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Change of variables is the most powerful tool for calculating multidimen-
sional integrals (in particular, volumes). Integration, differentiation (diffeo-
morphism, its derivative) and linear algebra (the determinant) are all rele-
vant.

8a Introduction

The area of a disk {(z,y) : 2 + y? < 1} ¢ R? may be calculated by iterated

integral,
1 Vi-22 1
f dx/ dy:/ WI-2dr=...
-1 - -1

V1-z2
or alternatively, in polar coordinates,

1 2 1
f rdrf d@z[ 2rrdr =m;
0 0 0

the latter way is much easier! Note “rdr” rather than “dr” (otherwise we
would get 27 instead of 7).

Why the factor 7 In analogy to the one-dimensional theory we may
expect something like %; is it 7 Well, basically, it is r because an in-
finitesimal rectangle [r,r + dr] x [6,60 + df] of area dr-df on the (r,6)-plane

corresponds to an infinitesimal rectangle or area dr-rdf on the (z,y)-plane.

rdf

dr
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Here we use the mapping ¢ : (r,0) = (rcosf,rsinf), and r is |det(Dg) ;9|
(see Exer. [8b2). Some authors! denote det(D¢) by J¢ and call it the Jaco-
bian of . Some? denote det(Dyp) by A, and call it the Jacobian determinant
(of the Jacobian matrix J,). Others? leave det(Dy) as is. Here is a general
result, to be proved in Sect.

8al Theorem. Let U,V c R" be admissible open sets, ¢ : U - V a dif-
feomorphism, and f : V — R a bounded function such that the function
(fop)det Dy|: U - R is also bounded. Then*

(a) (f is integrable on V) <= (f o ¢ is integrable on U) <=
((f o p)|det Dyl is integrable on U);

(b) if they are integrable, then

[ 5= [ (repldetnyl.

8a2 Remark. Applying Th. to a linear ¢ : R” - R™ we get Th. 7cl
(for integrable functions). On the other hand, Th. 7cl is instrumental in the

proof of Th. [Bal]

8a3 Remark. Applying Th. to indicator functions f, we get:

(a) if det Dy is bounded, then v(V) = [, |det De;

(b) if det Dy is bounded on an admissible set £ c U, then ¢(FE) is ad-
missible, and v(¢(E)) = [, |det D).

8a4 Remark. (a) If det Dy is bounded, then boundedness of f implies
boundedness of (f o p)|det Dyl;

(b) if det Dy is bounded away from 0, then boundedness of (fog)|det Dy|
implies boundedness of f;

(¢) f has a compact support within V' ® if and only if (f o p)|det Dip| has
a compact support within U, and in this case boundedness of f is equivalent
to boundedness of (f o p)|det Dyl (since det Dy is bounded, and bounded
away from 0, on the support).

Unbounded functions will be treated (in Sect. 9) by improper integral.
The proof of Theorem [8al], rather complicated, occupies Sections
Some authors® decompose an arbitrary diffeomorphism (locally) into the

I Burkill.

2Lang.

3Hubbard, Shifrin, Shurman, Zorich.

4Recall Def. 4d5.

°Tt means existence of a compact K c V such that f(-)=0on V \ K.
6Shurman, Zorich.
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composition of diffeomorphisms that preserve a part of the coordinates, and
use the iterated integral. Some! introduce the derivative of a set function and
prove that |det Dy| is the derivative of E ~ v(p(E)). Others? reduce the
general case to indicators of small cubes and use the linear approximation.
We do it this way, too.

8b Examples
In this section we take for granted Theorem [8al] (to be proved in Sect. [8f).
8b1 Exercise. Show that 5d4 and 5d5 are special cases of [Bal]

8b2 Exercise (polar coordinates in R?). (a) Prove that

f flx,y)dady = f(rcos@,rsinf)rdrdd
z2+y2<R? 0<r<R,0<0<2m

for every integrable function f on the disk 22 +y? < R?%;3
(b) it can happen that the function (r,0) ~ r f(r cosf,rsin#) is integrable
on (0, R)x(0,2x), but f is not integrable on the disk; find a counterexample;
(c) however, (b) cannot happen if f is bounded on the disk; prove it.*

In particular, we have now the “curvilinear Cavalieri principle for con-
centric circles” promised in 5e9.

8b3 Exercise (spherical coordinates in R3). Consider the mapping ¥ : R3 —
R3, W(r,¢,0) = (rcospsind, rsinpsinb, rcosf).

(a) Draw the images of the planes r = const, ¢ = const, 6 = const, and of
the lines (p,0) = const, (r,0) = const, (r,p) = const.

(b) Show that WU is surjective but not injective.

(¢) Show that |det DU| = r2sinf. Find the points (r,¢, ), where the
operator DV is invertible.

(d) Let V' = (0,00) x (=, m) x (0,7). Prove that ¥|y is injective. Find
U=9(V).

1 Burkill.

2Hubbard, Lang, Shifrin.

3Do you use a diffeomorphism between (0, R) x (0,27) and the disk? (Look closely!)
4Do not forget: Theorem is taken for granted.
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8b4 Exercise. Compute the integral [J dzdydz

224+y2+(2-2)2<1 z2+y2+22°
Answer: w (2 - 3log 3). 1

8b5 Exercise. Compute the integral [f % over one loop of the lem-

niscate (% +y?)? =22 —y>2.2

8b6 Exercise. Compute the integral over the four-dimensional unit ball:
x2+y27u271;2d dydud 3

ffffx2+y2+u2+v2£16 rdyduduv.

8b7 Exercise. Compute the integral [[ |zyz|dzdydz over the ellipsoid {z?/a?+
y? b+ 22[c? < 1}.

a?b%c? 4

Answer:

The centroid® of an admissible set £ ¢ R™ of non-zero volume is the point
Cg € R™ such that for every linear (or affine) f:R” - R the mean of f on F
(recall the end of Sect. 4d) is equal to f(Cg). That is,

1
CE—m(/Exldx,...,fExndx),

which is often abbreviated to Cg = ﬁ [pxde.

8b8 Exercise. Find the centroids of the following bodies in R3:

(a) The cone {(z,y,z) : hn/2? + y?> < z < h} for a given h > 0.

(b) The tetrahedron bounded by the three coordinate planes and the
plane £ + %+ 2 =1.

(¢) The hemispherical shell {a? < 22 +y2 + 22 <b?, 2> 0}.

(d) The octant of the ellipsoid {x?/a? + y2/0? + 22[c? < 1, x,y,z > 0}.

The solid torus in R3 with minor radius r and major radius R (for 0 <
r < R < 00) is the set

Q={(z,y,2): (Va2 +y2-R)?*+22<r?} cR?
generated by rotating the disk
Q={(z,2): (x-R)?+ 22 <r?} cR?

1173 r2+3
Hint: 1 <r <3; cosf > ==,

2Hints: use polar coordinates; —
de  _
/ conr 5 = tan . .
3Hint: The integral equals Jaziyecr €Y (j[u2+v251,(x2+y
use the polar coordinates.
4Hint: 4h3 can help.
°In other words, the barycenter of (the uniform distribution on) E.

s

T<p<T 0<r<y/cos2p; 1+ cos2p = 2 cos? p;

2) e (w?+v?) dudv) daxdy. Now
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on the (z,z) plane (with the center (R,0) and radius r) about the z axis.

Interestingly, the volume 272Rr? of Q is equal to the area 2 of Q multiplied
by the distance 27 R traveled by the center of Q. (Thus, it is also equal to
the volume of the cylinder {(z,y,2) : (x,2) € Q, y € [0,27R].) Moreover, this
is a special case of a general property of all solids of revolution.

8b9 Proposition (the second Pappus’s centroid theorem). 12 Let € c
(0,00) x R ¢ R? be an admissible set and Q2 = {(z,y,2) : (\/x2+y2,z) €
Q} c R3. Then € is admissible, and

v3() = v2(Q) - 27wy ;
here Cq = (¢, 2¢,,) 1s the centroid of .

8b10 Exercise. Prove Prop. 3

8c Measure 0 is preserved

8cl Proposition. Let U,V c R™ be open sets, and ¢ : U - V diffeomor-
phism. Then, for every set Z c U,

(Z has measure 0) <= (p(Z) has measure 0).

Recall Def. 6¢1.

8c2 Lemma. The following three conditions on a set Z c R” are equivalent:
(a) for every e > 0 there exist pixels @; = 27V:([0,1]” + k;) such that
ZcUZ Qi and Y2 v(Qi) <&

'Pappus of Alexandria (» 0290-0350) was one of the last great Greek mathematicians
of Antiquity.

2The first Pappus’s centroid theorem, about surface area, has to wait for Analysis 4.

3Hint: use cylindrical coordinates: W(r,p, z) = (rcosp,rsinp, 2).
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(b) Z has measure 0;
(c) for every € > 0 there exist admissible sets Ej, Fa,--- ¢ R™ such that
ZcUZ By and ¥2 v(E;) <e.

Proof. Clearly, (a)=—(b)==(c); we’ll prove that (¢)=(a).

First, recall Sect. 4d: for every admissible E we have v(E) = v*(FE) =
limy Uy (1g), and Uy (1g) is the total volume of all N-pixels that intersect
E. Given ¢ > 0, we take N such that Uy (1) < v(E) +¢, denote the N-pixels
that intersect E by Q1,...,Q; and get E' c Q1U---uQ; and v(Q1)+--+v(Q;) <
v(E) +e.

Now we prove that (¢c)==(a). Given E; as in (c¢) and € > 0, we take ¢; > 0
such that };&; < ¢, and for each i we take pixels Q;1,...,Q;  such that
E;cQiau---uQ;j, and v(Q;1) +---+0v(Q; ;) <v(E;)+¢;. Then Z cU; E; c
Ui(Qia U+ U Qi) and ¥;(v(Qin) +++v(Qij,)) € Ti(v(Ey) +&;) < 2e. Tt

remains to enumerate all these @); ; by a single index. O

Fuclidean metric is convenient when working with balls, not cubes. An-
)
other norm (Called “cubical norm” or “sup—norm”),

|z|g = max(|z1|, ..., |xn]) for x = (zq,...,2,) e R"

becomes more convenient, since its “ball” {z : |z|, < r} is a cube (of volume
(2r)"), and is equivalent to the Euclidean norm, since ﬁ|x| < zlg < |z
(Some authors! use the cubic norm; others,? using FEuclidean norm, complain
about “pesky \/n”.) The corresponding operator norm (recall 1f11),

| Ax

[
| Al = sup —— = max |Az|,,
eerr |T]g  lzla<t

is also equivalent to the usual operator norm.

8c3 Exercise. Prove the cubical-norm counterpart of (1f31):3

[£(0) = f(a)|o < Clo-als it [Df()]s < C on [a,b].

Proof of Prop.[8c]] 1t is sufficient to prove “="; applied to ¢! it gives “<”.

We consider the pixels @ =27V ([0,1]* + k) for all N and all k € Z" such
that Q c U. They are a countable set,* and their union is the whole U. Thus,
Z is the union of countably many sets Z n () of measure 0, and ¢(2) is the

1Shifrin, Sect. 7.6 (explicitly); Lang, p. 590 (implicitly).
2Hubbard, after Prop. A19.3.

3Surprisingly, this is simpler than (1£31).

4Many of them are redundant, but this is harmless.
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union of countably many sets p(Z n Q). By 6¢2 it is sufficient to prove that
each ¢(Z N Q) has measure 0.

By compactness, the exists M such that | Dy(z)|, < M for all x € Q. By
lo(@) - () o < Mz -yl for all 2,y € Q.

Given ¢ > 0, using we take pixels Q; = 27Vi([0,1]™ + k;) such that
ZnQclU;Q; and ¥, v(Q;) <e. WLOG, Q; c Q.

For all z € Q; we have |p(x) — p(27Nik;)| g < M|z —27Nik;|, < 27N M,
thus, ¢(Q;) is contained in a cube of volume (2-2-N:M)" = (2M)"v(Q;),*
and therefore p(Z n @) is contained in the union of cubes of total volume
< (2M)"e, which shows that ¢(Z n @) has measure 0. O

Here is a lemma needed (in addition to[8cI)) in order to prove Th.[gal|(a).

8c4 Lemma. Let E c R" be an admissible set, and f : £ - R a bounded
function. Then f is integrable on F if and only if the discontinuity points of
f on E° are a set of measure 0.

Proof. Denote by Z the set of all discontinuity points of f-1g; then ZnE° is
the set of all discontinuity points of f on E°. The difference Z~(ZnE°) c OF
has volume 0 (see 6b8(b)), therefore, measure 0. Using Lebesgue criterion
6d2,

(f is integrable on E) <= (Z has measure 0) <= (Z n E° has measure 0).

]

Proof of Item (a) of Th.[8all Denote by Z the set of all discontinuity points
of f (on V'); then ¢~1(Z) is the set of all discontinuity points of fop (on U),
since ¢ is a homeomorphism, and of (f o ¢)|det Dyp| as well, since det Dy is
continuous and never 0. By [BcI] if one of these three functions is continuous
almost everywhere, then the other two are. It remains to apply [Rcd] O

8c5 Corollary. A set £ c U is admissible if and only if ¢(E) c V' is admis-
sible.

8d Approximation from within

Here we reduce Item (b) of Theorem to such a special case (to be proved
later).

8d1 Proposition. Let U,V, ¢, f be as in Th. Bal], and in addition, f be
compactly supported within V. Then 8aljb) holds.

'Moreover, of volume M"v(Q;); never mind.
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8d2 Lemma. For every ¢ > 0 there exists admissible compact K c U satis-

fying
v(K)2vU)-¢g, v(e(K))2v(V)-¢.

Proof. Recall Sect. 4d:! v(U) = v, (U) =limy Ly(1y), and Ly(1y) is the
total volume of all N-pixels contained in U; denoting the union of these pixels
by En we have v(Ey) - v(U), and each Ey is an admissible compact subset
of U.

For every e > 0 there exists admissible compact E c U such that v(E) >
v(U) —e. Similarly, there exists an admissible compact F' c V such that
v(F) 2 v(V)-e. By @ 1(F) and ¢(F) are admissible; we take K =
EupI(F). O

Proof that Prop. implies Th.[8al[(b). We take M such that |f(y)| < M
for all y e V., and |f(p(x))det(Dy).| < M for all z e U.

We take ¢; - 0; Lemma gives K; for ¢;; we introduce functions
fi = f ]lga(Ki)7 then fz oY= (f ° 90)]11(1

We use the integral norm (recall Sect. 4e): |f - fil = [|f - fil < [ M-
Dy p(x,) £ Me;, which gives the integral convergence: f; — f as ¢ — oo.
Similarly, (f; o ¢)|det Dp| - (f o p)|det Dyl

We apply to each f; and get [8al|b) in the limit ¢ — oo, since the

integral convergence implies convergence of integrals. O

8e All we need is small volume

Now we reduce Proposition [Bd1], getting rid of the function f.

8el Proposition. Let U,V c R be open sets, ¢ : U - V a diffeomorphism,
and K c U a compact set. Then for every € > 0 there exists . > 0 such that
for all § € (0,0.] and h € R, if §(Q + h)n K # @, where () = [0,1]?, then
d(Q+h)cU and

L ue(0(@+h)))
(8e2) l-e< 57 det(Dp),| <l+e forallzed(Q+h).
Note that p(6(Q + h)) is admissible by [8ch|

Proof that Prop. implies Prop. (and therefore Th. . We have a com-
pact K c U such that f =0on V~p(K). Given € > 0, we’ll show that the two
integrals are e-close. Prop. gives 0., and we take N such that 2=V < §,

1See also the proof of
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and UN((fog0)| det Dgp|)—LN((fo<p)|det Dg0|) <e. By, for every N-pixel
() such that Qn K # @,
v(p(Q))

1-¢ex< <l+e forall ze@.
v(Q)]det(Dep)s|

That is,
(1-2)0(Q)(sup|det(Dp).l) < v(eAQ)) < (L+)o(@)(inf | det(Dp).)

WLOG, f > 0 (otherwise, take f = f* - f~). Denoting for convenience
g=(fop)|det(Dyp),| we have (below, @ runs over all N-pixels that intersect
K)

(1-2)Ly(g)=(1-¢) %U(Q)gggg(w) =
~(1-9) 5@ nf(f(e)|det(Do)]) <
<(1-¢) %v(@)(igcgf(w)))(iggmetwm) <
<T@ it ()<Y [ f= <T@ s S

yep(Q)
<(1+¢) %U(Q)(iggf(w(%)))(jﬂggldet(D@)ml) <

<(l+e) %U(Q) sxgg(f(sO(fc))l det(Dyp),|) = (1+€)Un(g) .

V}\lfe see that fvf e[(1-¢)Ln(g),(1+e)Un(g)]; also ng €[Ln(9),Un(9)];
thus,

| [ o= [ 1] € (14e)Ux(9)-(1-2) L) < (1) (Lis () +e)-(1=¢) L (9) =
=2eLy(g)+e+e* -0 ase—0.
[l

Now we reduce the proposition further, making it local, and formulated
in terms of the cubic norm.

For convenience we say that a cube Qg ¢ R" is e-good, if Qg c U, and
every sub-cube () c () satisfies

(@)
(8e3) LS L0 det(Dp)]

Clearly, every sub-cube of an e-good cube is also e-good.

<l+e forall xe@.
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8e4 Proposition. Let U,V c R be open sets, ¢ : U - V a diffeomorphism,
and xg € U. Then for every € > 0 there exists 6. > 0 such that the cube
Qo ={reR": |z -x¢|, <.} is e-good.

Proof that Prop. implies Prop. (and therefore Th. . A compact set
K c U isgiven, and € > 0. For every zy € K, gives an e-good cube Qq(xo).
Open cubes Qf(x¢) cover K. Applying 6b5 (in the cubic norm, equivalent to
the Euclidean norm) to a finite subcovering we get a covering number, denote
it 26., such that for every zy € K the cube Q1(zo) = {y: |y — xo|g < 20} is
covered by a single Q(z) and therefore is e-good. For every ¢ € (0,6.] every
cube §([0,1]"+h) that intersects K at some x is contained in Q1 (zo), which

proves [Bel] O

8f Small volume in the linear approximation

Now we prove Prop. We have o : U -V, 29 € U, and £ > 0. We rewrite
(8e3)), using the linear change of variables Th. 7b3:

Cu(eQ)
L (00).(Q)

here (Dp).(Q) = {(Dy).h : h € Q}. Treating ¢ : U - R* as ¢ : U - W
where W is an n-dimensional vector space, we note that , being about
the ratio of two volumes in W, is insensitive to (arbitrary) change of basis in
W (recall the framed phrase before (7b4)). Changing the basis (similarly to
Sect. 2¢, 2d) we ensure, WLOG, that! (Dy),, = id.

Thus, |det(Dy),,| = 1. WLOG,

(8f1) <l+e foralxze@;

(8£2) 1-e<|det(Dy),|<1+e forallzelU;

otherwise we replace U with a small neighborhood of zy (using continuity of
x| det(Dy),|).
Now we may replace (8f1]) with

v(p(Q))
813 l-e<———<1+¢,
(883) o(Q)
GA@) _ e@) @  _we@) 1 g BT implies

SINCE STDaL (@) T u(@) WD @) - wQ) [ Dl
(by i)
l-e__wp@) _1+¢

L+e " o((Dg)(Q)) ~ 1-¢’
"Mind it: (D¢)s,, not (Dp),.
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which is not quite (8f1)), but we may change ¢ accordingly.
Similarly to (8f2), WLOG,

[(Dp),—id|g<e forallzelU,
and in addition, U is convex (just a ball or a cube). By [8c3]!
(8f4) [(p(b) = p(a)) - (b-a)|s <c|b-al, forallabel.

We take 0. > 0 such that, first, the cube Qo = {z € R" : |z -], < 0.} satisfies
Qo ¢ U, and second, {y € R" : |y - yo|ly < (1 +€)d:} ¢ V', where yo = ¢(z0);
this is possible, since V' is an (open) neighborhood of yj.

It is sufficient to prove that

(8f5) (1-e)"< % <(1+¢e)" for every sub-cube Q c Q.

This is not quite (8f3]), but again, we may change ¢ accordingly.
Given such @, WLOG, the center of @ is 0, and ¢(0) = 0 (since, as before,
we may shift the origins in both copies of R"). Thus,

Q={zeR": |z, <r}
for some r € (0, 4. ]; it remains to prove that

(8f6) (1-2)Qcp(@)c(1+2)Q.

By for a =0, |p(z) - x|y < €|z, for all z € U; thus, (1-¢)|z|, <
lo(@) o < (1 +e)|z]s For e @ we get [o(z)]s < (1+&)r, thus, o(z) e
(1+ )@, which proves the inclusion ¢(Q) c (1 +¢)Q. It remains to prove
the other inclusion, (1 -¢)@Q c ¢(Q).

We note that V n(1-¢)Q c o(Q), since p(z) € (1-2)Q = |p(x)]|, <
(I-e)r = (-9)zlo<(A-e)r = [z <r = zeQ.

It remains to prove that (1 —¢)@ c V; we’ll prove a bit more: that
Qcl{yeR: |y-yo|, < (1+¢€)d.} (and therefore @ c V).

The given inclusion @) c @y means that |zg|, + 7 < 0. (think, why);
similarly, the needed inclusion becomes |yo|, + 7 < (1 +¢)d.. The latter
follows from the former:

[yolla +7 = lp(zo)lo +7 < (L+ &) ol + 7 < (L+e)([zol o +7) < (1+2)dc,

which completes the proof of Prop. [8edl and therefore Theorem [Ball at last!

'Recall the proof of 2c1 (and 2c3).
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