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3 Brownian rotations via stochastic integrals

3a Dimension one: the circle

3al Definition. A Brownian motion in a topological group! G is a sample continuous?
process (Xt)ieo,00) i G with stationary independent increments® X, = X !(s)X(t).

3a2 Example. Let (B;); be the standard Brownian motion in R, then (oB; + vt); is a
Brownian motion in (the additive group of) R, for any o € [0,0), v € R*

3a3 Definition. A morphism of a Brownian motion (X;); in G; into a Brownian motion
(Y;); in G; is a Brownian motion (Z;); in Gy x Ga, Z; = (X},Y}/), such that®

(X}): is distributed like (X;)y,

(Y}): is distributed like (Y3)y,

the o-field generated by (Y); is included into the o-field generated by (X});.

3a4 Example. Let (B;); be the standard Brownian motion in R, and Y; = e*#t. Then (V;);
is a Brownian motion in T, and (B, Y}); is a morphism of (B;); into (¥;);- Another morphism
of (Bt)t into (}/;)t is (Bt, e_iBt)t.

We may guess that (B, e“B+t), is the general form of a morphism of (B;); into a
Brownian motion in T. How could we prove the guess?

Let (B, Y;): be a morphism of (B;); into a Brownian motion in T. Then

Y, = Z/ /fnttl,...,tn)dBtl...dBtn

P=00<t) <oty <00

for some f, € Ly(A,,C). Can we restrict ourselves to 0 < t; < --- < t, < t? In other

words, is Y; measurable w.r.t. g’ ? Clearly, Y; is independent of ffoo, so what?

3a5 Exercise. Let X,Y be two independent random variables, and Z = f(X,Y’) be inde-
pendent of Y. Does it follow that Z = g(X)?
Hint. Find an elementary counterexample (say, X = +1, Y = +1).

3a6 Exercise. (a) Let X,Y be two independent random variables, and the pair (X, f(X,Y))
be independent of Y. Then f(X,Y) = g(X) for some g.
(b) Let sub-o-fields £, F,G (on a given probability space) satisfy®
GCcéVEF,
£V G and F are independent.

LA topological group G is both a group and a topological space such that the maps G 3z — 27! € G
and G X G 5 (z,y) — xy € G are continuous. (We need metrizable G only.)

2Recall le.

3Thus, X, sXs: = X, In a commutative group the operation is often written additively, in which case
X, = Xy — X,.

“In fact, it is the general form of a Brownian motion in (the additive group of) R

5G1 x G2 = {(z,y) : * € G1,y € G2} is a topological group with the product topology and the operation
(21, 22) (Y1, Y2) = (T1Y1, T2Yy2).

6£ v F denotes the sub-o-field generated by £ and F.
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Then G C €.

Prove it.

Hint (to (a)): denote Z = f(X, Y), check that P(Z € C|X € AY € B) =P(Z ¢
C ‘ X € A); conclude that E ( Z | X,Y) (z | X ). And what about integrability of Z ?

Applying 3a6(b) to & = F,, F = FL,, G = Fy, we get F, C Fg},. Therefore
V=Y // Fai(ti,- . t)dBy, ... dBy,
=00ty <--<tn<t
for some f,,; € Ly(A, N (0,)", C). Moreover,

oo

Y, =) // faies(ty —5,... ,ta — 5)dBy, ...dBy,

n=0g by <o<tn <t

since the joint distribution of the increments of Y and B on (s, t) is the same as on (0, — s).
The equality V; = Y;(Y;7'Y;) becomes

(3&7 / / fnt tl,...,tn) dBtl .. dBtn =

=00}, <.ty <t

:( / / fnstl""’tn)dBtl...dBtn>.

=00ty <oty <s
( / /fnts - ?"':tn_s)dBtl---dBtn>
s<t1< <tp <t

whenever 0 < s <t < oo. Can we solve this equation, thus finding f,;?
First of all we want to eliminate dB and rewrite the equation in terms of f,, only.

3a8 Exercise. Let 0 < s < 00,0 < k <n, f € Ly (Ak N (0, s)k), g€ Ly (An_k N (s, oo)”_k),
then

/ /ftl,..., 9(trs1s - - ) 10 (tk) 1 (s.00) (trs1) By - .. By, =

0<ty <<ty <00
0<t <<t <s
. < // g(tlu"'7tn—k)dBt1"'dBt"k) )

§<t1< <ty <00

Prove it.

Hint. Both sides are bilinear in f, g; it is enough to prove the equality for f(¢,...,t) =
l(al,bl)(tl) ce l(ak,bk)(tk): g(tl, ce atnfk) = 1(ak+1;bk+1)(t1) e 1(an,bn) (tnfk) whenever 0 < a) <
b <---<a, <b, <oo. Now use 2e6.
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3a9 Exercise. The following equality is equivalent to (3a7):
fn,t(tla ey tn) - Z fk,s(tla ey tk)fnfk,tfs(tk—kl — 5.4, tn - 8)1(0,5) (tk)l(s,oo) (tk:—|—1)
k=0

for almost all (t1,...,%,) € A,.
Prove it.
Hint: use 3a8.

All that may be written in a more elegant way, by interpreting A = AU A; UAs U...
as the set of all finite subsets of (0, c0), and the sequence of functions fy s, fis,... as a single

function
fs : AO,S — C,

where Ay C A is the set of all finite subsets of (0,s). Note that A is equipped with the
Lebesgue measure ‘mes’ (n-dimensional on A, ), mesAq s = e®, and
1 fsllza(a00) = 1Ysllzae) -
We get
(3a10) fo(M) = f;(MN(0,s)) fi_s(M N (s,00) — s)

for almost all M € A; of course, M N (s,00) —s means {a—s:a € MN(s,00)}. No need to
bother about the case M > s, since such sets M are a negligible subset of A. On the other
hand, the point ) € Ag C A is an atom (non-negligible point) of A.

The atom is a good starting point for solving (3a10). We have

(3&11) ft(w) = fs((b)ft—s(w) )
which means that
(3a12) fi(0) = e

for some a € C, unless the multiplicative function ¢ — f;()) is too bad (discontinuous
everywhere, and in fact, non-measurable). However, f;(#) = EY;, which is continuous in ¢
(by the bounded convergence theorem).

Having (3al2) we turn to one-point sets M = {u} in (3a10):

fi{u}) = fi({u}) fis(@)  for almost all u € (0, s);

(t—s)

=expa(t—s

fi{u}) = f:(0) fios({u —s}) for almost all u € (s,t).
—~—

=exp as

Roughly speaking, the expression e % f;({u}) depends only on u, and at the same time, it
depends only on t — u. It must be a constant! However, what to do with ‘almost all’?

For any n we consider the average (like conditional expectation) g, of the function u —
fi({u}) w.r.t. the partition (0,1) = (0,2"")U (27™,2-27")U---U (1 —27"1),

(k+1)2—"
gn(u) = 2"/]c fi{u})du for u € (kQ’", (k + 1)2’”) )

2—"n
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3al13 Exercise. g, — fi1({-}) (for n — oc) in Ly(0,1).7

Prove it.

Hint. The increasing sequence of partitions leads to an increasing sequence of subspaces
in Ly(0,1). Their union is dense in Ly(0,1) (indeed, it approaches any continuous function).
And g, is the orthogonal projection of fi({-}) onto the n-th subspace.

3al4 Exercise. g,(u) = ¢, exp(a(l —27")) for all u; here ¢, = 2" fOQ_n fi{u}) du.
Prove it.
Hint: use (3a10) and (3al2).

3al5 Exercise. ¢, — o (for n — oo) for some o € C.
Prove it.
Hint: ¢, = cpyq exp(a2” (D).

3a16 Exercise. fi({u}) = oe® for almost all u € (0,1); here ¢ is as in 3al5.
Prove it.
Hint: use 3al3, 3al4, 3alb.

Similarly,
(3al7) fi({u}) = oe*  for almost all u € (0, 1).

The whole Ag; may be partitioned (for a given n) according to the numbers® |M N
0,27")|,...,|IMN(1—-2",2"")|. Let g, be the average of f; w.r.t. that partition.

3al8 Exercise. gn — f1 in LQ(AOJ).
Prove it.
Hint: similar to 3al3.

3al19 Exercise. g,(M) = Ml exp(a(l — |[M[27™)) for all n large enough (depending on
M € Ay,); here ¢, is as in 3al4.

Prove it.

Hint: |M N (k27", (k +1)27")| <1 for all £, provided that n is large enough.

3a20 Exercise. fi(M) = o/Mle® for almost all M € A ;; here o is as in 3alb5.
Prove it.

Similarly,
(3a21) fi(M) = e®o™M| for almost all M € Aoy
Finally, fo(t1,. .., tn) = e*o™;
. > /2 1

3a22) Y, =e*S 6" [ ... | dB, ...dB, =e* "—Hn(—B ):
(a)teza//tl tnegan! \/%O,t

1 1
= eat exp <—B0,t0'\/i — 50’2t> = eXp(O'BO’t + (a — %UZ)t) .

Vit

"In fact, they converge almost everywhere, but we do not need it.
8| M| stands for the number of points of M.

=0 o<ty <o<tn<t




Tel Aviv University, 2003 Brownian motions and stochastic flows 25

However, |Y;| =1 a.s., thus o and a — %02 must belong to iR,® and our guess is confirmed.

3a23 Theorem. Every morphism of the standard Brownian motion (B;); in R into a Brow-
nian motion in T is of the form (By, Y;); where

Y; = exp(ioB; + ivt)
and o,v € R

3a24 Exercise. Every morphism of (B;); into a Brownian motion in (R,+) (that is, the
additive group of R) is of the form (B;,Y;); where

Y;,:O'Bt—}‘vt

and o,v € R.

(a) Deduce it from Theorem 3a23.

(b) Prove it from scratch, assuming however that Y; € L,.

Hint. (a) Apply 3a23 to (B, e¥*); and note that a continuous function [0,00) — 27Z is
necessarily constant. Or alternatively, consider e?*¥t and e2¥t with \;/)\, irrational.
(b) The additive counterpart of (3a10) holds.

3a25 Exercise. Every morphism of (B;); into a Brownian motion in (C\ {0}, -) (that is,
the multiplicative group of non-zero complex numbers) is of the form (B, Y;); where

Y; = exp(0B; + vt)

and o,v € C.

Prove it.

Hint. First, apply 3a24 to (B, In|Y;|); and show that Y; € Ly. Second, use (3a22). Or
alternatively, apply 3a23 to (B, Y;/|Yi|):-

3a26 Exercise. Generalize 3a25 to (C,-), the multiplicative semigroup of C. To this end,
generalize also 3a3.
Hint. Y; # 0. Indeed, P(Y; =0) = e, but only ¢ = 0 conforms to lel(b).

3b Non-commuting matrices

We turn to the group SO(n) of rotations of R*. That is, SO(n) is the group of all n X n
matrices U such that'®

|WU| = || forallyp e R, and detU =1.

However, [YU|> = (U)(yU)* = »UU*1), where U* is the transpose. Therefore U € SO(n)
if and only if!!
UU*=1, and detU =1.

9f ¢ € iR but a — %02 ¢ iR then Y; leaves the circle tangentially. A wonder! It never happens in the
smooth analysis. In fact, d|Y;| contains not only dY; but also (dY;)?2.

10T write U treating ¢ as a row (rather than a column); thus, the product U;U, means that U; acts
before Us,.

" Conditions UU* =1, U*U = 1 and U* = U~! are equivalent.
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Note that SO(2) = T = {( %2, 512) : o € R} is commutative, but SO(3) is not. Each
element of SO(3) is the rotation around some line by some angle. Note especially rotations

around the axes:

cosa sina 0 cosa 0 sina 1 0 0
(3b1) —sina cosa 0], 0 1 0 , |0 cosa sina | €SO(3).
0 0 1 —sina 0 cosa 0 —sina cosa

The group SO(n) lies in the algebra M, (R) of all real n x n matrices.
The general form of a continuous one-parameter semigroup in M, (R),

(exp (ta') ) t€[0,00) »

[ee]
Lam.

where a € M, (R), is a well-known fact of linear algebra. Of course, exp(a) = Y "

The operator
o1
a= tl—lg()r}l— ;(exp(ta) -1)

is called the generator of the semigroup. The following fact is also well-known, but I want
to prove it, since the proof will help us later.

3b2 Lemma. The following two conditions for a € M, (R) are equivalent:
(a) exp(ta) € SO(n) for all t € [0, 00);
(b) a* = —a.

Proof. (a) = (b). We have (exp(ta)) (exp(ta))* =1 and exp(ta) = 1 +ta + o(t) for t — 0.
Thus (1+ta+o(t)) (1 +ta* 4+ o(t)) =1; ta+ta* = o(t); a+a* = o(1); a + a* = 0.

(b) = (a). First, it is sufficient to prove that exp(ta) is isometric; then det exp(ta) = +1,
and by continuity it must be equal to +1. Second, we introduce a function ¢ : M, (R) —
[0, o0,

p(U) = sup |In|pU]|
[|=1

and note that o(U1Uy) < o(Uy) + ¢(Us); therefore

p(exp(ta)) < ny(exp(;ta));
it remains to prove that ¢ (exp(ta)) = o(t) for ¢ — 0, which is straightforward:
[exp(ta)|* = [¢(1+ ta + o(t)) " = [¢ + tha + ot)|” =
=Y + t(va, ¥) + (), Ya) + o(t) = [Y" + t{(a +a”),¥) + ot) = [¥|* + o(t) .
U

Brownian motions in SO(n) are defined (recall 3al), as well as morphisms of the standard
Brownian motion (B;); in R into Brownian motions in SO(n) (recall 3a3). Similarly to 3a,
if we have functions

ft € Ly (AO,t: Mn(R))
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satisfying (3al10), then we get a morphism (B, Y}),,

(3b3) Y= ft(M)(Hst)dM:i // Ffas(s1, .., 52)dB,, ...dB,, |

Ao+ _
’ seM n=00< g << n <t

where f,:(s1,...,5,) = ft({sl, e, Sn}) Of course, a stochastic integral of a vector-function
(or matrix-function) is treated coordinate-wise. Generally we get (a morphism to) a Brown-
ian motion in (M, (R), -); under some additional conditions on (f;) we should get a Brownian
motion in SO(n).

Similarly to 3a we find the general form of (f;) satisfying (3al0) and such that f;(0) is
continuous in ¢. Namely,

(3b4) fi({s1,--.,sn}) = exp(sia)oexp((s2 — s1)a)o . ..exp((t — su)a);

here a,0 € M, (R). Unlike 3a, we cannot join the exponentials into exp(ta) since they need
not commute with o.

3b5 Exercise. Prove (3b4).
Hint. Similar to 3a. Note that ||e® — 1|| < elloll — 1 (since [|a®|| < ||a||?).

We assume that Y; € SO(n) for all ¢ € [0,00) and try to deduce (necessary) conditions
on a,o in the spirit of “(a)== (b)” in the proof of 3b2.

3b6 Exercise. Prove that
¢
Y, = exp(ta) +/ exp(sa)oexp((t — s)a) dB; + O(t) fort—0,
0

that is, the norm of the remainder term in L(£2) does not exceed const - t.
Hint. Recall the last formula of Sect. 2: || X||* = Y ||fall*>. Generalize it to vector-
functions.

We have for small ¢

A%m@@mm&—@@ﬂkiKU+O®Mﬂ+O@M&=0/w&+0@ﬁﬁ

0

therefore

Yi=1+0Bo:+0(t);
1=Y,Yy = (1+0Bo; +0(Vt)) (1 +0"Boy +0(Vt)) =1+ (0 + 0*) By + o(V1)

(note however that the last occurrence of o(1/%) is interpreted in L; () rather than Ly(Q));
s0, (0 + 0*)By4/v/t = o(1), which means that

o = —0.
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However, the necessary condition is definitely not sufficient, since it does not include a. We
need the next term of the asymptotics:'2

Y, = exp(ta) + /Ot exp(sa)o exp((t — s)a) dB,+
* //0< <s<t exp(ra)o exp((s — r)a)o exp((t — s)a) dB,dB, + O(t*/?);

//o<r<s<t exp(ra)o exp((s — r)a)o expl((t - 5)a) dBrdB, =" // dB,dB,+0(t?);

0<r<s<t

- v

~
:%(B(%,t—t)

1
Y,=140By;+ta+ 502(3& — 1)+ 0(t3?);

VY =1+ (0+0") Boy+tla+a’)+ %(02 +(0")) (B — 1) + 00" B + O(t"7)
=0
t(a+a*) + 02(B§,t —t) — UZBg,t =o(t);
tla+a* — o?) = o(t);
a+a* =0,
We see that the following two conditions are equivalent:
e 0" = —c and a + a* = 0?;

o VY =1+ o(t) in L ().

3b7 Exercise. The following two conditions are equivalent:
(a) ¥; € SO(n) for all ¢ almost surely;
(b) 0* = —0 and a + a* = o>,
Prove it.
Hint. Use the argument above. (b) = (a): similarly to 3b2; consider E min(1, ¢(¥})).

In the case n = 1 we get the result of 3a again. Indeed, C may be treated as a subalgebra
of My(R), C 3 z +— (Bez, Imz) € My(R), and T becomes SO(1), T € €' — (%2 sina) ¢

—Imz Rez —sina cosa
SO(1). Treating o and a as complex numbers, we rewrite 3b7(b) as @ = —o and a +a = 02,
that is,
1
o €1R, Rea= 502.
Compare it with (3a22) and the phrase after it: “c and a— 0 must belong to iR”. Similarly
to 3a, we may replace o,a — %02 with 10, 4v, writing a morphism of the standard Brownian

motion (B;); in R into a Brownian motion in SO(n) as (By, V)4,

(3b8) Y, = Zz" / / exp(s1(iv — 30%))oexp((s2 — 51) (v — £07))o . ..
n=0 0<si < <sn<t

...exp((t — sp)(iv — $67)) dB;, ...dB,, ,

where o,v € M, (R) satisfy 0* = o, v* = v. That is the general form of such morphisms.

12Do not forget: in stochastic analysis a point can leave the circle (or another manifold) tangentially!
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3b9 Exercise.

1 1
Y; = lim (exp (z'aBO 1+ iv—) ...exp (iaBn;l .+ iv—))
‘n n n n

n—00

(convergence in Ly(€2)).
Prove it.
Hint: Y; = exp(io By, + ivt) + O(t*/?) for t — 0.

Here is a convenient notation for (3b8):

¢
Y, = Texp (/ (io dBs + iv ds)) ;
0

here “Texp” is called “chronological exponential”. The idea is that the integral is the sum
of infinitesimal terms, but they need not commute; we multiply their exponentials in the
chronological order.'?
We may also introduce a Brownian motion (X;); in (M,(R),+) (the additive group of
matrices),
Xy =0B; +vt,

and consider a morphism of (X}); into (Y});,

t
Y, = Texp (z/ dXS> .
0

3cl Exercise. (a) The general form of a morphism of the standard Brownian motion (B;);
in R into a Brownian motion in R" is (B, Y;); where

Y;ZO'Bt‘*'Ut

3¢ Finite dimension

and o,v € R".

(b) There is no morphism of the standard Brownian motion in R into the standard
Brownian motion in RZ.

Prove it.

Hint. (a): apply 3a24 to each coordinate of Y}; (b): follows from (a).

Striving to describe arbitrary Brownian motions in SO(n) we should turn from (B;); in
R to m independent copies of (B;);, that is, the standard m-dimensional Brownian motion
(Bi(t),...,Bm(t)):. Generalization of stochastic integrals is straightforward. The general
form of a random variable X € L, (]:(f 1B g

X=fo+ [ > el B0 + /[ > sl BB + - =

- ;//0 Z Frgor,din (815« Sn) dBy, (1) . . . dBy, (Sn) ;

<51<---<85p,<00 ki,...kn€{l,...,m}

3In some sense, exp(ioc dB +ivdt) = 1+ i(cdB +vdt) — (0 dB +vdt)’? = 1+i(cdB +vdt) — o> dt =
1+ iocdB + (iv — $0?)dt.
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X2 = Z//o ST k(15 80)Pdsy s
n=0

<51 <8p <00 kjl,...,knE{ly"'!m}

All formulas obtained before hold for each By, but also for B; cosa + Bysina for any a.
Especially, the formula [f,_ _. _ dB(r)dB(s) = 3(B(t) —t) gives us

//0< < <t(cosa ~dBi(r) +sina - dBy(r)) (cos a - dBi(s) +sina - dBy(s)) =
= %((cosa -Bi(t) +sina- By(1))? —t),

therefore
(3c2) //0< o (d31 (r)dBs(s) + ng(r)dBl(s)) = Bi(t)Bs(t) .

In the spirit of (2¢3) we may write'*
(dB1(t))(dBa(t)) = 0.
How to generalize (3a10)? We may equip points of M with indices,
Y, = / ( > k)] dBk(s)(s)>dM,
Aot N pe(t,...m}M seM
or alternatively, we may introduce m finite sets M, ..., M,, and write
Y= ft(Ml,...,Mm)(H 1T dBk(s)>dM1...de;
Aby k=1 se M

it is only a matter of convenience. In any case, the argument of f; may be split according to
0 < s <t, and (3a10) may be generalized. Similarly to (3a12),

fi(@,...,0) =exp(at) or f;(D, nothing) = exp(at),
further,
fi({s},0,...,0) = exp(as)oy exp(a(t — 5)), ..., fi(0,...,0,{s}) = exp(as)o, exp(a(t — 5)),

that is,
fi({s}, k) = exp(as)oy exp(a(t — s)),
and the counterpart of (3b4) is evident:

fi({s1,- .-, sn}, k) = exp(510)0k(s,) exXP((52 — 51)0)Tk(sy) - - - €XD((T — sp)a) .

14 (4B 024BaW)2 — G, thus dBy (t)dBa(t) = 0.
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Similarly to (3b),
Y,=1+ 01B1(t) —+ 4 amBm(t) + O(t) ;
1=Y,Y) =14 (01 +0})Bi(t) + -+ (am +0%)Bm(t) + o(V1) ;

*
01 = —01y..., = —0Oy, -

*
m
) is

o

The quadratic term (taking for simplicity m = 2

// exp(ra)(o1dBi(r)+02dBs(r)) exp((s—r)a)(01dB1(s)+02dBs(s)) exp((t—s)a) =
0<r<s<t

= //0< _ <t(1 +O1))(01dBy (1) + 09d By (7)) (1 + O(t)) (01d By (s) + 02dBs(s)) (1 + O(t)) =

= //0< ) <t(01dB1(7") + 03dBs(r))(01dBi (s) + 02dBs(s)) + O(?) =

= 2. %(Bf(t) —t)+ 0109 - Bi(t) By(t) + 02 - %(Bg(t) )+ 0

and we get

YV, =1+ i 0k By (t) + ta + % ia,%(B,’f(t) — 1)+ ) _oxoBi(t)Bi(t) + O(t*?);

k=1 k<l
. . NRE .
3, :H; ak—l-ok Bi( )+t(a+a)+§;(a,3+(a,§) )(Bi(t) — )+

—I—Z ooy + (oxoy)* )B;C )By(t) (ZUkBk )(iUkBk ) +O(t3/2)§

k<l k=

t(a-l—a*) +ZO’,%(B,3( ) —t +Z 0,0y +0l0k Bk, Bl t ngo-lBk: Bl ( )
k k<l

t(a+a*)—t20k=0t
k

at+a*=0l+---+02.

,_.

Similarly to (3b7) we conclude that ¥; € SO(n) if and only if of = —oy,...,0, = —on,
and a + a* = 07 + - - - + 02,. Replacing for convenience o4, ...,0, and a — 3(07 + -+ -+ 02,)
with ioq,...,i0m, and v we get 0f = 01,...,05 = Om, v* = v and similarly to (3b9),

Y, = exp(ioy By (t) + - - - 4+ i0m B (t) + ivt) + O(t%/?). Finally,

t t
Y; = Texp (/ (t01dBi(s) + - - - + i0md By, (s) + iv ds)) = Texp (z/ dXs) ,
0 0
Xy =01Bi(t) + -+ -+ 0mBn(t) + vt.

3c3 Example. In SO(3), let ioy,i09,i03 be the generators of the three rotation groups
(3b1),

1 0 1
0)]; 2o3=|[-1 0
0 0 O

0
0
—1

0
0
—1

101 = D iog =

o O O
o = O
o O O
o O O
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Then
1
aziv—5(0f+0§+0§),
0 0O 1 00 1 00
of=(0 10}, o5=]000], o2=(0 10
0 01 0 01 0 00
Taking v = 0 we get
-1 0 0
a=|(0 -1 0]=-1;
0 0 -1
here, a commutes with everyting, and we may combine exp(sia),...,exp((t — s,)a) into

exp(ta) (as simple as in 3a);
¢
Y; = Texp (z/ (01dBi(s) + 02dBs(s) + Ugng(S))) =
0
t
=et 4 e_ti/ (oldBl (s) 4+ 02dBa(s) + 0'3ng(8))+
0

+ 6‘%2 // (01d31 (7‘) +O'2dBQ(7“) + O'3dB3 (’f‘)) (0'1dBl(S) +0'2ng(8) +0'3ng(8)) +...

The linear term of €'Y} is simply 4 times
01Bi(t) + 09Bs(t) + 03Bs(t) .
The quadratic term contains 72 = —1 times
Lo (BN — 1) + 503 (B31) — 1) + 503 (BY(0) ~ 1)
but also 6 terms like 0105 [f;_,_, ., dBi(r)dBs(s). We may write o105 = (o109 + 0201) +
%(0102 — 0901) = 0100, + %[01, o2);

010 0 -1 0
oro0=—-|1 0 0} ; [o,00J=111 0 0
000 0 0 O

Using (3¢2) we may write the symmetric terms as
010 O'QBl(t)BQ(t) + 00 UgBl(t)Bg(t) + 090 JgBQ(t)Bg(t)

and the symmetric part of the quadratic term as

%(alB1 () + 02Ba(t) + 03B (1)) — ¢

(compare it with the linear term). However, there is also an asymmetric part,

1
- / / (dBy(r)dBs(s) — dBy(r)dBy(s)) + two more terms.
2 0<r<s<t

Unlike the commutative case of 3a, here Y (¢) is not a function of Bj(t), Ba(t), Bs(t), it
depends on the past.



