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Change of variables is the most powerful tool for calculating multidimen-
sional integrals (in particular, volumes). Integration, differentiation (diffeo-
morphism, its derivative) and linear algebra (the determinant) are all rele-
vant.

8a Introduction

The area of a disk {(x, y) ∶ x2 + y2 < 1} ⊂ R2 may be calculated by iterated
integral,

∫

1

−1
dx∫

√

1−x2

−

√

1−x2
dy = ∫

1

−1
2
√

1 − x2 dx = . . .

or alternatively, in polar coordinates,

∫

1

0
r dr∫

2π

0
dθ = ∫

1

0
2πr dr = π ;

the latter way is much easier! Note “rdr” rather than “dr” (otherwise we
would get 2π instead of π).

Why the factor r? In analogy to the one-dimensional theory we may
expect something like dxdy

dr dθ ; is it r? Well, basically, it is r because an in-
finitesimal rectangle [r, r + dr] × [θ, θ + dθ] of area dr ⋅ dθ on the (r, θ)-plane
corresponds to an infinitesimal rectangle or area dr ⋅ rdθ on the (x, y)-plane.

dr

rdθ
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Here we use the mapping ϕ ∶ (r, θ) ↦ (r cos θ, r sin θ), and r is ∣det(Dϕ)(r,θ)∣
(see Exer. 8b2). Some authors1 denote det(Dϕ) by Jϕ and call it the Jaco-
bian of ϕ. Some2 denote det(Dϕ) by ∆ϕ and call it the Jacobian determinant
(of the Jacobian matrix Jϕ). Others3 leave det(Dϕ) as is. Here is a general
result, to be proved in Sect. 8f.

8a1 Theorem. Let U,V ⊂ Rn be admissible open sets, ϕ ∶ U → V a dif-
feomorphism, and f ∶ V → R a bounded function such that the function
(f ○ ϕ)∣detDϕ∣ ∶ U → R is also bounded. Then4

(a) (f is integrable on V ) ⇐⇒ (f ○ ϕ is integrable on U) ⇐⇒
((f ○ ϕ)∣detDϕ∣ is integrable on U);

(b) if they are integrable, then

∫
V
f = ∫

U
(f ○ ϕ)∣detDϕ∣ .

8a2 Remark. Applying Th. 8a1 to a linear ϕ ∶ Rn → Rn we get Th. 7c1
(for integrable functions). On the other hand, Th. 7c1 is instrumental in the
proof of Th. 8a1.

8a3 Remark. Applying Th. 8a1 to indicator functions f , we get:
(a) if detDϕ is bounded, then v(V ) = ∫U ∣detDϕ∣;
(b) if detDϕ is bounded on an admissible set E ⊂ U , then ϕ(E) is ad-

missible, and v(ϕ(E)) = ∫E ∣detDϕ∣.

8a4 Remark. (a) If detDϕ is bounded, then boundedness of f implies
boundedness of (f ○ ϕ)∣detDϕ∣;

(b) if detDϕ is bounded away from 0, then boundedness of (f ○ϕ)∣detDϕ∣
implies boundedness of f ;

(c) f has a compact support within V 5 if and only if (f ○ϕ)∣detDϕ∣ has
a compact support within U , and in this case boundedness of f is equivalent
to boundedness of (f ○ ϕ)∣detDϕ∣ (since detDϕ is bounded, and bounded
away from 0, on the support).

Unbounded functions will be treated (in Sect. 9) by improper integral.
The proof of Theorem 8a1, rather complicated, occupies Sections 8c–

8f. Some authors6 decompose an arbitrary diffeomorphism (locally) into the

1Burkill.
2Lang.
3Hubbard, Shifrin, Shurman, Zorich.
4Recall Def. 4d5.
5It means existence of a compact K ⊂ V such that f(⋅) = 0 on V ∖K.
6Shurman, Zorich.
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composition of diffeomorphisms that preserve a part of the coordinates, and
use the iterated integral. Some1 introduce the derivative of a set function and
prove that ∣detDϕ∣ is the derivative of E ↦ v(ϕ(E)). Others2 reduce the
general case to indicators of small cubes and use the linear approximation.
We do it this way, too.

8b Examples

In this section we take for granted Theorem 8a1 (to be proved in Sect. 8f).

8b1 Exercise. Show that 5d4 and 5d5 are special cases of 8a1.

8b2 Exercise (polar coordinates in R2). (a) Prove that

∫
x2+y2<R2

f(x, y)dxdy = ∫
0<r<R,0<θ<2π

f(r cos θ, r sin θ) r drdθ

for every integrable function f on the disk x2 + y2 < R2; 3

(b) it can happen that the function (r, θ) ↦ rf(r cos θ, r sin θ) is integrable
on (0,R)×(0,2π), but f is not integrable on the disk; find a counterexample;

(c) however, (b) cannot happen if f is bounded on the disk; prove it.4

In particular, we have now the “curvilinear Cavalieri principle for con-
centric circles” promised in 5e9.

8b3 Exercise (spherical coordinates in R3). Consider the mapping Ψ ∶ R3 →

R3, Ψ(r,ϕ, θ) = (r cosϕ sin θ, r sinϕ sin θ, r cos θ).
(a) Draw the images of the planes r = const, ϕ = const, θ = const, and of

the lines (ϕ, θ) = const, (r, θ) = const, (r,ϕ) = const.
(b) Show that Ψ is surjective but not injective.
(c) Show that ∣detDΨ∣ = r2 sin θ. Find the points (r,ϕ, θ), where the

operator DΨ is invertible.
(d) Let V = (0,∞) × (−π,π) × (0, π). Prove that Ψ∣V is injective. Find

U = Ψ(V ).

1Burkill.
2Hubbard, Lang, Shifrin.
3Do you use a diffeomorphism between (0,R) × (0,2π) and the disk? (Look closely!)
4Do not forget: Theorem 8a1 is taken for granted.
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8b4 Exercise. Compute the integral ∭x2+y2+(z−2)2≤1
dxdydz
x2+y2+z2 .

Answer: π (2 − 3
2 log 3). 1

8b5 Exercise. Compute the integral ∬
dxdy

(1+x2+y2)2
over one loop of the lem-

niscate (x2 + y2)2 = x2 − y2. 2

8b6 Exercise. Compute the integral over the four-dimensional unit ball:

∫∫∫∫x2+y2+u2+v2≤1 e
x2
+y2

−u2
−v2

dxdydudv. 3

8b7 Exercise. Compute the integral∭ ∣xyz∣dxdydz over the ellipsoid {x2/a2+

y2/b2 + z2/c2 ≤ 1}.

Answer: a2b2c2

6 . 4

The centroid5 of an admissible set E ⊂ Rn of non-zero volume is the point
CE ∈ Rn such that for every linear (or affine) f ∶ Rn → R the mean of f on E
(recall the end of Sect. 4d) is equal to f(CE). That is,

CE =
1

v(E)
(∫

E
x1 dx, . . . ,∫

E
xn dx) ,

which is often abbreviated to CE = 1
v(E) ∫E xdx.

8b8 Exercise. Find the centroids of the following bodies in R3:
(a) The cone {(x, y, z) ∶ h

√
x2 + y2 < z < h} for a given h > 0.

(b) The tetrahedron bounded by the three coordinate planes and the
plane x

a +
y
b +

z
c = 1.

(c) The hemispherical shell {a2 ≤ x2 + y2 + z2 ≤ b2, z ≥ 0}.
(d) The octant of the ellipsoid {x2/a2 + y2/b2 + z2/c2 ≤ 1, x, y, z ≥ 0}.

The solid torus in R3 with minor radius r and major radius R (for 0 <

r < R < ∞) is the set

Ω̃ = {(x, y, z) ∶ (
√
x2 + y2 −R)2 + z2 ≤ r2} ⊂ R3

generated by rotating the disk

Ω = {(x, z) ∶ (x −R)2 + z2 ≤ r2} ⊂ R2

1Hint: 1 < r < 3; cos θ > r2+3
4r

.
2Hints: use polar coordinates; −π

4
< ϕ < π

4
; 0 < r <

√
cos 2ϕ; 1 + cos 2ϕ = 2 cos2 ϕ;

∫ dϕ
cos2 ϕ

= tanϕ.
3Hint: The integral equals ∬x2+y2≤1 e

x2+y2(∬u2+v2≤1−(x2+y2) e
−(u2+v2) dudv)dxdy. Now

use the polar coordinates.
4Hint: 4h3 can help.
5In other words, the barycenter of (the uniform distribution on) E.
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on the (x, z) plane (with the center (R,0) and radius r) about the z axis.

Interestingly, the volume 2π2Rr2 of Ω̃ is equal to the area πr2 of Ω multiplied
by the distance 2πR traveled by the center of Ω. (Thus, it is also equal to
the volume of the cylinder {(x, y, z) ∶ (x, z) ∈ Ω, y ∈ [0,2πR].) Moreover, this
is a special case of a general property of all solids of revolution.

8b9 Proposition (the second Pappus’s centroid theorem). 1,2 Let Ω ⊂

(0,∞) × R ⊂ R2 be an admissible set and Ω̃ = {(x, y, z) ∶ (
√
x2 + y2, z) ∈

Ω} ⊂ R3. Then Ω̃ is admissible, and

v3(Ω̃) = v2(Ω) ⋅ 2πxCΩ
;

here CΩ = (xCΩ
, zCΩ

) is the centroid of Ω.

8b10 Exercise. Prove Prop. 8b9.3

8c Measure 0 is preserved

8c1 Proposition. Let U,V ⊂ Rn be open sets, and ϕ ∶ U → V diffeomor-
phism. Then, for every set Z ⊂ U ,

(Z has measure 0) ⇐⇒ (ϕ(Z) has measure 0) .

Recall Def. 6c1.

8c2 Lemma. The following three conditions on a set Z ⊂ Rn are equivalent:
(a) for every ε > 0 there exist pixels Qi = 2−Ni([0,1]n + ki) such that

Z ⊂ ⋃
∞

i=1Qi and ∑
∞

i=1 v(Qi) ≤ ε;

1Pappus of Alexandria (≈ 0290–0350) was one of the last great Greek mathematicians
of Antiquity.

2The first Pappus’s centroid theorem, about surface area, has to wait for Analysis 4.
3Hint: use cylindrical coordinates: Ψ(r,ϕ, z) = (r cosϕ, r sinϕ, z).
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(b) Z has measure 0;
(c) for every ε > 0 there exist admissible sets E1,E2, ⋅ ⋅ ⋅ ⊂ Rn such that

Z ⊂ ⋃
∞

i=1Ei and ∑
∞

i=1 v(Ei) ≤ ε.

Proof. Clearly, (a)Ô⇒(b)Ô⇒(c); we’ll prove that (c)Ô⇒(a).
First, recall Sect. 4d: for every admissible E we have v(E) = v∗(E) =

limN UN(1lE), and UN(1lE) is the total volume of all N -pixels that intersect
E. Given ε > 0, we take N such that UN(1lE) ≤ v(E)+ε, denote the N -pixels
that intersect E by Q1, . . . ,Qj and get E ⊂ Q1∪⋅ ⋅ ⋅∪Qj and v(Q1)+⋅ ⋅ ⋅+v(Qj) ≤

v(E) + ε.
Now we prove that (c)Ô⇒(a). Given Ei as in (c) and ε > 0, we take εi > 0

such that ∑i εi ≤ ε, and for each i we take pixels Qi,1, . . . ,Qi,ji such that
Ei ⊂ Qi,1 ∪ ⋅ ⋅ ⋅ ∪Qi,ji and v(Qi,1) + ⋅ ⋅ ⋅ + v(Qi,ji) ≤ v(Ei) + εi. Then Z ⊂ ⋃iEi ⊂

⋃i(Qi,1 ∪ ⋅ ⋅ ⋅ ∪Qi,ji) and ∑i(v(Qi,1) + ⋅ ⋅ ⋅ + v(Qi,ji)) ≤ ∑i(v(Ei) + εi) ≤ 2ε. It
remains to enumerate all these Qi,j by a single index.

Euclidean metric is convenient when working with balls, not cubes. An-
other norm (called “cubical norm” or “sup-norm”),

∥x∥◽ = max(∣x1∣, . . . , ∣xn∣) for x = (x1, . . . , xn) ∈ Rn

becomes more convenient, since its “ball” {x ∶ ∥x∥◽ ≤ r} is a cube (of volume
(2r)n), and is equivalent to the Euclidean norm, since 1

√
n
∣x∣ ≤ ∥x∥◽ ≤ ∣x∣.

(Some authors1 use the cubic norm; others,2 using Euclidean norm, complain
about “pesky

√
n”.) The corresponding operator norm (recall 1f11),

∥A∥◽ = sup
x∈Rn

∥Ax∥◽
∥x∥◽

= max
∥x∥◽≤1

∥Ax∥◽ ,

is also equivalent to the usual operator norm.

8c3 Exercise. Prove the cubical-norm counterpart of (1f31):3

∥f(b) − f(a)∥◽ ≤ C∥b − a∥◽ if ∥Df(⋅)∥◽ ≤ C on [a, b] .

Proof of Prop. 8c1. It is sufficient to prove “⇒”; applied to ϕ−1 it gives “⇐”.
We consider the pixels Q = 2−N([0,1]n + k) for all N and all k ∈ Zn such

that Q ⊂ U . They are a countable set,4 and their union is the whole U . Thus,
Z is the union of countably many sets Z ∩Q of measure 0, and ϕ(Z) is the

1Shifrin, Sect. 7.6 (explicitly); Lang, p. 590 (implicitly).
2Hubbard, after Prop. A19.3.
3Surprisingly, this is simpler than (1f31).
4Many of them are redundant, but this is harmless.
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union of countably many sets ϕ(Z ∩Q). By 6c2 it is sufficient to prove that
each ϕ(Z ∩Q) has measure 0.

By compactness, the exists M such that ∥Dϕ(x)∥◽ ≤M for all x ∈ Q. By
8c3, ∥ϕ(x) − ϕ(y)∥◽ ≤M∥x − y∥◽ for all x, y ∈ Q.

Given ε > 0, using 8c2 we take pixels Qi = 2−Ni([0,1]n + ki) such that
Z ∩Q ⊂ ⋃iQi and ∑i v(Qi) ≤ ε. WLOG, Qi ⊂ Q.

For all x ∈ Qi we have ∥ϕ(x) − ϕ(2−Niki)∥◽ ≤ M∥x − 2−Niki∥◽ ≤ 2−NiM ,
thus, ϕ(Qi) is contained in a cube of volume (2 ⋅ 2−NiM)n = (2M)nv(Qi), 1

and therefore ϕ(Z ∩ Q) is contained in the union of cubes of total volume
≤ (2M)nε, which shows that ϕ(Z ∩Q) has measure 0.

Here is a lemma needed (in addition to 8c1) in order to prove Th. 8a1(a).

8c4 Lemma. Let E ⊂ Rn be an admissible set, and f ∶ E → R a bounded
function. Then f is integrable on E if and only if the discontinuity points of
f on E○ are a set of measure 0.

Proof. Denote by Z the set of all discontinuity points of f ⋅1lE; then Z∩E○ is
the set of all discontinuity points of f on E○. The difference Z∖(Z∩E○) ⊂ ∂E
has volume 0 (see 6b8(b)), therefore, measure 0. Using Lebesgue criterion
6d2,

(f is integrable on E) ⇐⇒ (Z has measure 0) ⇐⇒ (Z ∩E○ has measure 0) .

Proof of Item (a) of Th. 8a1. Denote by Z the set of all discontinuity points
of f (on V ); then ϕ−1(Z) is the set of all discontinuity points of f ○ϕ (on U),
since ϕ is a homeomorphism, and of (f ○ ϕ)∣detDϕ∣ as well, since detDϕ is
continuous and never 0. By 8c1, if one of these three functions is continuous
almost everywhere, then the other two are. It remains to apply 8c4.

8c5 Corollary. A set E ⊂ U is admissible if and only if ϕ(E) ⊂ V is admis-
sible.

8d Approximation from within

Here we reduce Item (b) of Theorem 8a1 to such a special case (to be proved
later).

8d1 Proposition. Let U,V,ϕ, f be as in Th. 8a1, and in addition, f be
compactly supported within V . Then 8a1(b) holds.

1Moreover, of volume Mnv(Qi); never mind.
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8d2 Lemma. For every ε > 0 there exists admissible compact K ⊂ U satis-
fying

v(K) ≥ v(U) − ε , v(ϕ(K)) ≥ v(V ) − ε .

Proof. Recall Sect. 4d:1 v(U) = v∗(U) = limN LN(1lU), and LN(1lU) is the
total volume of all N -pixels contained in U ; denoting the union of these pixels
by EN we have v(EN) → v(U), and each EN is an admissible compact subset
of U .

For every ε > 0 there exists admissible compact E ⊂ U such that v(E) ≥

v(U) − ε. Similarly, there exists an admissible compact F ⊂ V such that
v(F ) ≥ v(V ) − ε. By 8c5, ϕ−1(F ) and ϕ(E) are admissible; we take K =

E ∪ ϕ−1(F ).

Proof that Prop. 8d1 implies Th. 8a1(b). We take M such that ∣f(y)∣ ≤ M
for all y ∈ V , and ∣f(ϕ(x))det(Dϕ)x∣ ≤M for all x ∈ U .

We take εi → 0; Lemma 8d2 gives Ki for εi; we introduce functions
fi = f ⋅ 1lϕ(Ki)

, then fi ○ ϕ = (f ○ ϕ)1lKi
.

We use the integral norm (recall Sect. 4e): ∥f − fi∥ =
∗

∫ ∣f − fi∣ ≤ ∫ M ⋅

1lV ∖ϕ(Ki)
≤ Mεi, which gives the integral convergence: fi → f as i → ∞.

Similarly, (fi ○ ϕ)∣detDϕ∣ → (f ○ ϕ)∣detDϕ∣.
We apply 8d1 to each fi and get 8a1(b) in the limit i → ∞, since the

integral convergence implies convergence of integrals.

8e All we need is small volume

Now we reduce Proposition 8d1, getting rid of the function f .

8e1 Proposition. Let U,V ⊂ Rn be open sets, ϕ ∶ U → V a diffeomorphism,
and K ⊂ U a compact set. Then for every ε > 0 there exists δε > 0 such that
for all δ ∈ (0, δε] and h ∈ Rn, if δ(Q + h) ∩K ≠ ∅, where Q = [0,1]n, then
δ(Q + h) ⊂ U and

(8e2) 1 − ε ≤
v(ϕ(δ(Q + h)))

δn∣det(Dϕ)x∣
≤ 1 + ε for all x ∈ δ(Q + h) .

Note that ϕ(δ(Q + h)) is admissible by 8c5.

Proof that Prop. 8e1 implies Prop. 8d1 (and therefore Th. 8a1). We have a com-
pact K ⊂ U such that f = 0 on V ∖ϕ(K). Given ε > 0, we’ll show that the two
integrals are ε-close. Prop. 8e1 gives δε, and we take N such that 2−N ≤ δε

1See also the proof of 8c2.
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and UN((f ○ϕ)∣detDϕ∣)−LN((f ○ϕ)∣detDϕ∣) ≤ ε. By 8e1, for every N -pixel
Q such that Q ∩K ≠ ∅,

1 − ε ≤
v(ϕ(Q))

v(Q)∣det(Dϕ)x∣
≤ 1 + ε for all x ∈ Q.

That is,

(1 − ε)v(Q)( sup
x∈Q

∣det(Dϕ)x∣) ≤ v(ϕ(Q)) ≤ (1 + ε)v(Q)( inf
x∈Q

∣det(Dϕ)x∣) .

WLOG, f ≥ 0 (otherwise, take f = f+ − f−). Denoting for convenience
g = (f ○ϕ)∣det(Dϕ)x∣ we have (below, Q runs over all N -pixels that intersect
K)

(1 − ε)LN(g) = (1 − ε)∑
Q

v(Q) inf
x∈Q

g(x) =

= (1 − ε)∑
Q

v(Q) inf
x∈Q

(f(ϕ(x))∣det(Dϕ)x∣) ≤

≤ (1 − ε)∑
Q

v(Q)( inf
x∈Q

f(ϕ(x)))( sup
x∈Q

∣det(Dϕ)x∣) ≤

≤ ∑
Q

v(ϕ(Q)) inf
y∈ϕ(Q)

f(y) ≤ ∑
Q
∫
ϕ(Q)

f = ∫
V
f ≤ ∑

Q

v(ϕ(Q)) sup
y∈ϕ(Q)

f(y) ≤

≤ (1 + ε)∑
Q

v(Q)( sup
x∈Q

f(ϕ(x)))( inf
x∈Q

∣det(Dϕ)x∣) ≤

≤ (1 + ε)∑
Q

v(Q) sup
x∈Q

(f(ϕ(x))∣det(Dϕ)x∣) = (1 + ε)UN(g) .

We see that ∫V f ∈ [(1 − ε)LN(g), (1 + ε)UN(g)]; also ∫U g ∈ [LN(g), UN(g)];
thus,

∣ ∫
U
g−∫

V
f ∣ ≤ (1+ε)UN(g)−(1−ε)LN(g) ≤ (1+ε)(LN(g)+ε)−(1−ε)LN(g) =

= 2εLN(g) + ε + ε2 → 0 as ε→ 0 .

Now we reduce the proposition further, making it local, and formulated
in terms of the cubic norm.

For convenience we say that a cube Q0 ⊂ Rn is ε-good, if Q0 ⊂ U , and
every sub-cube Q ⊂ Q0 satisfies

(8e3) 1 − ε ≤
v(ϕ(Q))

v(Q)∣det(Dϕ)x∣
≤ 1 + ε for all x ∈ Q.

Clearly, every sub-cube of an ε-good cube is also ε-good.
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8e4 Proposition. Let U,V ⊂ Rn be open sets, ϕ ∶ U → V a diffeomorphism,
and x0 ∈ U . Then for every ε > 0 there exists δε > 0 such that the cube
Q0 = {x ∈ Rn ∶ ∥x − x0∥◽ ≤ δε} is ε-good.

Proof that Prop. 8e4 implies Prop. 8e1 (and therefore Th. 8a1). A compact set
K ⊂ U is given, and ε > 0. For every x0 ∈K, 8e4 gives an ε-good cube Q0(x0).
Open cubes Q○

0(x0) cover K. Applying 6b5 (in the cubic norm, equivalent to
the Euclidean norm) to a finite subcovering we get a covering number, denote
it 2δε, such that for every x0 ∈ K the cube Q1(x0) = {y ∶ ∥y − x0∥◽ < 2δε} is
covered by a single Q○

0(x) and therefore is ε-good. For every δ ∈ (0, δε] every
cube δ([0,1]n+h) that intersects K at some x0 is contained in Q1(x0), which
proves 8e1.

8f Small volume in the linear approximation

Now we prove Prop. 8e4. We have ϕ ∶ U → V , x0 ∈ U , and ε > 0. We rewrite
(8e3), using the linear change of variables Th. 7b3:

(8f1) 1 − ε ≤
v(ϕ(Q))

v((Dϕ)x(Q))
≤ 1 + ε for all x ∈ Q ;

here (Dϕ)x(Q) = {(Dϕ)xh ∶ h ∈ Q}. Treating ϕ ∶ U → Rn as ϕ ∶ U → W
where W is an n-dimensional vector space, we note that (8f1), being about
the ratio of two volumes in W , is insensitive to (arbitrary) change of basis in
W (recall the framed phrase before (7b4)). Changing the basis (similarly to
Sect. 2c, 2d) we ensure, WLOG, that1 (Dϕ)x0 = id.

Thus, ∣det(Dϕ)x0 ∣ = 1. WLOG,

(8f2) 1 − ε ≤ ∣det(Dϕ)x∣ ≤ 1 + ε for all x ∈ U ;

otherwise we replace U with a small neighborhood of x0 (using continuity of
x↦ ∣det(Dϕ)x∣).

Now we may replace (8f1) with

(8f3) 1 − ε ≤
v(ϕ(Q))

v(Q)
≤ 1 + ε ,

since v(ϕ(Q))
v((Dϕ)x(Q))

=
v(ϕ(Q))
v(Q)

v(Q)
v((Dϕ)x(Q))

=
v(ϕ(Q))
v(Q)

1
∣det(Dϕ)x∣

, and so (8f3) implies

(by (8f2))
1 − ε

1 + ε
≤

v(ϕ(Q))

v((Dϕ)x(Q))
≤

1 + ε

1 − ε
,

1Mind it: (Dϕ)x0 , not (Dϕ)x.
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which is not quite (8f1), but we may change ε accordingly.
Similarly to (8f2), WLOG,

∥(Dϕ)x − id ∥◽ ≤ ε for all x ∈ U ,

and in addition, U is convex (just a ball or a cube). By 8c3,1

(8f4) ∥(ϕ(b) − ϕ(a)) − (b − a)∥◽ ≤ ε∥b − a∥◽ for all a, b ∈ U .

We take δε > 0 such that, first, the cube Q0 = {x ∈ Rn ∶ ∥x−x0∥◽ ≤ δε} satisfies
Q0 ⊂ U , and second, {y ∈ Rn ∶ ∥y − y0∥◽ ≤ (1 + ε)δε} ⊂ V , where y0 = ϕ(x0);
this is possible, since V is an (open) neighborhood of y0.

It is sufficient to prove that

(8f5) (1 − ε)n ≤
v(ϕ(Q))

v(Q)
≤ (1 + ε)n for every sub-cube Q ⊂ Q0 .

This is not quite (8f3), but again, we may change ε accordingly.
Given such Q, WLOG, the center of Q is 0, and ϕ(0) = 0 (since, as before,

we may shift the origins in both copies of Rn). Thus,

Q = {x ∈ Rn ∶ ∥x∥◽ ≤ r}

for some r ∈ (0, δε]; it remains to prove that

(8f6) (1 − ε)Q ⊂ ϕ(Q) ⊂ (1 + ε)Q.

By (8f4) for a = 0, ∥ϕ(x) − x∥◽ ≤ ε∥x∥◽ for all x ∈ U; thus, (1 − ε)∥x∥◽ ≤
∥ϕ(x)∥◽ ≤ (1 + ε)∥x∥◽. For x ∈ Q we get ∥ϕ(x)∥◽ ≤ (1 + ε)r, thus, ϕ(x) ∈

(1 + ε)Q, which proves the inclusion ϕ(Q) ⊂ (1 + ε)Q. It remains to prove
the other inclusion, (1 − ε)Q ⊂ ϕ(Q).

We note that V ∩ (1 − ε)Q ⊂ ϕ(Q), since ϕ(x) ∈ (1 − ε)Q Ô⇒ ∥ϕ(x)∥◽ ≤
(1 − ε)r Ô⇒ (1 − ε)∥x∥◽ ≤ (1 − ε)r Ô⇒ ∥x∥◽ ≤ r Ô⇒ x ∈ Q.

It remains to prove that (1 − ε)Q ⊂ V ; we’ll prove a bit more: that
Q ⊂ {y ∈ Rn ∶ ∥y − y0∥◽ ≤ (1 + ε)δε} (and therefore Q ⊂ V ).

The given inclusion Q ⊂ Q0 means that ∥x0∥◽ + r ≤ δε (think, why);
similarly, the needed inclusion becomes ∥y0∥◽ + r ≤ (1 + ε)δε. The latter
follows from the former:

∥y0∥◽ + r = ∥ϕ(x0)∥◽ + r ≤ (1 + ε)∥x0∥◽ + r ≤ (1 + ε)(∥x0∥◽ + r) ≤ (1 + ε)δε ,

which completes the proof of Prop. 8e4, and therefore Theorem 8a1, at last!

1Recall the proof of 2c1 (and 2c3).
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