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2 Stochastic integration: Wiener chaos

2a Discrete model suggests

Consider the standard one-dimensional random walk with time pitch 1/n and space pitch
1/y/n; here n is a (large) parameter. The walk is a random process X = (Xi);eq0,1,2 3,
X, € Ly(2, R), with stationary independent increments such that

P Xy = —%) = % =P (Xijn = +%) .

Clearly,
EXt = 0, Var(Xt) =1

for all t € {0,2,2,...}. By a classical limit theorem, the distribution of (say) X; is ap-
proximately normal, if n is large. We may treat X as a discrete counterpart of the standard
Brownian motion B = (B)s[0,00) in R. Increments X,; = X; — X, form a discrete-time
stationary abstract stochastic flow;

X01—X 1+X -+XL4’1.

She

1
n’

The homomorphism x +— € of the additive group R to the multiplicative group T = {z €
C : |z| = 1} (the circle) transforms X into a random walk (or flow) in T,

Y1 = exp(iXs4) = cos X + isin X4,

and B into a Brownian motion (or flow) (e¢‘?) in T. We have

1 1 . .
Y, 1 =cos —= £ isin —= = cos —= + 1.X; 14/nsin
n

1 1
vn Vn N vn'
1 1 1 1
}/E),l = (COS% +ZXO,% nSin %) (COS \/— +7/Xn 1 1\/’]€SIH %> =

= Z (cos %)n_m(z n sin %)mfm,

m=0
where
Iy =Tnn= Y AXy . AXien,  AXe=Xian
0<M cocbn g !
Random variables Iy, I, ..., I,, are orthogonal, and

n\ 1
Im 2 = ;
Il = ()

n 1 \n—-m 1\m/n\ 1 1 1 \7
2 .92 _ 2 102 -1 = 2
(cos %> (nsm %) (m) o (cos —\/ﬁ —+ sin \/ﬁ> =1= ||Y0,1|| )

m=0
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n
as it should be. For large n the binomial distribution described by (0052 ﬁ + sin? ﬁ)
approaches the Poisson distribution (of parameter 1),

) (o )G ) e
COS™ —— Sin” —— —€ .
m Vn V/n/  nooco ml

A continuous counterpart is suggested:
o
exp(iBy1) = Z e Y4mr,
m=0
for some orthogonal I, € Ly(2) satisfying

1
2 _
Ml = -

It should be

Im:// dBt1"'dBtm7
0<t1 <o o<t <1

but for now it is an equality between two undefined symbols.

2b Hermite polynomials

The same argument as in 2a is applicable to exp(iAXy ;) for all A € R:

A A A A
exp(iAXy 1) = cos —= t isin —= = cos —= +iX; 1y/nsin —=;

N TR Vi

exp(iAXo,1) = Y ( Cos %) o (z\/ﬁ sin %) mIm :

m=0

I, being the same as before;

(cos%)nmexp(—)\;), \/ﬁsin%m)\,

and we guess that

(2b1) exp(iABy,1) = exp (— /\;) i i\,
m=0

for all A\. Thus,

2

- A
Z i A", = exp (z’)\BO,l + 7) =
m=0

=1+ (iAB—i—%)\Q) + %(iAB+ %A2)2+%(MB+ %/\2)3+--- =

1 1
=1+iAB+ 5,\2(1 - B + 6,\3(37;3 —iB%) + ...
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(here B = By ), which means that

1 1
In=1; I©I1=Bys; 12=§(B§,1—1); ]3:6(B§’1_3B0’1)’

1
/dBt By

(3b2) // dB,dB, = Bgl 1);

0<s<t1

1
dB,dB,dB; = E(BS’,I —3By.),

and so on. That is,

0<r<s<t<1
and so on. Polynomials on the right-hand side are well-defined, and we may use these
equalities for defining the integrals on the left-hand side!

2b3 Definition. Hermite polynomials H,(-) are defined by the formula

2

%Hn(a:) = exp (a:y - %) .

n=0

(Be warned, however: some authors use H,(z\/2) or 2"/2H,, ( V/'2), call these functions

‘Hermite polynomials’ and denote them H,(z).) In other words,!
dn % 1 dr ' )2

(2b4) H,(z) = a o exp <xy 5) e N Oexp (z)\x + 7) :
Also,

Hi(z)=1x; x = Hy(z);

Hy(z) = 2% — 1; 2” = Hy(z) + 1;

Hs(z) = 2° — 3z; 2® = H3(z) + 3H,(x);

Hy(v) = 2* — 62 + 3; z* = Hy(z) + 6Hy(z) + 3
In fact,

EH,, (X)H,(X) =0 ifm#nand X ~ N(0,1);

(2b5)

1 too 2
that is, — H,(z2)H,(z)e ®?dz =0 form #n;
= [ Ha@H ) /

1Some classical formulas for Hermite polynomials:

(o) = (1) exp (327 ) o exp (- 307
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the classical orthogonality property of Hermite polynomials;

EH2(X)=n! if X ~N(0,1);
(2b6) 1 +oo
that is, —
V2T J o

a proof will be given later (after 2d4).

Functions ﬁHn() are orthonormal in Ly(N(0,1)); in other words, functions z +—

ﬁHn(-)\/(27T)_1/26_$2/2 are orthonormal in Ly(R). Whether they are a basis of the whole
L, or only a subspace? That is, are polynomials dense in Ly(N(0,1))? Of course, every
continuous function can be approximated by polynomials on any bounded interval; but these
polynomials are large outside the interval.

We have (recall (2b3))

1’-[2(3:)&’”2/2 dx = n!;

(2b7) i (Z)‘)an(x) — 6)\2/2€i)\x;

the convergence is pointwise (in fact, uniform on bounded intervals). On the other hand,
the series converges (to something!) in Ly(N(0, 1)), since

= (iA)" = (i1
Z(n') Hn(x)zz(\/% ﬁHn(x), and Z

n=0 ’ n=0

2
2
:e)‘ < 0.

@)
Jnl

The two limits must conform (think, why);

o0 .
A)" ,
(2b8) > ( ,) H,(z) = /%™ in Ly(N(0,1)).
n!
n=0
We see that the function x — € belongs to the subspace (spanned by Hermite polynomials),
for every A € R. Their linear combinations are dense in continuous periodic functions? And
continuous periodic functions (of all periods) are dense in Ly(N(0,1)). So,

1
functions —=H,,(-) are an orthonormal basis of Ly(N(0,1));

(2b9) Vil "

1
functions z — ——H, (:c)\/ (27)~1/2e=2%/2 are an orthonormal basis of Ly(R).

vl "

2 Alternatively, one may use periodic step functions.
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2¢ Intuitive ideas

Comparing (2b1) and 2b3 (or rather (2b8)) we may define

(2c1) / / dBy, ...dBy,, = — Hp(Bo,)
0<ts <vre<tm <1 m!

(see also (2b2)). Of course, it is a tentative definition; the general case will be treated in 2d.
We have

2 [e.e]
exp(iXBo,1) = exp (— A—) Y i / / dB,, ...dB,,
2/~ 0<ty <<t <1

What about the integral over (say) 0 < ¢; < .-+ < t,, < 47 Taking into account that the
processes
(Bt)tefo,o) and  (3But)tefo,0) are identically distributed

(think, why), it should be
1

// (32dBy,) ... (3dBy,,) = —'Hm(%BoA)a
0<t1<-<tm<1 m:

2m
/. . / dBtl e dBtm = _'Hm(%BOA) 3
0<t1 <--<tm<4 m:

and more generally,

(2c2) / / iB, .dB, = H ( L g )
¢ . L n = ——H,, | —=DB,,
0<ty < <tm<t ! ! m! \/E 0t

for any ¢ € (0,00); note that %Bo,t ~ N(0,1). The argument above is heuristical; for now,
we extend the tentative definition (2c1) to (still tentative) definition (2¢2). For example,

1 1
// dB,,st:f(—Bgt—Q = (B2, 1),
2 \3 70 370,
0<r<s<t

which is paradoxical; we could expect that

t s t t
// dBTdBS:/ (/ dBr)dBS:/ B,dB, = 1/ d(B?) = 1B§t
0<r<s<t 0 0 0 2 0 2

(arguments being heuristic, still). Why “ .. —¢"? Look closer at the formula d(B2%) =
2B; dB;. Denoting for short B = B;, AB = B; ;a5 we have A(B?) = (B+ AB)? — B2 =
2BAB + (AB)?. In the usual (smooth, non-stochastic) analysis one discards (AB)? since it
is much smaller than As. However, the Brownian sample path is far from being smooth; in
fact, E(AB)?> = At. The astonishing formula 3(Bg, — ¢) means that®

that is,

(2¢3) (dB,)? = dt,

3In fact, df(B;) = f'(B;) dBy + 1 f"(By) dt (for any smooth f : R — R) by the famous It6 formula.
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and indeed,

Z(Bk—l,&)Q —— 1 in probability

n n—00
k=1

by the weak law of large numbers.

2c4 Exercise. Prove that

. Lo\ N mym
exp(iAByt) = exp (— 5/\275) Z imA / : -/0 dBy, ...dBy,, .
m=0

<t <<t <t

Give a proof, not a heuristic argument!
g

Hint.
1 dm A2t
25 g (2= =2 A+ 20
25 () =m0 (24 5)
Note that

1 dm M2t
2c6 // dBy, ...dBy, = - — exp(i)\Bo,+—).
(2c6) 0<ty <o <t <t " ' immldA™ |, ' 2

Consider two equalities, say,

2\2 o0

exp(3iABoos) = exp (— . 2) Y i"3" AL, (0,0.5)
n=0
52A%\ &

exp(5iABos.1) = exp (— ﬁ) 3 im5TATLL(0.5,1) ;
n=0

here I,,(a,b) = [+ [, ..., ., 4B, ...dDBy,. The former equality is a special case of (2c4),
the latter is its natural generalization. (Our arguments are still heuristic.) Multiplying the
two equalities we get

. 1 32457 0\ o= o e _
exp (iA(3Boo5+5Bos,1)) = exp (—5- . )\2> S A S (35 14(0,0.5)-5" ¢ 1, (0.5, 1)),

which suggests that

1 oo
exp <¢A /0 1 1) dBt) = exp (— %2 /0 F2(t) dt) D A My,
n=0

)3 forte(0,0.5),
1) = {5 for ¢ € (0.5,1),

n

L= // ft1) .. f(tn)dBy, ...dB,, = (3"I4(0,0.5) - 5" *I,_4(0.5,1)) .
0<t1 <--<tp <1

k=0
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' 1 /\2 1
- exp (z/\/o f(t)dB; + 5/0 f2(t) dt) :
L d . exp (i/\ /0 h f(t) dBﬁ%Q /0 h () dt)

e ... By, ...dB;, = —
/ / ft) .. f(ta) dByy ... dBy, = - s
0<t1 <---<tp <00

for every step function f : [0,00) — R, that is, a finite linear combination of indicators 1(,),
0 <a<b<oo. Here [ f(t)dB; may be defined by

Note that
1 d°

nf = Gl dan

Similarly,

| swan=~ [ Barw) = - Y Bf+) - £e)).
0 0 t
the sum being taken over all discontinuities of f. Note that [ 1(,4)(t) dB; = By

2d Definitions
Let (By)tefo,00)> Bt € Lo(€2, R), be the standard Brownian motion.

2d1 Exercise. There exists one and only one isometric linear operator 7' : Ly(0,00) —
L5(2) such that
T(]-(O,t)) = Bt fort € [0, OO) .

Prove it.
Hint: (1,5, 1(0,s)) = (Bs, By); define T on step functions and extend it by continuity.

2d2 Definition. The linear stochastic integral

/ " 1) B,

for f € Ly(0,00) is the random variable T'f, where T is as in 2d1.
Note that [ fdB ~ N(0,||f|?) and [ 1 dB = B, = B, — B,.
2d3 Exercise. The (nonlinear) map & : Ly(0,00) — L2(2) defined by

&)= (i [ 148+ H11P)

satisfies
(E(f),E(9)) =€ forall f,g.

Prove it.
Hint: if X ~ N(0,1) then Ee?Y = ¢=*’/2,
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2d4 Exercise. The (nonlinear) map &, : L2(0,00) — Lo(€2) defined (for a given n) by

d’n
&) = gya|_EO)
satisfies
(En(f): En(g)) = ni(f,g)" forall f,g
Prove it.

Hint: differentiate 2d3.

H,([ fdB) by

( Y)"™ whenever

Clearly, &,(Af) = A\"E,(f) for A € R. Also, if ||f|| = 1 then &,(f)
(2b4).* Now 2d4 gives (2b5), (2b6) and moreover, E (H,(X)H,(Y)) =
X, Y are jointly normal, X ~ N(0,1), Y ~ N(0, 1).
We denote
Ay ={(t1,...,tn) 1 0<ty <--- <1, <00}

and for every f € Ly(0,00) we define D, (f) € Ly(A,) by

Du(f)(t1,- - tn) = f(t1) ... f(tn) for (t1,...,tn) € Ay

2d5 Exercise. (D, (f), Dnlg)) = 5(f,9)" for all f,g € Ly(0,00). (We equip A, with the
Lebesgue measure.)

Prove it.

Hint: the integral over A, is (1/n!) of the integral over the whole (0, c0)™.

2d6 Exercise. (a) Functions of the form (t1,...,%,) — fi(t1) ... fu(ts) are linear combina-
tions of functions of the form D, (f).

(b) The closed linear subspace of Ly(A,,) spanned by functions of the form D, (f) is the
whole Ly(A,,).

Prove it.

Hint. (a) For n = 2: ab = {(a + b)? — ;(a — b)%..  In general: ai...a, =
ﬁ ZO’l,...,UnE{—l,+1} o1...0n(0101 + - + onan)".

(b): Consider 1(q, p,)(t1) - - - L(an,bn)(tn)-

2d7 Exercise. For each n there exists one and only one isometric linear operator T,
Ly(Ay) — Lo(2) such that

To(Da(f)) = %En(f) for all f € Ly(0,00).

Prove it.
Hint: (£,(f), Ex(9)) = (M)*(D,(f), Dn(9)); define T on linear combinations of D, (f) and
extend it by continuity.

4Thus, &,(f) = i"||f||"H, (% J fdB), which conforms to (2¢5).
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2d8 Definition. The multiple stochastic integral

f(tl, .. ,tn) dBtl .. dBtn

0<ty <+ <tp <00
for f € Ly(A,) is the random variable i "7, f, where T, is as in 2d7.

Summing over all permutations of ¢1,...,t, we get the integral over the whole (0, c0)"
excluding however ‘diagonal’ hyperplanes {¢ : ¢, = t;}. That is, we define

(2d9) / /ftl,..., )dBy, ...dB,, = Z/ /fjl,...,tjn)dBtl...dBtn,
t15-.-,tn differ J o<ty <<ty <00

where j runs over all the n! permutations of 1,... n.

2e Some properties

2el Exercise. For all f, g € Ly(0, 00)

82
F(s)g(t) dB,dB, = EON + pg) .
/L. N A

Prove it.
Hint. Both sides are symmetric bilinear forms of f, g. It is sufficient to prove the equality
for f = g (recall 2d6).

2e2 Exercise. If f,g € Ly(0,00) are orthogonal then

E(f+9)=E(f)E(g)-
Prove it.

2e3 Exercise. If f,g € Ly(0,00) are orthogonal then

/#f t) dBsdB; = (/de)(/gdB).
Prove it.

Hint: use 2el, 2e2.

2e4 Exercise. Generalize 2e3 to n orthogonal functions.
Hint. First, generalize 2el.

2e5 Exercise. Generalize 2e3 to arbitrary (not just orthogonal) f,g. Does the result con-
forms to the informal relation (2¢3)?
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2e6 Exercise. Let 0 < sy <51 < -+ < 8, < 00.

(a)

1(50,31)(751) . l(sn_l,sn)(tn) dBy, .. -dBtn = BSO,S1 ...B

Sn—1,8n °

0<t1 <+ <tp <00

(b) Moreover, for any fi € La(So,51),- -, fn € La(Sn_1, Sn)

/ / Fut) - fult) dB, ... dB,, = (/fldB>...(/fndB)

0<t1 < <tp <00

(the functions being extended by 0).
Prove it.
Hint: use 2e4.

2e7 Definition. Let 0 < s < ¢ < oco. The closed linear subspace H,(s,t) C L2(2) o
random variables [ f_, ., _ f(ti,... tn) dBy, ...dBy, for all f € Ly (A, N (s,t)”)
called the n-th Wiener chaos on (s,t).

Note that fftl it difer S (t15 -+, tn) dBy, ... d By, belongs to H, (0, 00).

2e8 Exercise. The chaos spaces H, = H,(0,00) for n = 0,1,2,... (Hp being the one-
dimensional space of constants) are mutually orthogonal.

Prove it.

Hint. Similarly to 2d4 show that (&£,,(f),&x(g)) = 0 for all f, g provided that m # n.
Use 2d6.

Do the chaos spaces span the whole Ly(Q2) ?

2e9 Exercise. Let F,, C F be sub-o-fields, F; C F» C ..., and F, C F be the sub-o-field
generated by F1 U Fo U.... Then Lo(Fi) U Ly(F2) U ... is dense in Ly(Fy). (Of course,
Ly(F,) means Ly(Q2, F,,, P).)

Prove it.

Hint. First, consider indicators of sets. Sets A € F such that 14 belongs to the closure

of {lg: Be FLUF,U...} are a o-field.

Given 0 < s < t < 00, we introduce the sub-o-field fft C F generated by random
variables B, , for all u,v such that s <u <wv <{.

2e10 Exercise. Hy(s,t) ® Hi(s,1) @ - - = Ly(FJ).

Prove it.

Hint. By 2e9 it is enough to consider the sub-o-field generated by a finite number of
By, say, Buguys- - Bu, 1u, Where u = up < uy < -+ < up, = v. Among all functions of
Buouss - - - > Bu,_1un, linear combinations of functions exp(iA;Bygu, + -+ + iAnBuy,_,u,) are
dense (recall the argument before (2b9)).
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Here is the general form of a random variable X € Ly(Fg,.):

X:f0+/oof1(t)dBt+/ fa(s,t) dBydBy; + - - - =
0

0<s<t<o0o
:Z// fo(ti,.. . ty)dBy, ... dBy,
n—0 0<t1 < <tp <00
fn € LQ(An)a

X117 =Ml
n=0

A wonder! A measurable function of the Brownian motion is the sum of a power series.



