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We may apply notions and results of Euclidean planimetry/stereometry in every
2-dimensional /3-dimensional subspace of an n-dimensional Euclidean affine space.
Topological notions are well-defined on every finite-dimensional vector or affine space.
All norms are equivalent on an arbitrary finite-dimensional vector space.

2b6 Proposition (Linearity of derivative). Let S be a finite-dimensional affine space,
V' a finite-dimensional vector space, f,g : S — V, a,b € R, and zp € S. If f,g are
differentiable at xq then also af + bg is, and

(D(af + bg))wo = a’(Df)wo + b(Dg)xo .
2b8 Proposition (Product rule). Let S be a finite-dimensional affine space, f,g: S —
R, and xg € S. If f, g are differentiable at x(y then also fg is, and

(D(fg))zo = f(l"o)(Dg)zo + g(xO)(Df):vo .
2b11 Proposition (Chain rule). Let Sy, S5, S35 be finite-dimensional affine spaces, f :

S1— 52, g: Sy — S3, and zg € S1. If f is differentiable at g and g is differentiable at
f(zo) then go f is differentiable at zq, and

(D(g © f))wo = (Dg)f(a:o) o (Df)ag -

Y(t1) — v(to
P =) <y ey
t1 —to te(to,t1)

(2d5)

2f2 Lemma. Let a mapping f : R® — R™ be differentiable at zg, and f1,..., fm :
R™ — R be the coordinate functions of f (that is, f(z) = (f1(2),..., fm(z)). Then the
following two conditions are equivalent:

(a) vectors V f1(zg), ...,V fm(zo) are linearly independent;

(b) the linear operator (Df);, maps R™ onto R™.

2g1 Proposition. If f € C*(R" — R™) and g € CF*(R™ — RY) then go f € C*(R" —
R?).

f(xo + h) = f(xo) + Dp f(x0) + %Dhth(on) +-+ %Dlﬁf(xo) +o(|h[*).

3c2 Theorem. Let f: R" — R™ and z € R™. If f is continuously differentiable near x
and the linear operator (D f), is a homeomorphism, then f is a homeomorphism near x.

3f1 Theorem (Lagrange multipliers). Assume that zp € R*, 1 < m < n — 1,
functions f,g91,...,9m : R®™ — R are continuously differentiable near =z,
g1(zo) = -+ = gm(xo) = 0, and vectors Vgi(xg),...,Vgm(zo) are linearly inde-
pendent. If xg is a local constrained extremum of f subject to g1(-) =+ = gm(-) =0

then there exist A1,...,\,, € R such that
Vf(i(?o) =MVag (.To) + -+ )\ngm(:co) .

The system of m + n equations proposed in Sect. 3f is only one way of finding local
constrained extrema. Not necessarily the simplest way.
No need to find Vf when f(-) = ¢(g(+)); just find Vg and note that Vf is collinear to
Vg.
If Lagrange method does not solve a problem to the end, it may still give a useful
information. Combine it with other methods as needed.

3il Proposition (Singular value decomposition). Every linear operator from one finite-
dimensional Euclidean vector space to another sends some orthonormal basis of the first
space into an orthogonal system in the second space.

0

oo | J @) = M(0).

It means that A\, = Ag(0) is the sensitivity of the critical value to the level ¢j of the
constraint g (z) = k.

4c2 Theorem (Inverse function). Let f : R — R™ and = € R™. If f is continuously
differentiable near = and the linear operator (Df), is a diffeomorphism, then f is a
diffeomorphism near z.

(Dg)y = ((Df)s) ™" forg=(flu)™". y=flz).

4c7 Proposition. Assume that U,V C R" are open, f : U — V is a homeomorphism,
continuously differentiable, and the operator (Df), is invertible for all x € U. Then the
inverse mapping f~!: V — U is continuously differentiable.

4c11 Exercise. (a) Let f: U — V be as in Prop. [ic7|and in addition f € C%(U). Then
frec*(v)
(b) The same holds for C*(...) where k = 3,4,...

4d1 Proposition. Assume that zo € R™, f : R®" — R" is differentiable near xqy, Df
is continuous at xg, and the operator T' = (D f),, is invertible. Then for every y near
yo = f(xo) the iterative process

Tn+1 =$71+T71(y_f(zn)) fOI‘TL:O,1,27...
is well-defined and converges to a solution z of the equation f(z) = y. In addition,
|z — x| = O(ly = wol)-




5¢1 Theorem (Implicit function). Assume that r,c € {1,2,3,...}, n=r+c¢, 9 € R",
yo € R g : R™ — R€ is continuously differentiable near (zq, y0), g(xo,%0) = 0, and the

operator B = % is invertible. Then there exist open neighborhoods U of xy and

V of yo such that
(a) for every x € U there exists one and only one y € V satisfying g(x,y) = 0;

(b) a function ¢ : U — V defined by g(m, cp(x)) = 0 is continuously differentiable, and
Dg)yy = —B~'A where A = 92
P)xo 0

(z0,Y0)

“(z0.90)
(6b16) */szz Zf,

CeP
which means that the upper integral is an additive box function.

(69) Juros< [1+ [o
(6d10) Jusaz [r+ [a
(6d11) if f, g are integrable then f + g is, and /(f+g)=/f+/g.

o((1. 1)) = 1] — o] | = */Blf s

this is the integral metric, and the corresponding convergence is the integral convergence.

6e3 Exercise. (a) A function equivalent to an integrable function is integrable;
(b) equivalence classes of integrable functions are a closed set in the normed space of
equivalence classes, and the functional [f] — [ p [ on this set is continuous.

6f5 Proposition. Let f : R™ — R be a bounded function with bounded support, and
€ > 0. Then there exist continuous g, h : R™ — R with bounded support such that

sr<so<n), [ w-g<es [ 1o [

And, of course,

(616) /gz—a—i- / f, h<e+ f-
n * n R’Vl R’IL

6f7 Corollary. Continuous functions are dense among integrable functions (in the in-
tegral metric).

If f and g are integrable then min(f, g), max(f,g) and fg are integrable.

6gl Definition. Let £ C R™ be a bounded set.

v.(E) = /nE v (B) = /nE

If they are equal (that is, if 1 is integrable) then F is Jordan measurable, and its Jordan

measure is

(6g5) ’U*(El U EQ) S ’U*(El) + U*(E2) s

(6g6) Vx (El (] E2) Z (2 (El) + Vs (Eg) ;

(6g7) if F1, Fs are Jordan measurable then F; W Fs is, and

’U(El ] Eg) = U(El) + U(Eg) .

We may ignore values of integrands (as far as they are bounded) on sets of volume zero.
We may ignore sets of volume zero when dealing with Jordan measure.

6g16 = g
(6g16) /Ef - f1g
(6217) [ oa=[asf 1
E1WE> Ey E>
1 N
(6¢18) /Ef = /Ea where a = o(F) /Ef is the mean (value) of f on E.

6h1 Proposition. Let f: B — [0,00) be an integrable function on a box B C R", and
E={(z,t):z€B,0<t< f(z)} cR*.
Then E is Jordan measurable (in R"*1), and

U(E):/f.

B

(7b1) |f(z) = f(y)| < Ll —y| forallz,y.

7b4 Proposition. Let two boxes By C R™, By C R™ be given, and a Lipschitz function
f onabox B=B; x B, C R®"". Then

(a) for every x € B; the function f, is Lipschitz continuous on Bs;

(b) the function = — f32 Sz is Lipschitz continuous on By;

[5-f, (= f,5)

7Tb6 Exercise. Prove that

/ P 2m)g (s yn) oy dag dyy -y, =
B1X B>

= ( f(xl,...,xm)dxl...dxm)</ g(yl,...,yn)dyl...dyn>
By B

for Lipschitz functions f: By = R, g: By — R.

(Lipschitz condition)

Existence of an iterated integral does not ensure existence of the two-dimensional
integral.




7d1 Theorem. Let two boxes By C R™, By C R™ be given, and an integrable function
f on the box B = By x By C R™*™, Then the iterated integrals

/31 dx*/& dy f(@,y), /B da /B dy f(z,y),
/32 dy*/Bl de f(zy), /32 dy 731 da f(x,y)

are well-defined and equal to

/ f(z,y) dady.
B

7d3 Exercise. Generalize [Th0] to integrable functions

(a) assuming integrability of the function (x,y) — f(z)g(y),

(b) deducing integrability of the function (x,y) — f(x)g(y) from integrability of f
and g (via sandwich).

7d6 Exercise. If £; C R™ and E>, C R" are Jordan measurable sets then the set
E = E; x E5 C R™*" is Jordan measurable.

7d8 Corollary. Let f : R™™" — R be integrable on every box, and E C R™*" a Jordan

IIleaSllI‘able Sel ; theIl
E v E,

where E, = {y: (z,y) € E} C R" for z € R™.

(7d9) Umtn (E) = /m v (Ey) dz.

7d10 Corollary (Cavalieri). If Jordan measurable sets E, F C R? satisfy vo(E,) =
vo(Fy) for all x then v3(E) = vs(F).

7d28 Exercise. Every f € C°(R"™) with bounded support is the limit of some uniformly
convergent sequence of functions of C*(R™).

7el Theorem. Let B C R™ be a box, and f, g : B x [0, 1] — R Lipschitz functions such
that fi(t) = g.(t) for all z 6 B, t € (0,1). Then F'(t) = G(t) for all t € (0,1), where
= [ f(z,t)dz and G(t fBgactdx

7e3 Exercise. (b) every f € C°(R") with bounded support is the limit of some uni-
formly convergent sequence of functions of C?(R™);
(c) the same as (b), but replace C?(R") with C*¥(R"), k =1,2,3,...

8b11 Proposition. *f( f+g) = *f f —|—*f g for all upper semicontinuous bounded functions
f,9 : R™ — R with bounded support.

8c7 Lemma. If a superadditive box function F' satisfies /() > 0 for all z € By (B
being a given box), then F(Bg) > 0.

(8¢10) F(B) = / F’ whenever I’ exists and is integrable on B.
B

/*F’gF(B)g /*F’
xJ B B

for every box B and additive box function F such that .F’ and *F’ are bounded on B.

8d2 Proposition. [ f — _[f = "[Osc; for all bounded f : R® — R with bounded
support.

8cl1l Exercise.

8d3 Corollary. A bounded function f : R™ — R with bounded support is integrable if
and only if Oscy is negligible.

8d4 Corollary. For every bounded A C R",
(a) v*(A) = v.(A) = v"(04);
(b) A is Jordan measurable if and only if A is of volume zero.
(8d5) (f is integrable on a Jordan set FE)

<= (Osc; is negligible on E°).

Extended integral: / f—9) / f- / g for upper semicontinuous f,g
w(K) =v"(K)
w(G) = v*(G)
8e5 Definition. For a bounded set A C R™,
m.(A) = sup v*(K),
KCA
(here K runs over compact sets, and G over open bounded sets); if these are equal, then

A is Lebesgue measurable, and its Lebesgue measure is
m(A) = m.(A) =m*(A).

8e6 Lemma. Every open bounded set is Lebesgue measurable. That is,
v.(G) = sup v*(K) for every open bounded G C R",

KcaG
the supremum being taken over all compact subsets of G.

for compact K C R",
for open bounded G C R” )

m*(A) = ég&v*(G)

8e7 Exercise. Every compact set is Lebesgue measurable. That is,
v (K) = Glng( v.(G) for every compact K C R™,
)

the infimum being taken over all open bounded G O K.
8e9 Proposition. (Monotone convergence for open sets) For all open bounded sets
G,G1,Ga,--- CR™,

12 GiTG = u.(G) Tu(G).

8e10 Corollary. v,(G1UGLU...) < 0,(G1)+v.(G2)+

whose union is bounded.

. for all open G1,Ga,--- CR™

8ell Exercise.
Ka Kla K2> e

(Monotone convergence for compact sets) For all compact sets
n
C R, KlK = v (K)lv(K).

8f1 Theorem (Lebesgue’s criterion). A bounded function f : R” — R with bounded
support is integrable if and only if it is continuous almost everywhere.




