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6a Introduction

Consider a bounded function f : (0, 1) → R. If f is continuous then it is
integrable (even if it is not uniformly continuous, like sin(1/x)). A step func-
tion is (generally) discontinuous, and still, integrable; its set of discontinuity
points is finite. Non-integrable functions mentioned in 4c3 are “very discon-
tinuous”, having intervals of discontinuity points. The function of 4c5 (or
4f12) has a dense set of discontinuity points, and still, is integrable. Can
integrability be decided via the set of discontinuity points? An affirmative
answer was given by Lebesgue, it involves the notion of Lebesgue measure
zero (rather than volume zero).

“This aesthetically pleasing integrability criterion has little practical value”
(Bichteler).1 Well, if you use it when proving simple facts, such as integrabil-
ity of 3

√
f or fg (for integrable f and g), you may find far more elementary

proofs. But here is a harder case. The so-called improper integral (to be
treated later) may be applied to unbounded functions f on (0, 1) such that
the function

mid(−M, f,M) : x 7→


−M when f(x) ≤ −M,

f(x) when −M ≤ f(x) ≤M,

M when M ≤ f(x)

is integrable for all M > 0. The sum of two such functions is also such
function. This fact follows easily from Lebesgue’s criterion. You may discover
another proof, but I doubt it will be simpler!

1From book “Integration — a functional approach” by Klaus Bichteler (1998); see
Exercise 6.16 on p. 27.
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A natural quantitative measure of non-integrability is the difference

A =
∗∫
(0,1)

f −
∗

∫
(0,1)

f ∈ [0,∞) .

What about a natural quantitative measure of discontinuity of f? At a given
point x0 ∈ (0, 1) it is the oscillation,

Oscf (x0) = inf
r>0

Oscf
(
(x0 − r, x0 + r)

)
,

where

(6a1) Oscf (U) = diamf(U) = sup
x∈U

f(x)− inf
x∈U

f(x) .

But it depends on x0. In order to get a number we integrate the oscillation
function:

B =
∗∫
(0,1)

Oscf .

We would be happy to know that B = 0 =⇒ A = 0, even happier to know
that B = 0 ⇐⇒ A = 0, but here is a surprise:

A = B .

Qualitatively,

(f is integrable) ⇐⇒ (Oscf is negligible) .

And of course, we need a multidimensional theory; (0, 1) is only the simplest
case.

It may seem that the equality A = B is an easy matter, since Oscf =
f ∗ − f∗ where

f∗(x0) = sup
r>0

inf
|x−x0|<r

f(x) , f ∗(x0) = inf
r>0

sup
|x−x0|<r

f(x) ,

and so, B =
∫

Oscf =
∫
f ∗−

∫
f∗ =

∗∫
f− ∗

∫
f = A. However, f ∗ and f∗ need

not be integrable. In fact,
∗∫
f ∗ =

∗∫
f , ∗

∫
f∗ = ∗

∫
f (which is rather easy to

see), and
∗∫

(f ∗−f∗) =
∗∫
f ∗− ∗

∫
f∗, that is,

∗∫(
f ∗+(−f∗)

)
=
∗∫
f ∗+

∗∫
(−f∗)

)
,

which is not easy, and a surprise, since the upper integral is not linear!1 The
equality A = B will be proved, but not this way.

6a2 Exercise. For the function f of 4c5
(a) Oscf (x) = 2−m if x = 2k+1

22m+1 for m = 0, 1, . . . and k = 0, . . . , 22m − 1;
otherwise Oscf (x) = 0;

(b) Oscf is negligible.
Prove it (not using results of Sect. 6).2

1In fact,
∗∫

(f + g) =
∗∫
f +

∗∫
g when f and g are (bounded, with bounded support,

and) upper semicontinuous, that is, f∗ = f and g∗ = g.
2Hint: (b) recall 4f12.
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6b Integral of oscillation

We consider a bounded function f : Rn → R with bounded support, and its
oscillation function

(6b1) Oscf (x0) = inf
r>0

Oscf
(
{x : |x− x0| < r}

)
,

where Oscf (U) is still defined by (6a1).

6b2 Theorem. ∗∫
Rn

f −
∗

∫
Rn

f =
∗∫
Rn

Oscf .

Here is the easy part.

6b3 Proposition.

∗∫
Rn

f −
∗

∫
Rn

f ≥
∗∫
Rn

Oscf .

Proof. Similarly to 4g9 (or combining 4g9 with 4g7), given ε > 0, there
exist continuous g, h with bounded support such that g ≤ f ≤ h and∫

Rn

h ≤ ε

2
+

∗∫
Rn

f ,

∫
Rn

g ≥ −ε
2

+
∗

∫
Rn

f ,

therefore ∫
Rn

(h− g) ≤ ε+
∗∫
Rn

f −
∗

∫
Rn

f .

For arbitrary U ⊂ Rn,

Oscf (U) = sup
x∈U

f(x)− inf
x∈U

f(x) ≤ sup
x∈U

h(x)− inf
x∈U

g(x) ;

by (6b1) and continuity of g and h,

Oscf (x0) ≤ h(x0)− g(x0)

for all x0. Thus,

∗∫
Rn

Oscf ≤
∗∫
Rn

(h− g) =

∫
Rn

(h− g) ≤ ε+
∗∫
Rn

f −
∗

∫
Rn

f

for all ε > 0.

Now, the hard part.
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6b4 Proposition.

∗∫
Rn

f −
∗

∫
Rn

f ≤
∗∫
Rn

Oscf .

6b5 Lemma (Lebesgue’s covering number). Let K ⊂ Rn be a compact set,
U1, . . . , Um ⊂ Rn open sets, and K ⊂ U1 ∪ · · · ∪ Um. Then1

∃δ > 0 ∀x ∈ K ∃i ∈ {1, . . . ,m} ∀y
(
|y − x| < δ =⇒ y ∈ Ui

)
.

Proof. Assume the contrary: for every k there exists xk ∈ K whose 1
k
-neigh-

borhood is not covered by a single Ui. By compactness, there exists an accu-
mulation point x0 ∈ K of the sequence (xk)k. We take i such that x0 ∈ Ui,
and then δ > 0 such that Ui contains the 2δ-neighborhood of x0. For all k
such that 1

k
< δ we know that the δ-neighborhood of xk is not contained in

Ui, and therefore |xk − x0| ≥ δ; a contradiction.

Recall Sect. 4b (Darboux sums).

Proof of Prop. 6b4. We take a natural M such that {x : f(x) 6= 0} ⊂
(−2M , 2M)n, and introduce the compact set K = [−2M , 2M ]n.

Given ε > 0, we take a continuous h with bounded support such that
Oscf ≤ h and

∫
Rn h ≤ ε+

∗∫
Rn Oscf .

For every x0 ∈ K there exists δ > 0 such that the neighborhood U = {x :
|x− x0| < δ} satisfies

Oscf (U) ≤ ε

2
+ Oscf (x0) , Osch(U) ≤ ε

2
,

then

(6b6) Oscf (U) ≤ ε+ inf
x∈U

h(x)

(since Oscf (x0) ≤ h(x0) and h(x0)− infx∈U h(x) ≤ Osch(U) ≤ ε
2
).

By compactness, K ⊂ U1∪ · · ·∪Um for some Ui satisfying (6b6). Lemma
6b5 gives us Lebesgue’s covering number δ for this covering; we take natural
N such that 1

2

√
n2−N ≤ δ; then each “pixel” 2−N(Q+ k) (where Q = [0, 1]n

and k ∈ Zn) contained in K, being contained in the 1
2

√
n2−N -neighborhood

of its center, is contained in some Ui, and therefore, by (6b6),

Oscf
(
2−N(Q+ k)

)
≤ ε+ inf

x∈2−N (Q+k)
h(x) ,

1Note the quantifier complexity: ∃ ∀∃ ∀ (and globally, ∀ ∃∀ ∃∀). Wow!
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that is,
UN,k(f)− LN,k(f) ≤ 2−nNε+ LN,k(h) .

The sum over k ∈
(
Z ∩ [−2M+N , 2M+n − 1]

)
n gives

UN(f)− LN(f) ≤ 2nMε+ LN(h) ,

whence, taking N →∞,

∗∫
Rn

f −
∗

∫
Rn

f ≤ 2nMε+

∫
Rn

h ≤ (2nM + 1)ε+
∗∫
Rn

Oscf

for all ε > 0.

6b7 Corollary. A bounded function f : Rn → R with bounded support is
integrable if and only if Oscf is negligible.

6b8 Exercise. For a set E ⊂ Rn,
(a) Osc1lE = 1l∂E;
(b) E is admissible if and only if ∂E has volume 0;
(c) v∗(E)− v∗(E) = v∗(∂E);
(d) if E is admissible, then E◦ and E are admissible, and v(E◦) = v(E) =

v(E).
Prove it.

6b9 Exercise. For sets E,F ⊂ Rn,
(a) prove that ∂(E ∪ F ) ⊂ ∂E ∪ ∂F , ∂(E ∩ F ) ⊂ ∂E ∪ ∂F , ∂(E \ F ) ⊂

∂E ∪ ∂F ,
(b) give another proof of 4f14.

6b10 Exercise. For f, g : Rn → [−M,M ],
(a) prove that Oscfg ≤M(Oscf + Oscg);
(b) give another proof of 4f9.

6b11 Exercise. Give another proof of 4f10 and 4f16, via oscillation.

If E is admissible, then integrability of f on E is well-defined (recall 4d5),
it is integrability on Rn of the function

f · 1lE : x 7→

{
f(x) for x ∈ E,
0 otherwise.

By 6b7, this integrability is equivalent to negligibility of Oscf ·1lE . Note that

Oscf ·1lE =


Oscf on E◦,

something bounded on ∂E,

0 outside E.
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Taking into account that ∂E is of volume zero by 6b8(b) we see that Oscf ·1lE
is equivalent to Oscf ·1lE◦ . Thus,

(6b12) (f is integrable on E) ⇐⇒ (Oscf is negligible on E◦) .

If the set {x : Oscf (x) 6= 0} is of volume zero, then Oscf is negligi-
ble by (4d8), thus f is integrable. However, an integrable function can be
discontinuous on a dense set; for example, see 4c5 (or 4f12).

6b13 Remark. It is tempting to invent an appropriate notion “negligible
set” such that1

(a) f is negligible if and only if {x : f(x) 6= 0} is negligible,
and therefore

(b) f is integrable if and only if {x : Oscf (x) 6= 0} is negligible.

Is this possible? Yes and no. . .
Bad news: it can happen that {x : f(x) 6= 0} = {x : g(x) 6= 0}, f is

negligible, but g is not.
Good news: it cannot happen that {x : Oscf (x) 6= 0} = {x : Oscg(x) 6= 0},

f is integrable, but g is not.

That is, (b) succeeds, but not due to (a). Rather, (b) succeeds in spite
of the fact that (a) fails.2

6c Measure zero

6c1 Definition. A set Z ⊂ Rn has measure 0 if for every ε > 0 there exist
boxes B1, B2, · · · ⊂ Rn such that Z ⊂ ∪∞k=1Bk and

∑∞
k=1 v(Bk) ≤ ε.

6c2 Proposition. Countable union of sets of measure 0 has measure 0.

Proof. Let Z = Z1 ∪ Z2 ∪ . . . and each Zk has measure 0. Given ε > 0, we
take ε1, ε2, · · · > 0 such that ε1+ε2+· · · ≤ ε (for instance, εk = 2−kε), and for
each k we take boxes Bk,` such that Zk ⊂ ∪∞`=1Bk,` and

∑∞
`=1 v(Bk,`) ≤ εk. We

get Z ⊂ ∪k,`Bk,`, and
∑

k,` v(Bk,`) ≤ ε. (And all pairs (k, `) are a countable
set, of course.)

Every set of volume 0 has measure 0 (think, why). Thus, countable
union of sets of volume 0 has measure 0 (even if dense in the whole Rn). In
particular, every countable set has measure 0. Also, many sets of cardinality
continuum have measure 0 (see 4i3).3

1Assuming that f is bounded, with bounded support, of course.
2Puzzled? Here is an explanation: Oscf is not just a function; it is an upper semicon-

tinuous function. For upper semicontinuous f, g it cannot happen that {x : f(x) 6= 0} =
{x : g(x) 6= 0}, f is negligible, but g is not.

3In dimension 1 the Cantor set is such example.



Tel Aviv University, 2016 Analysis-III 91

6c3 Proposition. A compact set has measure 0 if and only if it has volume
0.

Proof. “If”: trivial. “Only if”: letK ⊂ Rn be compact, of measure 0. Given
ε > 0, we take boxes Bk as in 6c1, and boxes Ak such that Bk ⊂ A◦k and
v(Ak) ≤ 2v(Bk) (think, how). By compactness, K ⊂ A◦1 ∪ · · · ∪A◦m for some
m. Thus, v∗(K) ≤ v(A1) + · · ·+ v(Am) ≤ 2v(B1) + · · ·+ 2v(Bm) ≤ 2ε.

6c4 Exercise. (a) If Z has measure 0, then Z◦ = ∅, and v∗(Z) = 0.
Prove it.1

However, v∗(Z) need not be 0, of course.

6d Continuity almost everywhere

6d1 Definition. A function f : Rn → R is continuous almost everywhere, if
its points of discontinuity are a set of measure 0.

For an example, recall 6a2.
More generally, a property of a point of Rn is said to hold almost every-

where if it holds except on a set of measure zero.

6d2 Theorem (Lebesgue’s criterion). A bounded function f : Rn → R
with bounded support is integrable if and only if it is continuous almost
everywhere.

6d3 Lemma. Let f : Rn → R be a bounded function with bounded support.
If f is negligible then f(·) = 0 almost everywhere.2

Proof. We consider sets A = {x : f(x) 6= 0} and Ai = {x : |f(x)| ≥ 1
i
};

A = ∪iAi. For each i we have 1lAi
≤ i|f |, thus v∗(Ai) ≤ i

∗∫ |f | = 0, which
implies that Ai has measure 0 and, by 6c2, A has measure 0.

6d4 Lemma. The set {x : Oscf (x) ≥ ε} is compact, for every ε > 0.

Proof. Boundedness is evident. We’ll prove that its complement, {x :
Oscf (x) < ε}, is open. Given Oscf (x0) < ε, we have Oscf (U) < ε for some
neighborhood U of x0. Thus, Oscf (x) ≤ Oscf (U) < ε for all x ∈ U .

1Hint: for Z◦ = ∅ use 6c3; for v∗(Z) = 0 consider Darboux sums, or use 6b8(d).
2The converse fails; try indicator of a dense countable set.
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Proof of Theorem 6d2. By 6b7 it is sufficient to prove that the function
ϕ = Oscf is negligible if and only if f is continuous almost everywhere, that
is, ϕ = 0 almost everywhere.

“Only if”: just by 6d3 applied to ϕ.
“If”: for every ε > 0 the set {x : ϕ(x) ≥ ε} has measure 0; by 6d4

and 6c3, this set has volume 0. By (4d8), ϕ is equivalent (recall 4e) to
the function min(ϕ, ε) : x 7→ min

(
ϕ(x), ε

)
. We take M ∈ (0,∞) such that

{x : f(x) > 0} ⊂ [−M,M ]n, then also {x : ϕ(x) > 0} ⊂ [−M,M ]n, and we
get

∗∫
Rn

ϕ =
∗∫
Rn

min(ϕ, ε) ≤ ε(2M)n

for all ε > 0.
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