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The ultimate form of fundamental theorem of integral calculus.

6a Exterior derivative: definition

First, we consider n-forms and N -forms on RN for n = N − 1. n = N − 1
Recall 4e10: for every n-form ω of class C1 on RN there exists an N -form

ω′ of class C0 on RN such that for every smooth set U ⊂ RN ,∫
∂U

ω =

∫
U

ω′ .

This is the divergence theorem 4a3 translated into the language of differential
forms.

Similarly we may translate 5c19: let f = divF (generalized divergence);
let F correspond to ω according to (4e6), and f correspond to ω′ = f · det
according to (4e3); then, for arbitrary smooth U , by (4e7),

∫
∂U
〈F,n〉 =

∫
∂U
ω,

and by (4e4),
∫
U
f =

∫
U
ω′; thus, the equality

∫
U
f =

∫
∂U
〈F,n〉 of 5c19

becomes
∫
∂U
ω =

∫
U
ω′. We also translate 5c20: (a) such ω′ is unique (for

given ω); (b) if ω ∈ C1 then ω′ = tr(DF ) · det. In general, we call such ω′ (if
exists) the generalized exterior derivative of ω and denote it dω;

(6a1)

∫
∂U

ω =

∫
U

dω for all smooth sets U .

In terms of the function f that corresponds to ω′ according to (4e3) and the
vector field F that corresponds to ω according to (4e6) we have

(6a2) ω′ = dω ⇐⇒ f = divF .

Here is the translated Th. 5d6: if ϕ : U → V is of class C1, and ω is an
n-form on V that has the generalized exterior derivative, then the generalized
exterior derivative of ϕ∗ω exists and is equal to ϕ∗(dω).
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The case n = N − 1 = 0 is treated according to 5c21. That is, a smooth
set is a finite union of (separated) intervals; and

∫
∂U
ω = ω(b) − ω(a) when

U = (a, b) and ω is a 0-form (just a continuous function). Thus, dω exists if
and only if ω ∈ C1(R), in which case dω(x, h) = ω′(x)h.

Now we turn to (n− 1)-forms and n-forms on RN for 1 ≤ n ≤ N . 1 ≤ n ≤ N
6a3 Definition. Let U ⊂ RN be an open set, n ∈ {1, . . . , N}, ω an
(n−1)-form on U . We say that an n-form ω′ on U is the generalized exterior
derivative of ω, and write ω′ = dω, if ϕ∗ω′ is the generalized exterior deriva-
tive of ϕ∗ω (as defined by (6a1)) whenever ϕ : V → U is a map of class C1,
and V ⊂ Rn is an open set.

Uniqueness of ω′: given x ∈ U and h1, . . . , hn ∈ RN , take v and ϕ such
that ϕ(v) = x and (Dϕ)ve1 = h1, . . . , (Dϕ)ven = hn (try linear ϕ). . .

6a4 Exercise. A function f ∈ C1(U), treated as a 0-form, has the general-
ized exterior derivative df : (x, h) 7→ (Dhf)x.

Prove it.

6a5 Remark. In the special case n = N Definition 6a3 conforms to (6a1)
by the translated 5d6.

6a6 Lemma. If dω exists, then d(ϕ∗ω) exists and is equal to ϕ∗(dω).

That is; we assume that ω is an (n − 1)-form on RN , dω exists, and
ϕ ∈ C1(RM → RN); then d(ϕ∗ω) = ϕ∗(dω).

Proof. Let ψ ∈ C1(Rn → RM); we have to prove
that ψ∗(ϕ∗(dω)) = dψ∗(ϕ∗ω). We have ϕ ◦ ψ ∈
C1(Rn → RN); by 6a3, (ϕ ◦ψ)∗(dω) = d(ϕ ◦ψ)∗ω.
It remains to use the equality (ϕ◦ψ)∗ = ψ∗◦ϕ∗.

ω′0 oo
ψ∗ �

OO
d

_

ω′1 oo
ϕ∗ �

OO
d

_

ω′2OO
d

_
ω0
oo ψ
∗ � ω1

oo ϕ
∗ � ω2

6a7 Corollary (of 6a6 and 6a5). Let α be an (n−1)-form of class C1 on Rn,
ϕ ∈ C1(RN → Rn), and ω = ϕ∗α. Then dω exists and is equal to ϕ∗(dα).

6a8 Theorem. Every differential form of class C1 has the exterior derivative.

The proof is somewhat similar to the proof of Prop. 5c25. First, by 6a7,
the claim holds for all forms that are ϕ∗α for some α and ϕ (as in 6a7).
Second, if this claim holds for two forms, then it holds for their sum. It
remains to prove that arbitrary form is the sum of some forms that are ϕ∗α.
This will be done in Sect. 6b.

It may seem impossible to reduce a form on RN to forms on Rn, since the
former involves functions of N variables, and the latter only of n variables.
But recall that in the proof of 5c25 a single vector field G : (x1, . . . , xN) 7→
(x1, 0, . . . , 0) was enough! True, α is not diverse enough; however, ϕ is.
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6b Exterior derivative: calculation

By 4e17, for N = 2, n = 1 and ω ∈ C1, ω
((

x
y

)
,
(
dx
dy

))
= f1(x, y) dx +

f2(x, y) dy (as in (4e14)), we have

dω = (D1f2 −D2f1) det .

Let us do such calculation for N = 3:∣∣∣∣∣∣
F1 h1 k1

F2 h2 k2

F3 h3 k3

∣∣∣∣∣∣ = F1

∣∣∣∣h2 k2

h3 k3

∣∣∣∣− F2

∣∣∣∣h1 k1

h3 k3

∣∣∣∣+ F3

∣∣∣∣h1 k1

h2 k2

∣∣∣∣ ;

using the traditional notation

(dxi ∧ dxj)(h, k) =

∣∣∣∣hi ki
hj kj

∣∣∣∣ ,
we get

ω = F1 dx2 ∧ dx3 − F2 dx1 ∧ dx3 + F3 dx1 ∧ dx2 =

= f1,2 dx1 ∧ dx2 + f1,3 dx1 ∧ dx3 + f2,3 dx2 ∧ dx3 ,

where f1,2 = F3, f1,3 = −F2, f2,3 = F1; divF = D1F1 + D2F2 + D3F3 =
D1f2,3 −D2f1,3 +D3f1,2;

dω = (D1f2,3 −D2f1,3 +D3f1,2) dx1 ∧ dx2 ∧ dx3 ;

here we use also the traditional notation dx1 ∧ dx2 ∧ dx3 for det.
For higher N the calculation is similar, and gives for (N − 1)-form ω

ω =
N∑
i=1

f1,...,i−1,i+1,...,Ndx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN ;(6b1)

dω =
( N∑
i=1

(−1)i−1Dif1,...,i−1,i+1,...,N

)
dx1 ∧ . . . dxN ;(6b2)

here dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN is a special case of dxi1 ∧ · · · ∧ dxin
defined by 1 ≤ n ≤ N

(6b3)
(
dxi1 ∧ · · · ∧ dxin

)
(h1, . . . , hn) =

∣∣∣∣∣∣
h1,i1 . . . hn,i1
. . . . . . . . .
h1,in . . . hn,in

∣∣∣∣∣∣
where hi,j is the j-th coordinate of hi. Note the antisymmetry: dx2 ∧ dx1 =
−dx1 ∧ dx2; and dx1 ∧ dx1 = 0.
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6b4 Lemma. For every antisymmetric multilinear n-form L on RN ,

L =
∑

1≤m1<···<mn≤N

L(em1 , . . . , emn) dxm1 ∧ · · · ∧ dxmn .

Proof. Both sides of this formula are antisymmetric multilinear n-forms;
we have to prove that they are equal on arbitrary h1, . . . , hn ∈ RN . WLOG,
h1 = ep1 , . . . , hn = epn for some 1 ≤ p1 < · · · < pn ≤ N . It remains to note
that

(dxm1 ∧ · · · ∧ dxmn)(ep1 , . . . , epn) =

{
1 if m1 = p1, . . . ,mn = pn,

0 otherwise.

It follows that for every (differential) n-form ω on RN ,

(6b5)
ω =

∑
1≤m1<···<mn≤N

fm1,...,mn(x) dxm1 ∧ · · · ∧ dxmn ,

fm1,...,mn(x) = ω(x, em1 , . . . , emn) .

In particular, the volume form on Rn is

det = dx1 ∧ · · · ∧ dxn .

Its pullback is of special interest, and deserves a special notation:

(6b6) dϕ1 ∧ · · · ∧ dϕn = ϕ∗(dx1 ∧ · · · ∧ dxn)

for ϕ : x 7→
(
ϕ1(x), . . . , ϕn(x)

)
, ϕ ∈ C1(RN → Rn). That is,

(dϕ1 ∧ · · · ∧ dϕn)(·, h1, . . . , hn) = det(Dh1ϕ, . . . , Dhnϕ) =

= det
(
Dhiϕj

)
i,j = det〈∇ϕj, hi〉i,j .

The notation is consistent: if ϕ(x1, . . . , xN) = (x1, . . . , xn), then dϕ1 ∧
· · · ∧ dϕn = dx1 ∧ · · · ∧ dxn, since Dϕ = ϕ. Similarly, if ϕ(x1, . . . , xN) =
(xi1 , . . . , xin), then dϕ1 ∧ · · · ∧ dϕn = dxi1 ∧ · · · ∧ dxin .

In particular, for ϕ ∈ C1(RN → RN) we have

(6b7) dϕ1 ∧ · · · ∧ dϕN = (detDϕ)(dx1 ∧ · · · ∧ dxN) .

On the other hand, for ϕ ∈ C1(RN → R) we have (dϕ)(·, h) = 〈∇ϕ, h〉 =
(D1ϕ)h1 + · · ·+ (DNϕ)hN , that is,

(6b8) dϕ = (D1ϕ) dx1 + · · ·+ (DNϕ) dxN .
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More generally, for arbitrary 1-forms ω1, . . . , ωn one defines

(6b9) (ω1 ∧ · · · ∧ ωn)(x, h1, . . . , hn) = det
(
ωi(x, hj)

)
i,j .

What about d(det), that is, d(dx1 ∧ · · · ∧ dxn)? If it exists, it must be 0,
just because 0 is the only (n + 1)-form on Rn; but for now we do not know
that it exists.

6b10 Proposition. d(det) = 0.

n = N − 1It means, dϕ∗(dx1 ∧ · · · ∧ dxn) = 0 for every ϕ ∈ C1(RN → Rn) where
N = n+ 1. That is, d(dϕ1 ∧ · · · ∧ dϕn) = 0.

6b11 Lemma. For arbitrary a1, . . . , an, b1, . . . , bn ∈ Rn+1, 1

det
(
〈ai, bj〉

)
i,j = 〈a1 × · · · × an, b1 × · · · × bn〉 .

Proof. Both sides of this formula are antisymmetric multilinear n-forms in
a1, . . . , an (for given b1, . . . , bn). Thus, WLOG, a1 = ep1 , . . . , an = epn for
some 1 ≤ p1 < · · · < pn ≤ n + 1. Similarly, b1 = eq1 , . . . , bn = eqn for some
1 ≤ q1 < · · · < qn ≤ n + 1. Now, both sides equal 1 if p1 = q1, . . . , pn = qn,
otherwise 0.

6b12 Lemma. The n-form dϕ1∧ · · · ∧ dϕn on RN corresponds to the vector
field ∇ϕ1 × · · · × ∇ϕn. n = N − 1

Proof. 〈∇ϕ1 × · · · × ∇ϕn, h1 × · · · × hn〉 = det
(
〈∇ϕi, hj〉

)
i,j = (dϕ1 ∧ · · · ∧

dϕn)(·, h1, . . . , hn).

Proof of Prop. 6b10. Follows immediately from 6b12, (6a2) and 5c24: div(∇ϕ1×
· · · × ∇ϕn) = 0.

6b13 Corollary (of 6b10, 6a6 and (6b6)). 1 ≤ n ≤ N

d(dϕ1 ∧ · · · ∧ dϕn) = 0 for all ϕ1, . . . , ϕn ∈ C1(RN) .

We see that all n-forms on RN that are dϕ1 ∧ · · · ∧ dϕn, and their sums,
have (generalized exterior) derivatives (equal zero). But this is surely not
the general case, since generally the derivative is not 0. According to 6b4, in
order to get everything, it is sufficient to get ϕ1 dϕ2 ∧ · · · ∧ dϕn.

6b14 Proposition. d(x1 dx2 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn.

1This determinant could be called “cross-Gramian”.
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It means, dϕ∗(x1 dx2 ∧ · · · ∧ dxn) = ϕ∗(dx1 ∧ · · · ∧ dxn) for every ϕ ∈
C1(Rn → Rn). That is,

(6b15) d(ϕ1 dϕ2 ∧ · · · ∧ dϕn) = dϕ1 ∧ · · · ∧ dϕn .

6b16 Exercise. The (n− 1)-form ϕ1 dϕ2 ∧ · · · ∧ dϕn on Rn corresponds to
the vector field ϕ1∇ϕ2 × · · · × ∇ϕn.

Prove it.1

Proof of Prop. 6b14. Follows immediately from 6b16, (6a2), (6b7) and 5c24:
div(ϕ1∇ϕ2 × · · · × ∇ϕn) = det(Dϕ).

Theorem 6a8 is thus proved.
Moreover, an arbitrary (n− 1)-form ω of class C1 being (6b5), we get dω

from (6b15):

(6b17) dω =
∑

1≤m1<···<mn−1≤N

dfm1,...,mn−1 ∧ dxm1 ∧ · · · ∧ dxmn−1 .

Taking into account that dfm1,...,mn−1 =
∑N

k=1

(
Dkfm1,...,mn−1)dxk we get

(6b18) dω =
∑

1≤m1<···<mn≤N

gm1,...,mn dxm1 ∧ · · · ∧ dxmn where

gm1,...,mn =
n∑
i=1

(−1)i−1Dmifm1,...,mi−1,mi+1,...,mn

(think, why); for n = N − 1 if was seen before: (6b1), (6b2).
This (6b18) is called the (classical, not generalized) exterior derivative of

a form of class C1. We see that the classical exterior derivative is the special
case of the generalized exterior derivative for the forms of class C1.

6b19 Corollary (of 6a6 and Th. 6a8). (a) d(ϕ∗ω) = ϕ∗(dω) whenever dω
exists and ϕ ∈ C1;

(b) if ω, ϕ ∈ C1, then dω is classical, but d(ϕ∗ω) is (generally) not;
(c) if ω ∈ C1 and ϕ ∈ C2, then dω and d(ϕ∗ω) are classical.

6b20 Corollary (of 6b13 and (6b17)).

d(dω) = 0 for all n-forms ω of class C1.

A wonder: no second (and higher) exterior derivatives, at all!

1Hint: similar to 6b12.
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6c Stokes’ theorem

1 ≤ n ≤ NRecall (5a17):
∫

Γ
ω =

∫
B◦

Γ∗ω for arbitrary singular n-box Γ and n-form
ω. Also, we define

(6c1)

∫
∂Γ

ω =

∫
∂B\Z

Γ∗ω

for (n− 1)-forms ω. (As before, ∂B \ Z is the union of the 2n hyperfaces of
B; also, Γ∗ω extends from B◦ to ∂B by continuity.)

6c2 Theorem (Stokes’ theorem).∫
Γ

dω =

∫
∂Γ

ω

for every (n− 1)-form ω of class C1 on RN and singular n-box Γ in RN .

Proof. By 6a3, d(Γ∗ω) = Γ∗(dω) on B◦. By (6a2), f = divF on B◦, where
F corresponds to Γ∗ω according to (4e6), and f corresponds to Γ∗(dω) accord-
ing to (4e3). Similarly to the proof of Th. 5d8 it follows that

∫
∂B\Z〈F,n〉 =∫

B
f , which means (by (4e7), (4e4))

∫
∂B\Z Γ∗ω =

∫
B

Γ∗(dω), that is,
∫

Γ
dω =∫

∂Γ
ω.

6c3 Remark. The theorem still holds (with the same proof) when dω is the
generalized exterior derivative of an (n− 1)-form ω of class C0.

6d Order 0 and order 1

Recall the integral of a 1-form over a path.
First, Sect. 1c (between 1c12 and 1c13):∫

γ

ω =

∫ t1

t0

(
(f1 ◦ γ) dγ1 + · · ·+ (fN ◦ γ) dγN

)
for ω = f1 dx1 + · · · + fN dxN and γ(t) =

(
γ1(t), . . . , γN(t)

)
, t ∈ [t0, t1]; here

dγk = γ′k dt.
Second, (5a14): ∫

γ

ω =

∫
(t0,t1)

γ∗ω .

Indeed, the formula ϕ∗(fω) = (ϕ∗f)(ϕ∗ω) = (f ◦ ϕ)(ϕ∗ω) (5a12) gives
γ∗(fk dxk) = (fk ◦ γ) dγk = (fk ◦ γ)γ′k dt, whence

γ∗ω = (f1 ◦ γ)γ′1 dt+ · · ·+ (fN ◦ γ)γ′N dt ,
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and
∫

(t0,t1)
γ∗ω =

∫
γ
ω, as it should be.

Now we take ω = dϕ (see (6b8)) for a function ϕ ∈ C1(RN) treated
as a 0-form: (γ∗ω)(t, dt) = (D1ϕ)γ(t)γ

′
1(t) dt + · · · + (DNϕ)γ(t)γ

′
N(t) dt =

(ϕ ◦ γ)′(t) dt, thus,∫
γ

dϕ =

∫ t1

t0

(ϕ ◦ γ)′(t) dt = ϕ(γ(t1))− ϕ(γ(t0)) .

The integral depends on the values of ϕ at the endpoints only!
On the other hand,

∫
∂γ
ϕ =

∫
∂[to,t1]

γ∗ϕ = ϕ(γ(t1))−ϕ(γ(t0)) (as explained

before 6a3), and we get ∫
∂γ

ϕ =

∫
γ

dϕ ,

as it should be.

. . . . . . . . . . . . . . . . . . . . . . . . . . . Vector calculus . . . . . . . . . . . . . . . . . . . . . . . . . . .

Recall visualization of 1-forms by vector fields (Sect. 5b, “Facet 2”): F
corresponds to ω when ω(x, h) = 〈F (x), h〉; that is, a form ω = f1 dx1 + · · ·+
fN dxN corresponds to vector field F (x) =

(
f1(x), . . . , fN(x)

)
, and∫

γ

ω =

∫ t1

t0

〈F (γ(t)), γ′(t)〉 dt ;

the latter is called the integral1 of a vector field F along a path γ. In some
sense it measures how much the vector field is aligned with the path.2 (If F
is orthogonal to γ then this integral vanishes.) If the path γ is closed then
this integral is called circulation of F around γ and denoted

∮
; it indicates

how much the vector field tends to circulate around γ.
Clearly, ∣∣∣∣ ∫

γ

ω

∣∣∣∣ ≤ (max
t
|F (γ(t))|

)∫ t1

t0

|γ′(t)| dt︸ ︷︷ ︸
length(γ)

,

the length of the path times the upper bound on the vector field.
If ω = dϕ, then F = ∇ϕ,

〈∇ϕ(γ(t)), γ′(t)〉 =
(
Dγ′(t)ϕ

)
γ(t) =

d

dt
ϕ(γ(t)) ,∫ t1

t0

〈∇ϕ(γ(t)), γ′(t)〉 dt = ϕ
(
γ(t1)

)
− ϕ

(
γ(t0)

)
.

1Also “line integral” or “flow integral”.
2Nice formulation from mathinsight.

http://mathinsight.org/line_integral_circulation
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Thus,

∣∣ϕ(γ(t1)
)
− ϕ

(
γ(t0)

)∣∣ ≤ (max
t
|∇ϕ(γ(t))|

)∫ t1

t0

|γ′(t)| dt︸ ︷︷ ︸
length(γ)

,

In particular, if ∇ϕ = 0, then ϕ = const on each connected component of its
domain, of course.

6e Order 1 and order 2

For a 1-form ω = f1 dx1 + · · ·+ fN dxN of class C1,

dω = df1 ∧ dx1 + · · ·+ dfN ∧ dxN =
∑
i<j

(Difj −Djfi) dxi ∧ dxj .

In particular, if ω = dϕ for some ϕ ∈ C2(RN), then dω = 0, since Difj −
Djfi = DiDjϕ − DjDiϕ = 0. Moreover, d(dϕ) = 0 (generalized. . . ) for all
ϕ ∈ C1(RN) by 6b20.

. . . . . . . . . . . . . . . . . . . . . . . . . . Dimension N = 2 . . . . . . . . . . . . . . . . . . . . . . . . . .

Here ω = f1 dx1 + f2 dx2;

dω = (D2f1) dx2 ∧ dx1 + (D1f2) dx1 ∧ dx2 = (D1f2 −D2f1) dx1 ∧ dx2 ,

as was seen in 4e17.
Thus, Stokes’ theorem

∫
Γ
dω =

∫
∂Γ
ω, that is,

∫
Γ
(D1f2 − D2f1) dx1 ∧

dx2 =
∫
∂Γ

(f1 dx1 + f2 dx2), is a “singular” counterpart of Green’s theorem∫
U

(D1f2 −D2f1) dx1 ∧ dx2 =
∫
∂U

(f1 dx1 + f2 dx2) mentioned in 4e17.
Denoting the given 2-box by ABCD we have∫

∂Γ

ω =

(∫
AB

+

∫
BC

+

∫
CD

+

∫
DA

)
ω

A B

D C

(think, why); in this sense ∂(ABCD) = AB + BC + CD + DA = AB +
BC −DC − AD, a formal linear combination of 1-boxes, so-called 1-chain;
it may also be treated as a (piecewise smooth) path γ = ∂Γ.

. . . . . . . . . . . . . . . . . . . . . . Vector calculus for N = 2 . . . . . . . . . . . . . . . . . . . . . .

Dimension 2 is special: 1-forms and (N − 1)-forms are the same when
N = 2. In 4e14 the 1-form ω = f1 dx1+f2 dx2 was treated as an (N − 1)-form
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that corresponds to vector fieldH(x) =
(
f2(x),−f1(x)

)
(“Facet 3” in Sect. 5b);

then, treating ∂Γ as a path γ, we have∫
∂Γ

ω =

∫
γ

(−H2 dx1 +H1 dx2) =

∫ t1

t0

(H1γ
′
2 −H2γ

′
1) dt = flux

by 4e12. Also, divH = D1H1 + D2H2 = D1f2 − D2f1, that is, dω =
(divH) dx1 ∧ dx2. Thus, Stokes’ theorem

∫
Γ
dω =

∫
∂Γ
ω turns into the “sin-

gular” divergence theorem: the flux of H through ∂Γ is equal to the integral
of divH over Γ.

Alternatively we may visualize the 1-form ω = f1 dx1 + f2 dx2 by the
vector field E(x) =

(
f1(x), f2(x)

)
(“Facet 2” in Sect. 5b), then

∫
∂Γ
ω is the

circulation of E around ∂Γ; as was noted, Stokes’ theorem gives a “singular”
generalization of Green’s theorem:∮

∂Γ

(E1 dx+ E2 dy) =

∫
Γ

(D1E2 −D2E1) dxdy .

Clearly, ∣∣∣∣ ∮
∂Γ

(E1 dx+ E2 dy)

∣∣∣∣ ≤ (max |D1E2 −D2E1|
)

area(Γ) ,

where area(Γ) =
∫
B
JΓ, JΓ being the (generalized) Jacobian (introduced in

Sect. 2c).
Note that rotation by +π/2 turns H(x) into E(x).

. . . . . . . . . . . . . . . . . . . . . . . . . . Dimension N = 3 . . . . . . . . . . . . . . . . . . . . . . . . . .

Here ω = f1 dx1 + f2 dx2 + f3 dx3; dω =

(D2f1 dx2+D3f1 dx3)∧dx1+(D3f2 dx3+D1f2 dx1)∧dx2+(D1f3 dx1+D2f3 dx2)∧dx3

= (D1f2−D2f1)dx1∧dx2+(D2f3−D3f2)dx2∧dx3+(D3f1−D1f3)dx3∧dx1 .

. . . . . . . . . . . . . . . . . . . . . . Vector calculus for N = 3 . . . . . . . . . . . . . . . . . . . . . .

Dimension 3 is special, too: the four special cases n = 0, n = 1, n = N−1,
n = N exhaust all n = 0, . . . , N when N = 3. Thus, all n-forms are visualized
easily: 0-forms and 3-forms by functions, 1-forms and 2-forms by vector fields
(using “Facet 2” and “Facet 3” in Sect. 5b, respectively).

Denoting by E the vector field that corresponds to ω and by H the vector
field that corresponds to dω we have

H = curlE ,
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the curl being defined by

H1 = D2E3 −D3E2 , H2 = D3E1 −D1E3 , H3 = D1E2 −D2E1

where H = (H1, H2, H3) and E = (E1, E2, E3). Compare it with the cross
product of two 3-dimensional vectors (mentioned in 2b17(c), generalized in
(4e5)):

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

Physicists like to say that curlE = D×E where D is the “vector” (D1, D2, D3).
In particular, if ω = dϕ for some ϕ ∈ C2(R3), then E = ∇ϕ and curlE =

curl∇ϕ = 0 (since DiEj −DjEi = DiDjϕ−DjDiϕ = 0), which is a special
case of 6b20.

If a 2-box Γ : B → R3 is such that Γ(B◦) ⊂ R3 is a 2-manifold and
(B◦,Γ|B◦) is its chart, then

∫
Γ
dω is the flux of H through Γ(B◦) by (4e7).

More generally, we call
∫

Γ
dω the flux of H through the singular 2-box Γ.

Similarly to “vector calculus for N = 2”,
∫
∂Γ
ω is the circulation of

E around ∂Γ. Stokes’ theorem
∫

Γ
dω =

∫
∂Γ
ω turns into the “classical

Stokes’ theorem” (also known as “Kelvin-Stokes theorem”, “curl theorem”
and “Stokes’ formula”):

(6e1) the circulation of E around ∂Γ

is equal to the flux of curlE through Γ

for every vector field E (of class C1) on R3 and every singular 2-box Γ in R3.
In this sense, the curl is the circulation density, called also “vor-
ticity” (and its flux is called also the net vorticity of E through-
out Γ). A small paddle-wheel in the flow spins the fastest when
its axle points in the direction of the curl vector (of the velocity
field, recall “Facet 1” in Sect. 5b), and in this case its angular
speed is half the length of the curl vector.1

It follows from (6e1) that

(6e2)

∣∣∣∣ ∮
∂Γ

E

∣∣∣∣ ≤ (max | curlE|
)
area(Γ) .

In addition, Stokes’ theorem for 2-forms and 3-forms in R3, being a special
case of Stokes’ theorem for (N − 1)-forms and N -forms in RN , boils down to

1Shifrin p. 394.
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the divergence theorem for singular boxes, 5d8. We summarize.

(6e3)

0-form oo id //

d
��

function

∇
��

1-form oo “Facet 2” //

d
��

vector field (E)

curl
��

2-form oo “Facet 3” //

d
��

vector field (H)

div
��

3-form oo
ω = f dx1 ∧ dx2 ∧ dx3 // function

The general formula d(dω) = 0 implies two less general formulas

(6e4) curl(∇f) = 0 , div(curlE) = 0 .

6e5 Exercise. Let α, β be 1-forms on R3, and ω a 2-form on R3. Translate
the relation α ∧ β = ω (6b9) into the language of vector calculus (that is, of
the vector fields E,F,H that correspond to α, β, ω).

6e6 Exercise. d(ϕω) = dϕ ∧ ω + ϕdω for all ϕ ∈ C1(RN) and 1-forms ω of
class C1 on RN .

Prove it.

6e7 Exercise. For N = 3 translate 6e6 into the language of vector calculus.

6e8 Exercise. 1 ≤ n ≤ N(a) If an n-box Γ : B → RN satisfies ∀u ∈ ∂B Γ(u) = 0,
then

∫
Γ
dω = 0 for all (n− 1)-forms ω of class C1 on RN .

(b) If ϕ : C1(Rn → RN) has a bounded support, then
∫
Rn ϕ

∗(dω) = 0 for
all (n− 1)-forms ω of class C1 on RN .

Prove it.

6e9 Remark. Applying 6e8(b) to n = N and ω = x1 dx2 ∧ · · · ∧ dxn we get
another proof1 to (3a3)

∫
det(Dϕ) = 0.

6e10 Exercise. Generalize 6e8 to Γ such that Γ(∂B) ⊂M for some manifold
M ⊂ RN of dimension n− 2 (or less), assuming n ≥ 2.

6e11 Exercise. Let a vector field E (of class C1) on R3 satisfy〈
curlE

(
x
y
z

)
,
(
x
y
z

)〉
= 0 whenever x2 + y2 + z2 = 1, z > −0.9 ;

1For the first proof see 5c10.
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prove that
∫
γz
E = 0 for all z ∈ (−0.9, 1), where γz(t) =

(√
1−z2 cos t√
1−z2 sin t

z

)
for

t ∈ [0, 2π].

6e12 Exercise. Let a vector field E (of class C1) on R3 satisfy〈
curlE

(
x
y
z

)
,
(
x
y
z

)〉
= 0 whenever x2 + y2 + z2 = 1, −0.9 < z < 0.9 ;

prove that
∫
γz
E does not depend on z ∈ (−0.9, 0.9); here γz is the same as

in 6e11.

6e13 Exercise. Consider a vector field

E
(
x
y
z

)
=
( −yf(√x2+y2)

xf(
√
x2+y2)
0

)
, that is, E

(
r cos θ
r sin θ
z

)
=
( rf(r) cos(θ+π

2
)

rf(r) sin(θ+π
2

)
0

)
for a function f : [0,∞)→ R of class C1.

(a) Check that E is of class C1, and

curlE
(
x
y
z

)
=
( 0

0√
x2+y2f ′(

√
x2+y2)+2f(

√
x2+y2)

)
, that is,

curlE
(
r cos θ
r sin θ
z

)
=
(

0
0

rf ′(r)+2f(r)

)
.

(b) Given ε > 0, construct f such that

rf ′(r) + 2f(r) > 0 for r ∈ (0, ε) ,

rf ′(r) + 2f(r) = 0 for r ∈ [ε,∞) .

(c) Conclude that
∫
γz
E in 6e12 need not vanish.

6e14 Exercise. Let a vector field E (of class C1) on R3 satisfy

curlE
(
r cos θ
r sin θ
1/r

)
= 0 for all r > 0, θ ∈ [0, 2π] ,

and in addition, |E(x, y, z)| = o
(√

x2 + y2 + z2
)

as x2 +y2 +z2 →∞. Prove

that
∫
γr
E = 0 for all r > 0; here γr(t) =

(
r cos t
r sin t
1/r

)
for t ∈ [0, 2π].
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A Möbius strip may be defined as such a surface:{( (R+rs cos θ
2

) cos θ

(R+rs cos θ
2

) sin θ

rs sin θ
2

)
: s ∈ [−1, 1], θ ∈ [0, 2π]

}
,

for given R > r > 0.1 Its boundary is a curve {γ(t) : t ∈ [0, 4π]},

γ(t) =

(
(R+r cos t

2
) cos t

(R+r cos t
2

) sin t

r sin t
2

)
.

6e15 Exercise. For γ as above and E of 6e13,
(a) check that

〈E(γ(t)), γ′(t)〉 = (R + r cos t
2
)f(R + r cos t

2
) ;

(b) choose f such that curlE = 0 on the Möbius strip, but
∫
γ
E > 0;

(c) does it contradict Stokes’ theorem? Explain.
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1Images from Wikipedia.
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