var (¢(Xo1) \f-gf% Vi V]-"?,l) )2 0.
k=1

Proof. (Sketch.) Replacing c(%, %) with 0 we do not change X ; unless b3 < as + by. The
latter event is of a small probability, namely, O(1/4/n).!* If the event does not happen, then
the conditional variance vanishes. And if the event happens, then the conditional variance
is small, namely, O(1/+/n), since such is the conditional probability of ¢, # 0.1* We get

E\/Var(... |...) :O(ﬁ- ﬁ) =O0(n**) =o(n 2.

The theorem follows.

12Recall that a is a Brownian motion.
13Provided that k/n is bounded away from 0 and 1.
14Unless ay + by is much greater than 1//n.



