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Integral is a bridge between functions of point and functions of set.

4a Introduction

As already pointed out, many of the quantities of interest in contin-
uum mechanics represent extensive properties, such as mass, momen-
tum and energy. An extensive property assigns a value to each part of
the body. From the mathematical point of view, an extensive property
can be regarded as a set function, in the sense that it assigns a value to
each subset of a given set. Consider, for example, the case of the mass
property. Given a material body, this property assigns to each sub-
body its mass. Other examples of extensive properties are: volume,
electric charge, internal energy, linear momentum. Intensive proper-
ties, on the other hand, are represented by fields, assigning to each
point of the body a definite value. Examples of intensive properties
are: temperature, displacement, strain.

As the example of mass clearly shows, very often the extensive prop-
erties of interest are additive set functions, namely, the value assigned
to the union of two disjoint subsets is equal to the sum of the val-
ues assigned to each subset separately. Under suitable assumptions of
continuity, it can be shown that an additive set function is expressible
as the integral of a density function over the subset of interest. This
density, measured in terms of property per unit size, is an ordinary
pointwise function defined over the original set. In other words, the
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density associated with a continuous additive set function is an inten-
sive property. Thus, for example, the mass density is a scalar field.

Marcelo Epstein1

We need a mathematical theory of the correspondence between set func-
tions Rn ⊃ E 7→ S(E) ∈ R and (ordinary) functions Rn 3 x 7→ f(x) ∈ R
via integration, S(E) =

∫
E
f . The theory should address (in particular) the

following questions.

∗ What are admissible sets E and functions f? (Arbitrary sets are as
useless here as arbitrary functions.)

∗ What is meant by “disjoint”?

∗ What is meant by integral?

∗ What are the general properties of the integral?

∗ How to calculate the integral explicitly for given f and E ?

Many approaches coexist. Some authors2 start with Riemann sums (more
natural for complex-valued and vector-valued integrands) and then proceed
to Darboux sums. Other consider Darboux sums only; we do so, too.

Ultimately, all authors define
∫
E
f as

∫
Rn fE where

(4a1) fE(x) =

{
f(x) for x ∈ E,
0 otherwise.

(Note that fE is generally discontinuous, even if f is continuous.) But ini-
tially one considers much simpler sets E. Most authors use products of
intervals, called n-rectangles,3 coordinate parallelepipeds,4 compact boxes5

etc., and for these simple E define
∫
E
f before

∫
Rn f . But some authors6 use

dyadic cubes, called also pixels,7 for defining
∫
Rn f (before

∫
E
f) for bounded

f with bounded support. We follow this way, thus avoiding partitions, com-
mon refinements, and simple but nasty technicalities that some authors treat
in detail8 and others leave to exercises.9 The cost is that the shift invariance
(change of origin) needs a proof,10 similarly to rotation invariance (change of
basis) that needs a proof in every approach.

1“The elements of continuum biomechanics”, Wiley 2012. (See Sect. 2.2.1.)
2Zorich.
3Lang.
4Zorich.
5Shurman.
6Hubbard.
7Terry Tao.
8For instance, Lang, p. 570 and 573.
9For instance, Shifrin, p. 271.

10Hubbard, Prop. 4.1.21.
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In the one-dimensional theory, seeing
∫ b

a
f(x) dx, we do not ask, is this the

integral over the open interval (a, b) or the closed interval [a, b]; we neglect
the boundary {a, b} of the interval. Similarly, in higher dimension we want
to neglect the boundary of E.

Two notions of “small” sets are used. One notion is called “volume zero”1

or “zero content”;2 the other notion is called “measure zero”.3 For compact
sets these two notions coincide, but in general they are very different. For-
tunately, the boundary ∂E = E \E◦ of a bounded set E is always compact;
requiring it to be small (in either sense) we need not bother, whether the
integral is taken over the open set E◦ or the closed set E; and we may treat
sets E,F as disjoint when they have no common interior points. In this case
the equality

(4a2) S(E ∪ F ) = S(E) + S(F )

is additivity of the set function S; and the inequality

(4a3) vol(E) inf
x∈E

f(x) ≤ S(E) ≤ vol(E) sup
x∈E

f(x)

is the clue to the relation between f and S.

4b Darboux sums

We consider a function f : Rn → R satisfying two conditions:4

f is bounded; that is, sup
x∈Rn

|f(x)| <∞ ,(4b1)

f has bounded support; that is, sup
x:f(x) 6=0

|x| <∞ .(4b2)

First, recall dimension one (that is, n = 1). Assuming existence of the
integral

∫ +∞
−∞ f(x) dx and denoting it just

∫
R f , we may sandwich it as follows

(Z is the set of integers, from −∞ till +∞):∑
k∈Z

inf
x∈[k,k+1]

f(x) ≤
∫
R
f ≤

∑
k∈Z

sup
x∈[k,k+1]

f(x) ,

1Hubbard, Shifrin, Shurman; sometimes called “negligible” (Lang) which, however,
could be confused with the other notion.

2Burkill.
3Hubbard, Zorich.
4If puzzled, why the bounded support, or why no continuity, look again at (4a1).
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since
∫
R f =

∑
k∈Z
∫ k+1

k
f(x) dx (additivity, see also (4a2)), and infx∈[k,k+1] f(x) ≤∫ k+1

k
f(x) dx ≤ supx∈[k,k+1] f(x) (see also (4a3)) for each k. We write the in-

tegral over the whole R and the sum over the whole Z, but only a bounded
region contributes due to (4b2).

For a better sandwich we use a finer partition; here N = 0, 1, 2, . . . (and
for N = 0 we get the case above):

1

2N

∑
k∈Z

inf
x∈[ k

2N
, k+1

2N
]
f(x) ≤

∫
R
f ≤ 1

2N

∑
k∈Z

sup
x∈[ k

2N
, k+1

2N
]

f(x) .

In dimension two (that is n = 2), paving the plane by squares, we hope
to have, first, ∑

k,`∈Z

inf
x∈[k,k+1]
y∈[`,`+1]

f(x, y) ≤
∫
R2

f ≤
∑
k,`∈Z

sup
x∈[k,k+1]
y∈[`,`+1]

f(x) ,

that is (using two-dimensional x and k),∑
k∈Z2

inf
x∈Q+k

f(x) ≤
∫
R2

f ≤
∑
k∈Z2

sup
x∈Q+k

f(x) ,

where Q = [0, 1]2 = [0, 1] × [0, 1] and Q + k = {x + k : x ∈ Q}; and more
generally,∑

k∈Z2

2−2N inf
x∈2−N (Q+k)

f(x)︸ ︷︷ ︸
LN,k(f)

≤
∫
R2

f ≤
∑
k∈Z2

2−2N sup
x∈2−N (Q+k)

f(x)︸ ︷︷ ︸
UN,k(f)

,

where 2−N(Q + k) = {2−N(x + k) : x ∈ Q}. In arbitrary dimension n we
hope to have

LN(f) ≤
∫
Rn

f ≤ UN(f) ,

where LN(f) and UN(f) are the lower and upper Darboux sums defined by

LN(f) =
∑
k∈Zn

LN,k(f) , LN,k(f) = 2−nN inf
x∈2−N (Q+k)

f(x) ,(4b3)

UN(f) =
∑
k∈Zn

UN,k(f) , UN,k(f) = 2−nN sup
x∈2−N (Q+k)

f(x) ;(4b4)

here Q = [0, 1]n.
Clearly, LN(f) ≤ UN(f) and LN(f) = −UN(−f) (think, why).
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4b5 Lemma. For every N ,

LN+1(f) ≥ LN(f) , UN+1(f) ≤ UN(f) .

Proof. The cube Q = [0, 1]n contains 2n smaller cubes 2−1(Q + `), ` ∈
{0, 1}n. Accordingly, the cube 2−N(Q+k) contains 2n smaller cubes 2−(N+1)(Q+
2k + `), ` ∈ {0, 1}n. Thus,

∑
`∈{0,1}n UN+1,2k+`(f) ≤ UN,k(f), whence

UN+1(f) =
∑
k∈Zn

UN+1,k(f) =

=
∑
k∈Zn

∑
`∈{0,1}n

UN+1,2k+`(f) ≤
∑
k∈Zn

UN,k(f) = UN(f) .

Finally, LN+1(f) = −UN+1(−f) ≥ −UN(−f) = LN(f).

It follows that both sequences
(
LN(f)

)
N ,
(
UN(f)

)
N converge.

4c Integral

4c1 Definition. Lower and upper integrals of f are

L(f) = lim
N→∞

LN(f) , U(f) = lim
N→∞

UN(f) .

Clearly, −∞ < L(f) ≤ U(f) <∞.

4c2 Definition. A bounded function f : Rn → R with bounded support
is called integrable, if L(f) = U(f). In this case their common value is the
integral of f .

The integral is often denoted by1∫
Rn

f =

∫
Rn

f(x) dx =

∫
Rn

f(x1, . . . , xn) dx1 . . . dxn =∫
· · ·
∫

Rn

f(x1, . . . , xn) dx1 . . . dxn ,

and sometimes by2
∫
Rn f dV =

∫
Rn f(x) dVx, or3

∫
Rn f |dnx| =

∫
Rn f(x) |dnx|,

or4 IRn(f).

1Burkill, Lang, Shurman, Zorich.
2Shifrin.
3Hubbard.
4Lang.
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4c3 Exercise. Let

f(x) = 1 , g(x) = 0 for all rational x ∈ (0, 1) ,

f(x) = 0 , g(x) = 1 for all irrational x ∈ (0, 1) ,

f(x) = 0 , g(x) = 0 for all x ∈ R \ (0, 1) .

Prove that

L(af + bg) = min(a, b) ,

U(af + bg) = max(a, b)

for all a, b ∈ R.

4c4 Exercise. Find
∫ 1

0
x dx using only 4c1, 4c2. That is,

∫
R f where f(x) =

x for x ∈ (0, 1), otherwise f(x) = 0.1

4c5 Exercise. Let f : R→ [0, 1) be defined via binary digits, by

f(x) =
∞∑
k=1

β2k(x)

2k
for x =

∞∑
k=1

βk(x)

2k
, βk(x) ∈ {0, 1} , lim inf

k
βk(x) = 0 ,

and f(x) = 0 for x ∈ R \ (0, 1). Prove that f is integrable, and find
∫
R f .2

A wonder: this integrable function has no intervals of continuity!

4c6 Proposition (linearity). All integrable functions Rn → R are a vector
space, and the integral is a linear functional3 on this space.

That is, if f, g : Rn → R are integrable and a, b ∈ R, then af + bg is
integrable and

∫
Rn(af + bg) = a

∫
Rn f + b

∫
Rn g.

1Hint: calculate LN (f) and UN (f).
2Hint: calculate L2N (f) and U2N (f).
3Functions on infinite-dimensional spaces are often called functionals.
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Proof. For a ≥ 0 we have LN(af) = aLN(f) and UN(af) = aUN(f) (think,
why), hence L(af) = aL(f) and U(af) = aU(f). Thus, L(f) = U(f) implies
L(af) = U(af), and in this case

∫
(af) = a

∫
f .

For a ≤ 0 we have LN(af) = aUN(f) and UN(af) = aLN(f) (think,
why), hence L(af) = aU(f) and U(af) = aL(f). Still, L(f) = U(f) implies
L(af) = U(af), and in this case

∫
(af) = a

∫
f .

It remains to consider the sum f+g. We have LN(f+g) ≥ LN(f)+LN(g)
and UN(f +g) ≤ UN(f) +UN(g) (think, why), hence L(f +g) ≥ L(f) +L(g)
and U(f + g) ≤ U(f) + U(g). Thus, L(f) = U(f) and L(g) = U(g) imply
L(f + g) = U(f + g), and in this case

∫
(f + g) =

∫
f +

∫
g.

4c7 Remark. Denoting the lower and upper integral by ∗

∫
Rn f and

∗∫
Rn f

we note some properties.
Monotonicity:

if f(·) ≤ g(·) then
∗

∫
f ≤

∗

∫
g ,

∗∫
f ≤

∗∫
g ,

and for integrable f, g,

∫
f ≤

∫
g .

(It can happen that
∗∫
f > ∗

∫
g; find an example.)

Homogeneity:

∗

∫
cf = c

∗

∫
f ,

∗∫
cf = c

∗∫
f for c ≥ 0 ;

∗

∫
cf = c

∗∫
f ,

∗∫
cf = c

∗

∫
f for c ≤ 0 ;

if f is integrable then cf is, and

∫
cf = c

∫
f for all c ∈ R .

(Sub-, super-) additivity:

∗∫
(f + g) ≤

∗∫
f +

∗∫
g ;

∗

∫
(f + g) ≥

∗

∫
f +

∗

∫
g ;

if f, g are integrable then f + g is, and

∫
(f + g) =

∫
f +

∫
g .

(It can happen that
∗∫

(f + g) <
∗∫
f +

∗∫
g; find an example.)
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4d Volume

Given a set E ⊂ Rn, its indicator (or characteristic) function, denoted 1lE or
χE, is defined by

1lE(x) =

{
1 for x ∈ E,
0 for x ∈ Rn \ E.

The integral of the indicator function (if exists) is called1 the volume, or2

n-dimensional volume, or3 content, or4 Jordan measure, and denoted v(E),
voln(E), c(E). It exists if and only if 1lE is integrable. In this case one says5

that E is admissible, or6 pavable, or7 has content.

4d1 Definition. (a) A bounded set E ⊂ Rn is admissible, if 1lE is integrable.
(b) The volume v(E) = vol(E) = voln(E) of an admissible set E is

∫
Rn 1lE.

(c) For arbitrary bounded E,
∗∫

Rn 1lE = v∗(E) is the outer volume of E,
and ∗

∫
Rn 1lE = v∗(E) is the inner volume of E. 8

Note that v∗(E) = limN UN(1lE), and UN(1lE) is the total volume of all
N -pixels that intersect E. Also, v∗(E) = limN LN(1lE), and LN(1lE) is the
total volume of all N -pixels contained in E. And finally, E is admissible if
and only if v∗(E) = v∗(E); and in this case v∗(E) = v(E) = v∗(E), of course.

Later we’ll see that a bounded E is admissible if and only if v(∂E) = 0,
but for now we do not need it. If v∗(E) = 0, then necessarily E (is admissible
and) has volume zero. By monotonicity (recall 4c7), if E has volume zero,
then every subset of E has volume zero. If E has volume zero, then E◦ = ∅
(think, why); the converse does not hold (think, why).9

4d2 Exercise. The cube [0, 1]n is admissible, and v
(
[0, 1]n

)
= 1.

Prove it.10

Similarly, all dyadic cubes (“pixels”) are admissible, and v(Q) = 2−nN

for every N -pixel Q.

1Lang, Shurman.
2Hubbard.
3Burkill, Zorich.
4Zorich.
5Lang, Zorich.
6Hubbard.
7Burkill.
8Or, inner and outer Jordan content, according to Burkill, Sect. 6.8, p. 182.
9Moreover, a closed subset of [0, 1] with empty interior need not have volume zero

(“fat Cantor set”).
10Hint: LN (1l[0,1]n) = 1 and UN (1l[0,1]n) = 2−nN (2N + 2)n.
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4d3 Lemma (additivity of volume). Let E,F ⊂ Rn be admissible, and E∩F
have volume zero. Then E ∪ F is admissible, and v(E ∪ F ) = v(E) + v(F ).

Proof. We have 1lE∪F = 1lE + 1lF − 1lE∩F (think, why). Also, 1lE∩F (is
integrable and) has integral zero; by linearity (recall 4c6), 1lE∪F is integrable,
and

∫
1lE∪F =

∫
1lE +

∫
1lF .

A box1 in Rn is the (Cartesian) product of intervals,

B = [a1, b1]× · · · × [an, bn] .

4d4 Exercise. Every box B is admissible, its interior B◦ is also admissible,
and

v(B) = (b1 − a1) . . . (bn − an) = v(B◦) .

Prove it.2

Thus, every bounded “pixelated set”, that is, finite union of pixels, is
admissible, and we know its volume.

4d5 Definition. Let E ⊂ Rn be an admissible set. A bounded function
f : E → R is integrable on E, if the corresponding function fE : Rn → R
(see (4a1)) is integrable (on Rn). In this case,

∫
E
f =

∫
Rn fE.

It is usual and convenient to write f · 1lE instead of fE; accordingly,∫
E

f =

∫
Rn

f · 1lE .

The same applies when f is defined on the whole Rn, or on a set that contains
E. Note that ∫

E

1 = v(E) ;

∫
E

c = cv(E) for c ∈ R ;(4d6)

v(E) inf
x∈E

f(x) ≤
∫
E

f ≤ v(E) sup
x∈E

f(x) ;(4d7)

v(E) = 0 =⇒
∫
E

f = 0 .(4d8)

Assuming v(E) 6= 0 one defines the mean value of f on E as

1

v(E)

∫
E

f .

1See Sect. 4a for other names. Some authors allow the degenerate case v(B) = 0
(Lang, Shurman); others disallow it explicitly (Burkill) or implicitly (Shifrin, Zorich), or
do not bother (Hubbard). For now we need not bother, too. But in Sect. 4g we’ll allow
degeneration.

2Hint: UN (1lB) ≤ (b1 − a1 + 2 · 2−N ) . . . (bn − an + 2 · 2−N ) and LN (1lB◦) ≥ (b1 − a1 −
2 · 2−N ) . . . (bn − an − 2 · 2−N ).



Tel Aviv University, 2016 Analysis-III 59

4e Normed space of equivalence classes

All bounded functions Rn → R with bounded support1 are a vector space.
On this space, the functional

f 7→
∗∫
Rn

|f |

is a seminorm; that is, satisfies the first two conditions (recall 1f13),

∗∫
Rn

|cf | = |c|
∗∫
Rn

|f | ,
∗∫
Rn

|f + g| ≤
∗∫
Rn

|f |+
∗∫
Rn

|g|

(think, why), but violates the third condition,

∗∫
Rn

|f | > 0 whenever f 6= 0 . (Wrong!)

Functions f such that
∗∫

Rn |f | = 0 will be called negligible. Functions f, g
such that f − g is negligible will be called equivalent. For example, for each
pixel Q functions 1lQ◦ and 1lQ are equivalent.2 The equivalence class of f will
be denoted [f ].3

4e1 Exercise. (a) Negligible functions are an infinite-dimensional vector
space.

(b) Equivalence classes are an infinite-dimensional vector space;4 the func-
tional

[f ] 7→
∗∫
B

|f |

is well-defined on this vector space,5 and is a norm.6

Prove it.

Thus, equivalence classes are a normed space, therefore also a metric
space:

ρ
(
[f ], [g]

)
= ‖ [f ]− [g] ‖ =

∗∫
B

|f − g| ;

1Each functions separately.
2Indeed, the equality ∗

∫
1lQ◦ =

∗∫
1lQ follows easily from 4d4.

3Zorich, Sect. 11.3.1.
4The linear operations are c[f ] = [cf ] and [f ] + [g] = [f + g], of course.
5That is, insensitive to the choice of a function within the given equivalence class.
6In fact, every seminorm on a vector space leads to a normed space of equivalence

classes.
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this metric will be called the integral metric, and the corresponding conver-
gence the integral convergence.

4e2 Exercise. Functionals

[f ] 7→
∗

∫
Rn

f , [f ] 7→
∗∫
Rn

f

on the normed space of equivalence classes are well-defined and continuous;
moreover,∣∣∣∣

∗

∫
Rn

f −
∗

∫
Rn

g

∣∣∣∣ ≤ ‖f − g‖ , ∣∣∣∣ ∗∫
Rn

f −
∗∫
Rn

g

∣∣∣∣ ≤ ‖f − g‖ .
Prove it.1

Here and henceforth we often write ‖f‖ instead of ‖ [f ] ‖.

4e3 Remark. A function equivalent to an integrable function is integrable.
Proof: if [f ] = [g] then ∗

∫
Rn f = ∗

∫
Rn g and

∗∫
Rn f =

∗∫
Rn g by 4e2, thus

∗

∫
Rn f =

∗∫
Rn f implies ∗

∫
Rn g =

∗∫
Rn g.

4e4 Exercise. If bounded functions f, g : Rn → R with bounded support
differ only on a set of volume zero then they are equivalent.

Prove it.2,3,4

We may safely ignore values of integrands on sets of volume zero
(as far as they are bounded). Likewise we may ignore sets of
volume zero when dealing with volume.

4e5 Remark. If f1, f2, . . . are integrable and ‖fk − f‖ → 0, then f is
integrable. In other words:

The set of all (equivalence classes of) integrable functions is closed
(in the integral metric).

Proof: ∗

∫
Rn fk → ∗

∫
Rn f and

∗∫
Rn fk →

∗∫
Rn f by 4e2, thus ∗

∫
Rn fk =

∗∫
Rn fk implies ∗

∫
Rn f =

∗∫
Rn f .

1Hint: ∗
∫
Rn f = −∗∫

Rn(−f).
2Hint: |f − g| ≤ const · 1lE .
3“Sets of volume zero are small enough that they don’t interfere with integration”

(Shurman, p.272).
4The converse does not hold; see 4f12.
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Any admissible set E ⊂ Rn may be used instead of the whole Rn. Equiv-
alence classes of bounded functions E → R are a normed space (infinite-
dimensional if v(E) 6= 0, but 0-dimensional if v(E) = 0).

4e6 Exercise. (a) Uniform convergence of bounded functions E → R implies
integral convergence; prove it;

(b) the converse is generally wrong; find a counterexample.

4e7 Remark. Pointwise convergence (on E) does not imply integral con-
vergence, even if the functions are uniformly bounded.1 Here is a counterex-
ample. We take a sequence (xk)k of pairwise different points xk ∈ (0, 1) that
is dense in (0, 1) and consider dense countable sets Ak = {xk+1, xk+2, . . . }.
Clearly, A1 ⊃ A2 ⊃ . . . and

⋂
k Ak = ∅. Indicator functions fk = 1lAk

con-
verge to 0 pointwise (and monotonically). Nevertheless,

∗∫
(0,1)

fk = 1 for all

k.

4e8 Remark. Integral convergence (on E) does not imply pointwise con-
vergence, even if the functions are continuous. Not even in “most” of the
points. Here is a counterexample on E = [0, 1] ⊂ R:

f1 f2

f3

f4

f5

f6

f7

f8

f9

f10

(and so on)

4f Approximation

It is usual and convenient to treat functions as equivalent classes, when deal-
ing with integrals of discontinuous functions.

A box B leads to the equivalence class [1lB◦ ] = [1lB]. Linear combinations2

of these are called step functions. Dealing with a step function we ignore its
values at discontinuity points (but still assume that the function is bounded).
All step functions are integrable.

1It does, if the functions are integrable! But this fact is far beyond basis of integration.
2Finite, of course.
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4f1 Exercise. (a) Every continuous f : Rn → R with bounded support is
integrable;

(b) every continuous function on a box is integrable on this box.
Prove it.1

4f2 Exercise. Let f : (0, 1)n → R be continuous (on the open cube!) and
bounded. Then f is integrable (on this open cube).

Prove it.2

For example, the function f(x) = sin cot πx on (0, 1) is integrable.

4f3 Proposition. Step functions are dense among integrable functions.
That is, for every integrable f : Rn → R and every ε > 0 there exists a step
function g such that ‖f − g‖ ≤ ε.

Proof. We takeN such that UN(f)−LN(f) ≤ ε and introduce step functions
g, h by

g(a) = inf
x∈Q

f(x) , h(a) = sup
x∈Q

f(x) for a ∈ Q◦

where Q runs over all N-pixels. We have
∫
Rn g = LN(f),

∫
Rn h = UN(f)

(think, why), and g ≤ f ≤ h everywhere (except maybe a set of volume
zero). Thus,

‖f − g‖ =

∫
Rn

|f − g| ≤
∫
Rn

(h− g) = UN(f)− LN(f) ≤ ε .

4f4 Remark. In addition, g can be chosen such that

inf f(·) ≤ inf g(·) ≤ sup g(·) ≤ sup f(·) and sup
x:g(x)6=0

|x| ≤ sup
x:f(x)6=0

|x|+ ε .

4f5 Remark. A function is integrable if and only if it is the limit of some
sequence of step functions (in the integral convergence), which follows from
4f3 and 4e5. In other words:

The set of all (equivalence classes of) integrable functions is the
closure of the set of all (equivalence classes of) step functions (in
the integral metric).

4f6 Exercise. There exist continuous gk : Rn → [0, 1] with uniformly
bounded support such that ‖gk − 1l[0,1]n‖ → 0.

Prove it.
1Hint: uniform continuity, and approximation by step functions.
2Hint: approximation by f · 1l[ε,1−ε]n .
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The same holds for every pixel; taking a linear combination and using 4f3
we get the following.

4f7 Corollary. For every integrable f there exist continuous gk : Rn → R
with uniformly bounded support such that ‖gk − f‖ → 0. Thus:

The set of all (equivalence classes of) integrable functions is the
closure of the set of all (equivalence classes of) continuous func-
tions with bounded support (in the integral metric).

4f8 Lemma. If f is integrable, then f 2 : x 7→
(
f(x)

)
2 is integrable.

Proof. Using 4f3 and 4f4 we take step functions1 gk and a number M such
that ‖gk − f‖ → 0 and |f(·)| ≤ M , |gk(·)| ≤ M . It remains to prove that
‖g2k − f 2‖ → 0 (since g2k are step functions). We have

|g2k(x)− f 2(x)| = |gk(x) + f(x)| · |gk(x)− f(x)| ≤ 2M |gk(x)− f(x)| ,

thus, ‖g2k − f 2‖ ≤ 2M‖gk − f‖ → 0.

4f9 Corollary. The (pointwise) product of two integrable functions is inte-
grable.

Indeed, fg = 1
4

(
(f + g)2 − (f − g)2

)
.

4f10 Exercise. If f is integrable, then |f |, f+ = 1
2

(
f + |f |

)
, sin f , 1− cos f ,

and ef − 1 are integrable. If g is also integrable, then max(f, g) is integrable.
Prove it.2

4f11 Exercise. (a) If f and f1 are equivalent, then f 2 and f 2
1 are equivalent;

the same holds for |f |, f+, sin f , 1− cos f , and ef − 1.
(b) If [f ] = [f1] and [g] = [g1], then [fg] = [f1g1] and [max(f, g)] =

[max(f1, g1)].
Prove it.

4f12 Remark. It can happen that f and f1 are equivalent, but sgn f and
sgn f1 are not. Here is a counterexample. Let (rk)k be an enumeration of all
rational numbers on [0, 1]; consider f such that f(rk) = ck for all k, f(x) = 0
for irrational x ∈ [0, 1] and for all x ∈ R \ [0, 1]. If ck → 0, then [f ] = [0]
(think, why); but if ck = ±1, then [f ] 6= [0] (think, why).

If two continuous functions are equal on a dense set, then they are equal
everywhere. This is not the case for integrable functions. But here is a
surprise.

1Continuous functions may be used equally well.
2Hint: consider (g − f)+.
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4f13 Exercise. If two integrable functions are equal on a dense set, then
they are equivalent.

Prove it.1

On the other hand, a function equal to an integrable function on a dense
set need not be integrable (think, why).

4f14 Proposition. If E,F ⊂ Rn are admissible sets, then the sets E ∩ F ,
E ∪ F and E \ F are admissible.

Proof. First, E ∩ F is admissible since 1lE∩F = 1lE · 1lF is integrable by 4f9.
Further, 1lE∪F = 1lE + 1lF − 1lE∩F and 1lE\F = 1lE − 1lE∩F are integrable.

4f15 Exercise. Give another proof of 4f14 using max(f, g) (and min(f, g))
rather than fg.

4f16 Proposition. (a) A function integrable on Rn is integrable on every
admissible set;

(b) a function integrable on an admissible set is integrable on every ad-
missible subset of the given set.

Proof. (a) f · 1lE is integrable by 4f9.
(b) Given E ⊂ F , the function f · 1lE = (f · 1lF ) · 1lE is integrable by

4f9.

4g Sandwich

The Darboux sums LN(f) = −UN(−f) and UN(f) defined by (4b3), (4b4)
may be thought of as integrals of step functions,

LN(f) =

∫
Rn

`N,f , UN(f) =

∫
Rn

uN,f ,(4g1)

uN,f (a) = sup
x∈2−N (Q+k)

f(x)︸ ︷︷ ︸
2nNUN,k(f)

for a ∈ 2−N(Q◦ + k)(4g2)

and `N,f = −uN,−f ; here Q = [0, 1]n, again. In Sect. 4f we did not bother
about values of step functions at points of discontinuity. But sometimes we
need the inequality `N,f ≤ f ≤ uN,f to hold everywhere (including pixel
boundaries). We can ensure this by taking

(4g3) 2−nNuN,f =
∑

k∈Zn:UN,k(f)>0

UN,k(f)1l2−N (Q+k) +
∑

k∈Zn:UN,k(f)<0

UN,k(f)1l2−N (Q◦+k)

1Hint: LN (|f − g|) = 0.
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and `N,f = −uN,−f (again). The values of these step functions on pixel
boundaries are somewhat strange but harmless; we have (think, why)

`N,f ≤ f ≤ uN,f ,(4g4)

2n inf f(·) ≤ inf `N,f (·) ≤ supuN,f (·) ≤ 2n sup f(·) ;(4g5)

the latter shows that `N,f and uN,f are bounded, uniformly in N .
A box was defined in Sect. 4d as B = [a1, b1] × · · · × [an, bn]. Now we

clarify that −∞ < ai ≤ bi < +∞ for i = 1, . . . , n; the degenerate case
v(B) = 0 is allowed. Further, we define a step function as a (finite) linear
combination of indicator functions of boxes. (On the level of equivalence
classes this definition conforms to Sect. 4f.)

Note that 1lB◦ is a step function; for a proof, open the brackets in(
1l[a1,b1](x1)− 1l{a1}(x1)− 1l{b1}(x1)

)
. . .
(
1l[an,bn](xn)− 1l{an}(xn)− 1l{bn}(xn)

)
(assuming a1 < b1, . . . , an < bn, of course). It follows that `N,f and uN,f are
step functions.

4g6 Proposition. For every bounded f : Rn → R with bounded support,

∗

∫
Rn

f = sup

{∫
Rn

g

∣∣∣∣ step g ≤ f

}
,

∗∫
Rn

f = inf

{∫
Rn

h

∣∣∣∣ step h ≥ f

}
.

Proof. It is sufficient to prove the latter; the former follows via (−f).
“≤”:

∫
Rn h =

∗∫
Rn
h ≥ ∗

∫
Rn
f by 4c7 (monotonicity).

“≥”: taking h = uN,f we see that the infimum ≤
∫
Rn uN,f = UN(f) for

all N .

Clearly, we have an equivalent definition of integrability and integral.

4g7 Corollary. For every bounded f : Rn → R with bounded support,

∗

∫
Rn

f = sup

{∫
Rn

g

∣∣∣∣ integrable g ≤ f

}
,
∗∫
Rn

f = inf

{∫
Rn

h

∣∣∣∣ integrable h ≥ f

}
.

4g8 Corollary. A function f : Rn → R is integrable if and only if for
every ε > 0 there exist step functions g and h such that g ≤ f ≤ h and∫
Rn h−

∫
Rn g ≤ ε.

We see that an integrable function can be sandwiched between step func-
tions. Or, alternatively, between continuous functions, see 4g9.
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4g9 Exercise. (a) For every box B ⊂ Rn and ε > 0 there exist continuous
functions g, h : Rn → [0, 1] with bounded support such that g ≤ 1lB◦ ≤ 1lB ≤
h and

∫
Rn h−

∫
Rn g ≤ ε;

(b) for every step function f : Rn → R and ε > 0 there exist continuous
functions g and h with bounded support such that g ≤ f ≤ h and

∫
Rn h −∫

Rn g ≤ ε;
(c) the same holds for every integrable f .

Prove it.1

4g10 Exercise. (a) Define ∗

∫
E
f and

∗∫
E
f similarly to 4d5;

(b) prove additivity of the upper integral:
∗∫

E]F
f =

∗∫
E
f +

∗∫
F
f , and

the same for the lower integral;2

(c) generalize (4d7) to lower and upper integrals.

Thus, if f is not integrable, then the corresponding set function satisfying
(4a2) and (4a3) is not unique; we have at least two such set functions, E 7→
∗

∫
E
f and E 7→ ∗∫

E
f .

4h Translation (shift) and scaling

As before, we assume that f : Rn → R is bounded, with bounded support.
Given a function f and a vector a ∈ Rn, we consider the shifted function

f(·+ a) : x 7→ f(x+ a).
If a ∈ Zn, then L0

(
f(· + a)

)
= L0(f) and U0

(
f(· + a)

)
= U0(f) (think,

why). Moreover, if a ∈ 2−NZn, then LN+i

(
f(·+a)

)
= LN+i(f) and UN+i

(
f(·+

a)
)

= UN+i(f) for i = 0, 1, 2, . . . , whence ∗

∫
Rn f(· + a) = ∗

∫
Rn f and

∗∫
Rn f(· + a) =

∗∫
Rn f . Our theory is invariant under binary-rational shifts.

What about arbitrary shifts?

4h1 Proposition. f(· + a) is integrable if and only if f is integrable, and
in this case

∫
Rn f(·+ a) =

∫
Rn f .

Proof. First, if f is the indicator function of a box, then the claim holds by
4d4.

Second, by linearity the claim holds for step functions.
We apply it to the step functions g and h of 4g6, note that g ≤ f ⇐⇒

g(·+ a) ≤ f(·+ a) and h ≥ f ⇐⇒ h(·+ a) ≥ f(·+ a), and conclude that

∗

∫
Rn

f(·+ a) =
∗

∫
Rn

f ,
∗∫
Rn

f(·+ a) =
∗∫
Rn

f ;

thus, ∗
∫
Rn f =

∗∫
Rn f ⇐⇒ ∗

∫
Rn f(·+ a) =

∗∫
Rn f(·+ a).

1Hint: (a) product of n piecewise linear functions of one variable each; (a)=⇒(b)=⇒(c).
2Hint: use 4g7.
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4h2 Corollary. For every set E ⊂ Rn and vector a ∈ Rn, the shifted set E+a
is admissible if and only if E is admissible, and in this case v(E+a) = v(E).

Consider now a linear operator A : Rn → Rn of the form A(x1, . . . , xn) =
(a1x1, . . . , anxn) (that is, diagonal matrix), and assume that a1 6= 0, . . . , an 6=
0 (that is, A is invertible).

4h3 Exercise. f ◦ A is integrable if and only if f is integrable, and in this
case |a1 . . . an|

∫
Rn f ◦ A =

∫
Rn f .

Prove it.1

4h4 Exercise. For every set E ⊂ Rn, its image A(E) = {Ax : x ∈ E}
is admissible if and only if E is admissible, and in this case v(A(E)) =
|a1 . . . an|v(E).

Prove it.

In particular,

|a|n
∫
Rn

f(ax) dx =

∫
Rn

f ,(4h5)

v(aE) = |a|nv(E) .(4h6)

The following fact is evident for continuous f but, surprisingly, does not
require continuity.

4h7 Proposition. For every integrable f : Rn → R and ε > 0 there exists
δ > 0 such that for all a ∈ Rn

|a| ≤ δ =⇒ ‖f(·+ a)− f‖ ≤ ε .

Proof. First, assume in addition that f is continuous. Then we take M ∈
(0,∞) such that {x : f(x) 6= 0} ⊂ [−M,M ]n, and then, using uniform
continuity of f , we take δ such that |a| ≤ δ implies

∀x |f(x+ a)− f(x)| ≤ ε

2n(M + δ)n
.

Then {x : f(x+ a)− f(x) 6= 0} ⊂ [−(M + δ),M + δ]n (think, why), whence∫
Rn

|f(·+ a)− f(·)| ≤ max
x
|f(x+ a)− f(x)| · v

(
[−(M + δ),M + δ]n

)
≤

≤ ε

2n(M + δ)n
·
(
2(M + δ)

)
n = ε ,

1Hint: similarly to 4h1.
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that is, ‖f(·+ a)− f‖ ≤ ε.
Second, given an integrable f , by 4f7 there exists a continuous g : Rn →

R with bounded support such that ‖g − f‖ ≤ ε/3. We take δ such that
‖g(·+ a)− g‖ ≤ ε/3. Then, using the triangle inequality,

‖f(·+ a)− f‖ ≤ ‖f(·+ a)− g(·+ a)‖+ ‖g(·+ a)− g‖+ ‖g − f‖ ≤

≤ ‖f − g‖+
ε

3
+ ‖g − f‖ ≤ ε

3
+
ε

3
+
ε

3
= ε .

4i The volume under a graph

Here is a rich source of admissible sets.

4i1 Proposition. If a function f : Rn → [0,∞) is integrable, then the set

E = {(x, t) : 0 < t < f(x)} ⊂ Rn × R

is admissible, and vn+1(E) =
∫
Rn f .

Proof. For N = 0, 1, 2, . . . and k ∈ Zn we introduce such boxes in Rn+1:

BN,k = 2−N(Q+k)× [0, 2nNUN,k(f)] , CN,k = 2−N(Q+k)× [0, 2nNLN,k(f)]

(here Q = [0, 1]n, as in Sect. 4b) and note that ∪kC◦N,k ⊂ E ⊂ ∪kBN,k,
therefore (recall (4b3), (4b4) and (4d4))

LN(f) =
∑
k

v(C◦N,k)︸ ︷︷ ︸
LN,k(f)

≤ v∗(E) ≤ v∗(E) ≤
∑
k

v(BN,k)︸ ︷︷ ︸
UN,k(f)

= UN(f)

for all N .

4i2 Corollary. If functions f, g : Rn → R are integrable, then the set

E = {(x, t) : f(x) < t < g(x)} ⊂ Rn × R

is admissible.

Proof. We take a box B ⊂ Rn such that f = g = 0 on Rn\B, and a number
M such that |f | ≤M , |g| ≤M everywhere. Then

E = {(x, t) : x ∈ B, −M < t < g(x)} ∩ {(x, t) : x ∈ B, f(x) < t < M}

(think, why). By 4f14 it is sufficient to prove that these two sets are ad-
missible. The second set becomes similar to the first set after reflection
(x, t) 7→ (x,−t) (recall 4h4). The first set is a shift (recall 4h2) by (0,−M)
of the set {(x, t) : x ∈ B, 0 < t < g(x) + M} admissible by 4i1 applied to
(g +M)1lB.
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It is easy to guess that vn+1(E) =
∫
Rn(g − f)+. We could prove it now

with some effort.1 However, in the next section we’ll get the same effortlessly.

4i3 Exercise. For f as in 4i1, the set

{(x, t) : t = f(x) > 0} ⊂ Rn × R

is of volume zero.
Prove it.2

4i4 Exercise. Prove that
(a) the disk {x : |x| ≤ 1} ⊂ R2 is admissible;
(b) the ball {x : |x| ≤ 1} ⊂ Rn is admissible;
(c) for every p > 0 the set Ep = {(x1, . . . , xn) : |x1|p+· · ·+|xn|p ≤ 1} ⊂ Rn

is admissible;
(d) v(Ep) is a strictly increasing function of p.

4i5 Exercise. For the balls Er = {x : |x| ≤ r} ⊂ Rn prove that
(a) v(Er) = rnv(E1);
(b) v(Er) < e−n(1−r)v(E1) for r < 1.

A wonder: in high dimension the volume of a ball is concentrated near
the sphere!

1Hint:
∑

k(LN,k(g) − UN,k(f))+ ≤ v∗(E) ≤ v∗(E) ≤
∑

k(UN,k(g) − LN,k(f))+, and
(UN,k(g)−LN,k(f))+−(LN,k(g)−UN,k(f))+ ≤ (UN,k(g)−LN,k(f))−(LN,k(g)−UN,k(f)) =
(UN,k(g)− LN,k(g)) + (UN,k(f)− LN,k(f)).

2Hint: try f(x) + ε.
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E
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∫
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