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We may apply notions and results of Euclidean planimetry/stereometry in every
2-dimensional/3-dimensional subspace of an n-dimensional Euclidean affine space.
Topological notions are well-defined on every finite-dimensional vector or affine space.
All norms are equivalent on an arbitrary finite-dimensional vector space.

2b6 Proposition (Linearity of derivative). Let S be a finite-dimensional affine space,
V a finite-dimensional vector space, f, g : S → V , a, b ∈ R, and x0 ∈ S. If f, g are
differentiable at x0 then also af + bg is, and(

D(af + bg)
)
x0

= a(Df)x0
+ b(Dg)x0

.

2b8 Proposition (Product rule). Let S be a finite-dimensional affine space, f, g : S →
R, and x0 ∈ S. If f, g are differentiable at x0 then also fg is, and(

D(fg)
)
x0 = f(x0)(Dg)x0 + g(x0)(Df)x0 .

2b11 Proposition (Chain rule). Let S1, S2, S3 be finite-dimensional affine spaces, f :
S1 → S2, g : S2 → S3, and x0 ∈ S1. If f is differentiable at x0 and g is differentiable at
f(x0) then g ◦ f is differentiable at x0, and(

D(g ◦ f)
)
x0

= (Dg)f(x0) ◦ (Df)x0
.

(2d5)
‖γ(t1)− γ(t0)‖

t1 − t0
≤ sup

t∈(t0,t1)
‖γ′(t)‖

2f2 Lemma. Let a mapping f : Rn → Rm be differentiable at x0, and f1, . . . , fm :
Rn → R be the coordinate functions of f (that is, f(x) =

(
f1(x), . . . , fm(x)

)
. Then the

following two conditions are equivalent:
(a) vectors ∇f1(x0), . . . ,∇fm(x0) are linearly independent;
(b) the linear operator (Df)x0

maps Rn onto Rm.

2g1 Proposition. If f ∈ Ck(Rn → Rm) and g ∈ Ck(Rm → R`) then g ◦ f ∈ Ck(Rn →
R`).

f(x0 + h) = f(x0) +Dhf(x0) +
1

2!
DhDhf(x0) + · · ·+ 1

k!
Dk

hf(x0) + o(|h|k) .

3c2 Theorem. Let f : Rn → Rn and x ∈ Rn. If f is continuously differentiable near x
and the linear operator (Df)x is a homeomorphism, then f is a homeomorphism near x.

3f1 Theorem (Lagrange multipliers). Assume that x0 ∈ Rn, 1 ≤ m ≤ n − 1,
functions f, g1, . . . , gm : Rn → R are continuously differentiable near x0,
g1(x0) = · · · = gm(x0) = 0, and vectors ∇g1(x0), . . . ,∇gm(x0) are linearly inde-
pendent. If x0 is a local constrained extremum of f subject to g1(·) = · · · = gm(·) = 0
then there exist λ1, . . . , λm ∈ R such that

∇f(x0) = λ1∇g1(x0) + · · ·+ λm∇gm(x0) .

The system of m + n equations proposed in Sect. 3f is only one way of finding local
constrained extrema. Not necessarily the simplest way.
No need to find ∇f when f(·) = ϕ(g(·)); just find ∇g and note that ∇f is collinear to
∇g.
If Lagrange method does not solve a problem to the end, it may still give a useful
information. Combine it with other methods as needed.

3i1 Proposition (Singular value decomposition). Every linear operator from one finite-
dimensional Euclidean vector space to another sends some orthonormal basis of the first
space into an orthogonal system in the second space.

∂

∂ck

∣∣∣
c=0

f(x(c)) = λk(0) .

It means that λk = λk(0) is the sensitivity of the critical value to the level ck of the
constraint gk(x) = ck.

4c2 Theorem (Inverse function). Let f : Rn → Rn and x ∈ Rn. If f is continuously
differentiable near x and the linear operator (Df)x is a diffeomorphism, then f is a
diffeomorphism near x.

(Dg)y =
(
(Df)x

)−1 for g = (f |U )−1 , y = f(x) .

4c7 Proposition. Assume that U, V ⊂ Rn are open, f : U → V is a homeomorphism,
continuously differentiable, and the operator (Df)x is invertible for all x ∈ U . Then the
inverse mapping f−1 : V → U is continuously differentiable.

4c11 Exercise. (a) Let f : U → V be as in Prop. 4c7 and in addition f ∈ C2(U). Then
f−1 ∈ C2(V )

(b) The same holds for Ck(. . . ) where k = 3, 4, . . .

4d1 Proposition. Assume that x0 ∈ Rn, f : Rn → Rn is differentiable near x0, Df
is continuous at x0, and the operator T = (Df)x0

is invertible. Then for every y near
y0 = f(x0) the iterative process

xn+1 = xn + T−1
(
y − f(xn)

)
for n = 0, 1, 2, . . .

is well-defined and converges to a solution x of the equation f(x) = y. In addition,
|x− x0| = O(|y − y0|).



5c1 Theorem (Implicit function). Assume that r, c ∈ {1, 2, 3, . . . }, n = r+ c, x0 ∈ Rr,
y0 ∈ Rc, g : Rn → Rc is continuously differentiable near (x0, y0), g(x0, y0) = 0, and the

operator B = ∂g
∂y

∣∣∣
(x0,y0)

is invertible. Then there exist open neighborhoods U of x0 and

V of y0 such that
(a) for every x ∈ U there exists one and only one y ∈ V satisfying g(x, y) = 0;

(b) a function ϕ : U → V defined by g
(
x, ϕ(x)

)
= 0 is continuously differentiable, and

(Dϕ)x0
= −B−1A where A = ∂g

∂x

∣∣∣
(x0,y0)

.

(6b16)
∗∫
B

f =
∑
C∈P

∗∫
C

f ,

which means that the upper integral is an additive box function.

∗∫
(f + g) ≤

∗∫
f +

∗∫
g ;(6d9)

∗

∫
(f + g) ≥

∗

∫
f +

∗

∫
g ;(6d10)

if f, g are integrable then f + g is, and

∫
(f + g) =

∫
f +

∫
g .(6d11)

ρ
(
[f ], [g]

)
= ‖ [f ]− [g] ‖ =

∗∫
B

|f − g| ;

this is the integral metric, and the corresponding convergence is the integral convergence.

6e3 Exercise. (a) A function equivalent to an integrable function is integrable;
(b) equivalence classes of integrable functions are a closed set in the normed space of

equivalence classes, and the functional [f ] 7→
∫
B
f on this set is continuous.

6f5 Proposition. Let f : Rn → R be a bounded function with bounded support, and
ε > 0. Then there exist continuous g, h : Rn → R with bounded support such that

g(·) ≤ f(·) ≤ h(·) ,
∫
Rn

(h− g) ≤ ε+
∗∫
Rn

f −
∗

∫
Rn

f .

And, of course,

(6f6)

∫
Rn

g ≥ −ε+
∗

∫
Rn

f ,

∫
Rn

h ≤ ε+
∗∫
Rn

f .

6f7 Corollary. Continuous functions are dense among integrable functions (in the in-
tegral metric).

If f and g are integrable then min(f, g), max(f, g) and fg are integrable.

6g1 Definition. Let E ⊂ Rn be a bounded set.

v∗(E) =
∗

∫
Rn

1lE , v∗(E) =
∗∫
Rn

1lE .

If they are equal (that is, if 1lE is integrable) then E is Jordan measurable, and its Jordan
measure is

v(E) =

∫
Rn

1lE .

v∗(E1 ∪ E2) ≤ v∗(E1) + v∗(E2) ,(6g5)

v∗(E1 ] E2) ≥ v∗(E1) + v∗(E2) ;(6g6)

if E1, E2 are Jordan measurable then E1 ] E2 is, and

v(E1 ] E2) = v(E1) + v(E2) .
(6g7)

We may ignore values of integrands (as far as they are bounded) on sets of volume zero.
We may ignore sets of volume zero when dealing with Jordan measure.

(6g16)

∫
E

f =

∫
Rn

f · 1lE .

(6g17)

∫
E1]E2

f =

∫
E1

f +

∫
E2

f .

(6g18)

∫
E

f =

∫
E

a where a =
1

v(E)

∫
E

f is the mean (value) of f on E.

6h1 Proposition. Let f : B → [0,∞) be an integrable function on a box B ⊂ Rn, and

E = {(x, t) : x ∈ B, 0 ≤ t ≤ f(x)} ⊂ Rn+1 .
Then E is Jordan measurable (in Rn+1), and

v(E) =

∫
B

f .

(7b1) |f(x)− f(y)| ≤ L|x− y| for all x, y . (Lipschitz condition)

7b4 Proposition. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and a Lipschitz function
f on a box B = B1 ×B2 ⊂ Rm+n. Then
(a) for every x ∈ B1 the function fx is Lipschitz continuous on B2;
(b) the function x 7→

∫
B2
fx is Lipschitz continuous on B1;

(c)

∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
.

7b6 Exercise. Prove that∫
B1×B2

f(x1, . . . , xm)g(y1, . . . , yn) dx1 . . . dxm dy1 . . . dyn =

=

(∫
B1

f(x1, . . . , xm) dx1 . . . dxm

)(∫
B2

g(y1, . . . , yn) dy1 . . . dyn

)
for Lipschitz functions f : B1 → R, g : B2 → R.

Existence of an iterated integral does not ensure existence of the two-dimensional
integral.



7d1 Theorem. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and an integrable function
f on the box B = B1 ×B2 ⊂ Rm+n. Then the iterated integrals∫

B1

dx
∗

∫
B2

dy f(x, y) ,

∫
B1

dx
∗∫
B2

dy f(x, y) ,∫
B2

dy
∗

∫
B1

dx f(x, y) ,

∫
B2

dy
∗∫
B1

dx f(x, y)

are well-defined and equal to ∫∫
B

f(x, y) dxdy .

7d3 Exercise. Generalize 7b6 to integrable functions
(a) assuming integrability of the function (x, y) 7→ f(x)g(y),
(b) deducing integrability of the function (x, y) 7→ f(x)g(y) from integrability of f

and g (via sandwich).

7d6 Exercise. If E1 ⊂ Rm and E2 ⊂ Rn are Jordan measurable sets then the set
E = E1 × E2 ⊂ Rm+n is Jordan measurable.

7d8 Corollary. Let f : Rm+n → R be integrable on every box, and E ⊂ Rm+n a Jordan
measurable set; then ∫

E

f =

∫
Rm

(
x 7→

∫
Ex

fx

)
where Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm.

(7d9) vm+n(E) =

∫
Rm

vn(Ex) dx .

7d10 Corollary (Cavalieri). If Jordan measurable sets E,F ⊂ R3 satisfy v2(Ex) =
v2(Fx) for all x then v3(E) = v3(F ).

7d28 Exercise. Every f ∈ C0(Rn) with bounded support is the limit of some uniformly
convergent sequence of functions of C1(Rn).

7e1 Theorem. Let B ⊂ Rn be a box, and f, g : B× [0, 1]→ R Lipschitz functions such
that f ′x(t) = gx(t) for all x ∈ B, t ∈ (0, 1). Then F ′(t) = G(t) for all t ∈ (0, 1), where
F (t) =

∫
B
f(x, t) dx and G(t) =

∫
B
g(x, t) dx.

7e3 Exercise. (b) every f ∈ C0(Rn) with bounded support is the limit of some uni-
formly convergent sequence of functions of C2(Rn);

(c) the same as (b), but replace C2(Rn) with Ck(Rn), k = 1, 2, 3, . . .

8b11 Proposition.
∗∫

(f+g) =
∗∫
f+
∗∫
g for all upper semicontinuous bounded functions

f, g : Rn → R with bounded support.

8c7 Lemma. If a superadditive box function F satisfies ∗F
′(x) ≥ 0 for all x ∈ B0 (B0

being a given box), then F (B0) ≥ 0.

(8c10) F (B) =

∫
B

F ′ whenever F ′ exists and is integrable on B.

8c11 Exercise.

∗

∫
B
∗F
′ ≤ F (B) ≤

∗∫
B

∗F ′

for every box B and additive box function F such that ∗F
′ and ∗F ′ are bounded on B.

8d2 Proposition.
∗∫
f − ∗

∫
f =

∗∫
Oscf for all bounded f : Rn → R with bounded

support.

8d3 Corollary. A bounded function f : Rn → R with bounded support is integrable if
and only if Oscf is negligible.

8d4 Corollary. For every bounded A ⊂ Rn,
(a) v∗(A)− v∗(A) = v∗(∂A);
(b) A is Jordan measurable if and only if ∂A is of volume zero.

(8d5) (f is integrable on a Jordan set E) ⇐⇒ (Oscf is negligible on E◦) .

Extended integral:

∫
e

(f − g) =
∗∫
f −

∗∫
g for upper semicontinuous f, g .

ve (K) = v∗(K) for compact K ⊂ Rn ,

ve (G) = v∗(G) for open bounded G ⊂ Rn .

8e5 Definition. For a bounded set A ⊂ Rn,
m∗(A) = sup

K⊂A
v∗(K) , m∗(A) = inf

G⊃A
v∗(G)

(here K runs over compact sets, and G over open bounded sets); if these are equal, then
A is Lebesgue measurable, and its Lebesgue measure is

m(A) = m∗(A) = m∗(A) .

8e6 Lemma. Every open bounded set is Lebesgue measurable. That is,
v∗(G) = sup

K⊂G
v∗(K) for every open bounded G ⊂ Rn ,

the supremum being taken over all compact subsets of G.

8e7 Exercise. Every compact set is Lebesgue measurable. That is,
v∗(K) = inf

G⊃K
v∗(G) for every compact K ⊂ Rn ,

the infimum being taken over all open bounded G ⊃ K.

8e9 Proposition. (Monotone convergence for open sets) For all open bounded sets
G,G1, G2, · · · ⊂ Rn,

Gi ↑ G =⇒ v∗(Gi) ↑ v∗(G) .

8e10 Corollary. v∗(G1∪G2∪ . . . ) ≤ v∗(G1)+v∗(G2)+ . . . for all open G1, G2, · · · ⊂ Rn

whose union is bounded.

8e11 Exercise. (Monotone convergence for compact sets) For all compact sets
K,K1,K2, · · · ⊂ Rn,

Ki ↓ K =⇒ v∗(Ki) ↓ v∗(K) .

8f1 Theorem (Lebesgue’s criterion). A bounded function f : Rn → R with bounded
support is integrable if and only if it is continuous almost everywhere.


