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1 Independent increments

la Convolution semigroups

The distribution Px .y of the sum X +Y of two independent random variables X, Y : Q@ — R
is uniquely determined by the distributions Px, Py of X, Y; namely,

[ tareir = [[ 1o+ v ape@)ar )

for any bounded Borel function f : R — R. It means that Px,y = Px * Py. The convolution
i * v of two probability measures p, v on R is defined by

[ ) = [[ 5o+ v dut@vty).

That is, u * v results from the measure p ® v on R? via the map R? > (z,y) — z+y € R.

lal Definition. A (one-parameter) convolution semigroup in R is a family (u)cjo,00) Of
probability measures p; on (the Borel o-field of) R such that pg is concentrated at 0, and

Wsit = [hs * [t for all s,t € [0, 00) .

1a2 Example. Let N(0,1) be the standard normal distribution,
1

2

dN(0,1)(z) = e ¥ dy

and N(0,0?) be the image of N(0,1) under the map z — oz. Then N(0,0?) * N(0,03) =
N(0,0? + 02). Thus, (N(O, t))tE[O,oo) is a convolution semigroup.
1a3 Example. Let II(\) be the Poisson distribution,

[ raney =3 s

n=0

here A € [0,00) (and 0° = 1). Then II(A;) % II(A2) = II(A; + A2). Thus, (I1(¢))cpo,00) Is a

convolution semigroup.

Note that any convolution semigroup satisfies
[ e = ([ e ) ( [ e anta)).

2

/eiude((),t)(x) = /ei“ P2 AN(0,1)(x) = exp (— %t) ;

Especially,

o0 n

/em“’” dli(t)(x) = Z ei“"%e_t = exp((e™ — 1)t).

n=0
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la4 Example. Let p; be the Cauchy distribution,

1 1 1
dui(z) = S dzx = ;d arctan

and p; its image under the map = — tz. We have

+
/eiuz dlffl(iﬁ) _ L/ Ooeiucc 1 - 1 ' d$:€7|u‘>
21 J_ oo T—1 T+

therefore [ €™ duy(z) = [ €™ duy(z) = exp(—|ult), which means that (i)tc[o,00) iS @ con-
volution semigroup.

Beyond R, we may consider convolution semigroups in R”, in a torus T" = R"/Z", in
non-commutative groups etc. Here is a general framework.

1a5 Definition. (a) A measurable semigroup consists of a set G, an element e € G (‘the
unit’), a binary operation G x G 3 (z,y) — zy € G and a o-field Bg of subsets of G such
that!

e cx =z = ze for all z € G,
o (zy)z = z(yz) for all z,y, z € G (associativity);
e the binary operation is a measurable map from (G, Bg) % (G, Bg) to (G, Bg).

(b) A (one-parameter) convolution semigroup in a measurable semigroup G is a family
(4t)tefo,00) Of probability measures ji; on (the o-field B of) G such that jg is concentrated
at e, and

Mt = s * Lt for all s,t € [0,00).

Of course, the convolution y * v is the image of ;4 ® v under (z,y) — zy.
1a6 Example. The family
the atom at 0, fort =0,
He= {the uniform distribution on T, for ¢ > 0
is a convolution semigroup in T!.

Every convolution semigroup in R induces the corresponding convolution semigroup in
the circle T = R/Z. Of course, the circle with the operation (z,y) — = + y and the Borel
o-field is a measurable semigroup.

1b Independent increments

Let (2, F, P) be a probability space. (In fact, just (0,1) with Lebesgue measure is enough
for everything.) Equivalence classes of measurable functions 2 — R form a linear space

!Further restrictions on (G, Bg) will be imposed in 1b (before 1b8) and 1c (before 1c2).
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LO = L()(Q,F, P) Given Xl,XQ,"' € L(), we say that Xn — 0 in Lo, if XO — 0 in
probability, that is,
Ve >0 P(|Xn| >e) ——0.
n—oo

Several compatible metrics (but not norms) on Ly are well-known, especially,

dist; (X,Y) =inf{e > 0: P (|X - Y| >¢) <e&};

(1b1) . X -Y|
disty (X, V) =F ———
ista (X, Y) 1+ (X —Y]

Thus, L, is a metrizable linear topological space. I always assume that Ly is separable (which
is a restriction on (2, F, P), satisfied by (0,1)). In fact, Ly is complete.

A random process is just a family of random variables, however, what is a random
variable? Some authors define it as a measurable function (2 — R, but I prefer the following.

1b2 Definition. (a) A random variable is an element of Ly.
(b) A random process on a set T is a family (X;)er of random variables, in other words,
amap X : T — L.

1b3 Definition. A random process X on [0, 00) has independent increments, if X (0) = 0
and random variables X (t3) — X (t1), X (t3) — X (¢2), ..., X (t,) — X(t,_1) are independent
whenever 0 < ¢; < --- < t, < oco. If, in addition, the distribution of X (s +t) — X(s) does
not depends on s, then X has stationary independent increments.

Note that X (¢;) — X(s1),...,X(ts) — X(s,) are independent whenever 0 < s; < t; <
Sg <ty < -+ < 5, <t < 00 (provided that X has independent increments).

1b4 Exercise. If X is a random process with stationary independent increments, then
distributions j; of random variables X (¢) form a convolution semigroup (f):c[0,00)-
Prove it.

For a process on the set [0,00) N Q of all nonnegative rational numbers,? stationary
independent increments are defined evidently.

1b5 Lemma. For every convolution semigroup (f4)scjo,00) in R, there exists a process X with
stationary independent increments, such that X, is distributed p, for all ¢ € [0, 00) N Q.

(T mean, there exists X on some probability space; in fact, Q@ = (0, 1) fits.) (Of course,
we could start with (1)te[0,00)n0-)

Extension by continuity from [0,00) N Q to [0, 00) will be carried in 1c.

Beyond R, we may consider R", T" etc. Spaces Lo(Q2, T") = Lo((2, F, P), T"), processes
X :[0,00) = Ly(£2, T") and independent increments are defined evidently. In a noncommu-
tative group, increments may be defined as X ~'(s) X (¢) or alternatively X (¢)X~!(s). How-
ever, what about processes valued in a measurable semigroup? It may happen that zy = x2
but y # z. Instead of X,; = X *(s)X(t) we start with X, and require X, ;X;; = X, (see
below).

2 Any other countable dense subgroup of R may be used instead of Q.
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For a measurable semigroup G the set Ly(£2, G) of all G-valued random variables, that
is, equivalence classes of measurable maps 2 — G is a semigroup (not equipped with a

topology).?

1b6 Definition. Given a measurable semigroup G and a probability space (€2, F, P), we
define an abstract stochastic flow* as a family (Xs,t)sgt;s,te[o,oo) of GG-valued random variables
Xt € Lo(£2,G) such that

o X, X, =X,; whenever 0 <r <s<1? <o

® Xy tsy---r Xy, 1t, are independent whenever 0 <t¢; < --- <, < oo.
The abstract stochastic flow is called stationary, if

e the distribution of X ;. does not depend on s.

1b7 Exercise. Every stationary abstract stochastic flow leads to a convolution semigroup
(14t)te[0,00); Namely, 1 is the distribution of X, ;4.
Prove it.

In order to generalize 1b5 we assume that the measurable space (G, Bg) is universally
measurable.® It means existence of a metric p on G such that (G, p) is a separable metric
space, Bg = B, is the Borel o-field of p, and every probability measure on (G, B,) is concen-
trated on a countable union of compact sets (regularity). In fact, regularity does not depend
on the choice of p.® FROM NOW ON, ALL MEASURABLE SEMIGROUPS ARE ASSUMED TO BE
UNIVERSALLY MEASURABLE.

1b8 Lemma. For any convolution semigroup (ji)sc[o,0) in any measurable semigroup G,
there exists a stationary abstract stochastic flow (Xs,t)sgt;s,te[o,oo)nQ such that X, ., is dis-
tributed p, for all s,¢ € [0,00) N Q.

1lc Continuity in probability
Quite often we have a metric p on a measurable semigroup G, satisfying’

(1cl) Vz,y € G p(zy,z) < p(y,€);

here e is the unit of G (that is, ez = 2z = ze for all z € G). Note that (1cl) evidently holds
(with equality) for G = R,R™, T". FROM NOW ON, EACH MEASURABLE SEMIGROUP G IS
ASSUMED TO BE EQUIPPED WITH A METRIC p SATISFYING (lcl) AND MEASURABLE (that
is, the map (G, Bg) x (G, Bg) 3 (z,y) — p(z,y) € R must be measurable).

3Tt is equipped with a o-field.

4The reason for this term will be explained later.

5See also Sect. 12.1 (especially, Theorem 12.1.2 and Problem 2) in book ‘Real Analysis and Probability’
by R.M. Dudley.

6An equivalent definition (without metrics): Bg is countably generated, and every probability measure
on (G, Bg) is the image of Lebesgue measure on (0, 1) under some measurable map (0,1) — G.

"Do not think that (I1cl) implies continuity of zy in z and y. In fact, p(z,,e) — 0 does not imply
p(xny,y) — 0. Thus, G need not be a topological semigroup. Also, the metric space (G, p) need not be
separable.
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1c2 Definition. A convolution semigroup (i4)tcjo,00) in @ measurable semigroup G is con-
tinuous in probability, if

Ve >0 w({z € G:ple,z) >e}) — 0.
t—0

Note that it holds for 1a2, 1a3 and 1a4, but fails for 1a6.

Let (Xs,t)sgt;s,te[o,oo)n@ be a stationary abstract stochastic flow corresponding to a con-
volution semigroup (fi)sc[o,00)n@- The convolution semigroup is continuous in probability if
and only if X, — e in probability for ¢ — 0, that is, dist(Xo¢,e) — 0 for t — 0 (here ‘dist’
is any one out of the two metrics (1b1)). Almost surely,

,O(XO,S—I—t; XO,s) = p(XO,sXs,s—I—t; XO,s) < p(Xs,s—}-t; 6) ’

therefore
diSt(XO,S_H, X(),s) S diSt(XS’s+t, 6) = diSt(XO,t, 6) ﬁ 0.
—

It means that the function
[0, OO) N Q S5t XO,t € L()(Q, G)

is uniformly continuous. Therefore it can be extended by continuity to [0, 00). The com-
pletion of G appears for a while, but ultimately disappears, since pu; is concentrated on

G.

1c3 Theorem. For every continuous in probability convolution semigroup (f):e[0,00) in a
measurable semigroup G there exists a stationary abstract stochastic flow (X ;)s<ss tefo,00)
such that for every ¢ the random variable X, is distributed .

If G is a group (not just semigroup), we get a process (X;)cjo,00) With stationary inde-
pendent increments; namely, X; = X5 X, = X' X;. Especially, 1a2 leads to the standard
Brownian motion in R; 1a3 — to the Poisson process (of rate 1); 1a4 — to a so-called stable
process (but 1a6 — to nothing).

1d Sample paths: one-sided limits

Having a random process (X;)sc[0,00) We cannot introduce its sample paths as functions
[0,00) 3t — Xy(w) € R, since X; is an equivalence class rather than a function. Nevertheless
we can do so for ¢ € [0,00) N Q. The equivalence class of a measurable map  — R02)"Q
is well-defined.

Continuity in probability does not mean continuous sample paths. For example, the
Poisson process is continuous in probability, but its sample paths cannot be continuous.
More exactly, its sample paths on [0, 00) N Q are integer-valued step functions. They are
continuous on [0,00) N Q, but cannot be extended by continuity to [0, c0); they fail to be
locally uniformly continuous.

Here is a non-evident well-known result.®

8See also Sect. 3.1 (especially, Theorems 5,6,8) and Sects. 5.1, 5.3 (especially, Theorems 3, 19) in book
‘Random processes with independent increments’ by A.V. Skorokhod.
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1d1 Theorem. Let (X¢)c0,00nq; X: € Lo(£2,R), be a random process with stationary
independent increments, continuous in probability. Then almost all w are such that for all
u € [0,00) the limits

lim X (¢,w), lim X (¢,w)

t—u— t—u+

exist. (Here ¢ runs over [0,00) N Q.)

The following argument is the key to the proof.

.....

e>0

P (tgllfm_;fn Xy — Xi| > 2¢) t:rnLi_Hn]P(\Xt —X,|<e) <P(|Xn—X1|>¢).
Prove it.

(Do not confuse P (max...) and maxP (...).)

Hint. Clearly, P (|X;—X1| > 26 )P (| X,— X[ <¢) <P(|Xn—Xi1| > ¢, |[Xi—X1| > 2¢)
for each t. However, summation over t fails, since the events | X; — X;| > 2¢ are not disjoint.
Introduce disjoint events by considering the first (random) ¢ such that | X; — X;| > 2e. (It
is the ‘stopping time’ idea.)

The rest of the proof of Theorem 1d1 is outlined below.

1d3 Exercise. For X as in Theorem 1d1, let € € (0,00) and § € (0,00) N Q be such that

VEe0,0]NQ P(|1X;—Xy|>e) <

W =

Then:

(a) P(3te[0,0]NQ |X; — Xo| >2¢) <1/2

(b) for each n, existence of ¢1,...,t, € [0,5]NQ such that ¢; < --- < ¢, and | Xy, — Xy, | >
2e, ..., | X, — Xy, .| > 2¢ is an event of probability < 1/2".

Prove it.

Hint. (a): apply 1d2 to X restricted to an arbitrary finite subset of [0,6]; (b): first do it
for X restricted to a finite subset of [0, d]; use the ‘stopping time’ idea.

1d4 Exercise. Prove Theorem 1d1.

Hint. Almost all w are such that for every € > 0 there exists n such that no t; < --- < t,
satisfy | X3, — Xy, | > 2¢, ..., | Xy, — X¢,_,| > 2e. First, prove it (via 1d3) in a neighborhood
of an arbitrary point of [0,00). Then cover [0, ] by a finite number of such neighborhoods.

1d5 Definition. Let 7 be a set and X = (X;);er a random process, X; € Lo(Q,R). A
modification of X is an equivalence class of a map & : Q — R such that for every ¢t € T the
function Q 5 w — &(w)(t) € R belongs to the equivalence class X;.

You see, a modification chooses a function in (almost) every equivalence class X;.
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1d6 Exercise. Let (X¢);c[0,00) be a random process with independent increments, continuous
in probability.

(a) The following formulas define two modifications of X:

Gw )= lm X(tw), &wt)= lim X(tw).

(b) X has one and only one left continuous modification, namely &;. The same for right
continuity (and &).

Prove it.

Hint: in general, if Y,, — Z; in probability and Y,, — Z, a.s., then Z; = Z; a.s. (think,
why).

Note that & # & for the Poisson process.

All said above remains true for processes valued in R® or T". The general case, abstract
stochastic flows in a measurable semigroup G, needs more attention. Note for example that
p(X; s, Xr+) need not be independent of X, ,, since it is not the same as p(e, X;,.).

Denoting for convenience

|z| = p(xz,e) forzeG

we have
lzy| < x|+ |y, lz| <|zy|+|y| and p(z,zy) < |y

for all z,y € G. Indeed (recall (1cl)),

p(xy,e) < p(zy,x) +p(z,€);  plz,e) < p(z,7y) +p(zy,e) .
N—_—— —— N—— ——  —
=|zy| <p(y,e)=ly| =|z| =|z| <p(ey)=lyl =lwy!

1d7 Exercise. Let (Xs,t)sgt;s,te{l,...,n} be an abstract stochastic flow in a measurable semi-
group G. Then for every € > 0

P (tirll’a}fn | X14| > 2¢) ,min P (| Xen <€) <P(| X1 >¢).

Prove it.
Hint: similar to 1d2; take into account that | X 4| < |Xi,|+ | X,

1d8 Definition. An abstract stochastic flow (X )s<ss,tc(0,00) IS continuous in probability if
for every t € [0,00) and € > 0

P(|X; P(|X .
(| t&,t|>€)6—_5>0, (‘ t,t+6‘>5)6—_5>0

Here |z| = p(x, €), as before. For a stationary flow it means that P (|Xo; >¢&) — 0 for
t— 0+.

1d9 Exercise. Let (X )s<4s tc[0,00) b€ an abstract stochastic flow in a measurable semigroup
G, and r,t € [0,00) N Q, € € (0,00) be such that r < ¢ and

Vse[rtilnQ P(|X,y,l>e)<

wl =
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Then

(@) P(Ise[rinNQ |X, | >2)<1/2

(b) for each n, existence of sq,...,s, € [r,t]NQ such that s; < --- < s, and | X, ,,| > 2¢,
ooy | Xs,_, — X5, | > 2¢ is an event of probability < 1/2".

Prove it.

Hint: similar to 1d3.

1d10 Theorem. Let an abstract stochastic flow (Xj¢)s<sstc[0,00) De continuous in proba-
bility. Then the process (Xo:)sc[0,00) has one and only one left continuous modification, and
one and only one right continuous modification.

1d11 Exercise. Prove Theorem 1d10.

Hint. First, generalize 1d1, 1d4; (G, p) need not be complete, but anyway, a Cauchy
sequence having a convergent subsequence must converge. Also, a sequence converging in
probability has a subsequence converging a.s. Afterwards, generalize 1d6.

le Sample paths: continuity

lel Theorem. The following two conditions are equivalent for every random process (X;)c[o,00)5
X € Lo(92, R), with stationary independent increments.

(a) The process has a continuous modification (that is, a modification with continuous
sample paths).

(b) For every € > 0,

1
glP(\Xt|>5)E>O.

Note the coefficient 1/t making (b) much stronger than just continuity in probability.
The Poisson process is continuous in probability but violates (b).

When proving the theorem we may restrict ourselves to processes continuous in probabil-
ity, since (b) implies continuity in probability, and (a) implies it as well (indeed, convergence
a.s. implies convergence in probability).

By 1d6, the process has the left continuous modification & and the right continuous
modification &. Clearly, lel(a) is equivalent to & = &. The latter may be reformulated as

Ve >0 sup |&(-,t) —&(-, 1) <e.
te[0,00)

1le2 Exercise. Almost surely,

max | X — Xi1| —— sup [&(, 1) — &( )]
k=1,...,n n n n—00 te(0,1)
Prove it.

Hint: we may assume that the sample path is continuous at all rational points, since
P (gl(-, t) = &, t)) =1 for every t. The rest is analysis, not probability.

1le3 Exercise. Prove Theorem 1lel.
Hint: o
P( max |X:— Xem|<e) = (P(|X:]<e))

k=1,...,n n
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1le4 Exercise. Prove that the standard Brownian motion in R has a continuous modification.
Hint: apply lel to la2.

When a process has a continuous modification (evidently unique), other modifications
are of no interest, and we need not distinguish between the modification and the process.
Usually we say just “the Brownian motion is (sample) continuous”.

For flows we have an implication (rather than equivalence).

le5 Exercise. Let a convolution semigroup (f4)sco,00) in @ measurable semigroup G satisfy®

1
cm({o s lal > €}) 0

for all ¢ > 0. Then the corresponding stationary abstract stochastic flow (X;;)s<ts.te[0,00) 18
such that the process (XO,t)tE[O,oo) is sample continuous.'?

Prove it.

Hint: p(XO,%’XO,ﬁ) < ‘Xk—l,% |.

n

z| = p(z,e), as before.
10That is, has a sample continuous modification.



