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Iterated integral is an indispensable tool for calculating multidimensional
integrals (in particular, volumes). It also leads to a result about integrals
(including one-dimensional) that depend on a parameter.

7a What is the problem

It is easy to see that

ε2
∑
k,l∈Z

f(εk, εl)→
∫
R2

f as ε→ 0

for every continuous f : R2 → R with bounded support. The double sum-
mation is evidently equivalent to iterated summation,

ε2
∑
k,l∈Z

f(εk, εl) = ε
∑
k∈Z

(
ε
∑
l∈Z

f(εk, εl)

)
,

which suggests that ∫
R2

f =

∫
R

(∫
R
f(x, y) dy

)
dx ,

(alternative notation:
∫∫

f(x, y) dxdy =
∫

dx
∫

dy f(x, y), and the like), that
is,

(7a1)

∫
R2

f =

∫
R

(
x 7→

∫
R
f(x, ·)

)
,

where f(x, ·) : R→ R (denoted also fx) is defined by

f(x, ·) : y 7→ f(x, y) .

It should be very useful, to integrate with respect to one variable at a time.
Related problems:
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∗ does integrability of f imply integrability of f(x, ·) for every x?

∗ is the function x 7→
∫
R f(x, ·) integrable?

∗ is the two-dimensional integral equal to the iterated integral?

∗ if the iterated integral is well-defined, does it follow that f is integrable?

And, of course, we need a multidimensional theory; R2 is only the simplest
case.

7b Lipschitz functions

Here is the so-called Lipschitz condition (with constant L) on a function
f : Rn → R:

(7b1) |f(x)− f(y)| ≤ L|x− y| for all x, y .

One also says that f is Lipschitz continuous (with constant L), or L-Lipschitz,
etc. Also, f is Lipschitz continuous if it satisfies the Lipschitz condition with
some constant. Such functions are continuous (but the converse fails). The
same holds for functions on boxes and other subsets of Rn.

Every Lipschitz function on a box is uniformly continuous and therefore
integrable by (6f1).

Every integrable function on a box can be sandwiched between Lipschitz
functions (see 6f4 and (6f6); max and min of Lipschitz functions are Lipschitz
functions, see the hint to 6f4).

7b2 Proposition. Let f : B → R be a Lipschitz function on a box B =
b1 × b2 ⊂ R2. Then
(a) for every x ∈ b1 the function fx is Lipschitz continuous on b2;
(b) the function x 7→

∫
b2
fx is Lipschitz continuous on b1;

(c)

∫
B

f =

∫
b1

(
x 7→

∫
b2

fx

)
.

It is given that f is L-Lipschitz for some L ∈ (0,∞). We reduce the
general case to the case L = 1 by turning to the function 1

L
f .

We reduce the general box B of the form [s1, t1]× [s2, t2] to a box of the
form [0, t1]× [0, t2] by translation, according to 6c3. Further, we reduce it to
the square [0, 1]× [0, 1] by rescaling, according to 6d17. That is, we introduce
a Lipschitz function g : [0, 1]× [0, 1]→ R by g(x, y) = f(t1x, t2y); by 6d17,

t1t2

∫
[0,1]×[0,1]

g =

∫
B

f .
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We note that gx(y) = ft1x(t2y); Lipschitz continuity of gx implies Lipschitz
continuity of ft1x, and t2

∫
[0,1]

gx =
∫
[0,t2]

ft1x (by 6d17 again). Further, Lips-

chitz continuity of x 7→
∫
[0,1]

gx implies Lipschitz continuity of x 7→
∫
[0,t2]

fx,

and

t1

∫
[0,1]

(
x 7→

∫
[0,t2]

ft1x

)
=

∫
[0,t1]

(
x 7→

∫
[0,t2]

fx

)
(by 6d17 once again), that is,

t1t2

∫
[0,1]

(
x 7→

∫
[0,1]

gx

)
=

∫
[0,t1]

(
x 7→

∫
[0,t2]

fx

)
.

Now the equality (7b2)(c) for g implies the same for f .

7b3 Lemma. For every 1-Lipschitz function f : [0, 1]n → R and every
K = 1, 2, . . .∣∣∣∣ 1

Kn

∑
1≤k1,...,kn≤K

f
(k1 − 0.5

K
, . . . ,

kn − 0.5

K

)
−
∫
[0,1]n

f

∣∣∣∣ ≤ √n2K
.

Proof. Let us define1 a closed δ-pixel as a box (cube) of the form [δk1, δk1 +
δ]×· · ·× [δkn, δkn+δ] for k1, . . . , kn ∈ Z. We consider a partition P of [0, 1]n

into Kn δ-pixels with δ = 1/K. Every point of a pixel C is 1
2
δ
√
n-close to

the center (k1−0.5
K

, . . . , kn−0.5
K

) of the pixel; the Lipschitz continuity gives

f
(
k1−0.5
K

, . . . , kn−0.5
K

)
−1

2
δ
√
n ≤ inf

C
f ≤ sup

C
f ≤ f

(
k1−0.5
K

, . . . , kn−0.5
K

)
+

1

2
δ
√
n ;

∑
1≤k1,...,kn≤K

δn
(
f
(
k1−0.5
K

, . . . , kn−0.5
K

)
− 1

2
δ
√
n
)
≤ L(f, P ) ≤

∫
[0,1]n

f ≤

≤ U(f, P ) ≤
∑

1≤k1,...,kn≤K

δn
(
f
(
k1−0.5
K

, . . . , kn−0.5
K

)
+

1

2
δ
√
n
)
.

Proof of Prop. 7b2 for a 1-Lipschitz function f on B = [0, 1]× [0, 1].
(a) |fx(y1)−fx(y2)| = |f(x, y1)−f(x, y2)| ≤ |(0, y1−y2)| = |y1−y2|, thus

fx is 1-Lipschitz.
(b) |(fx1 − fx2)(y)| = |f(x1, y) − f(x2, y)| ≤ |(x1 − x2, 0)| = |x1 − x2|,

therefore |
∫
[0,1]

fx1 −
∫
[0,1]

fx2| ≤ |x1 − x2|, which shows that the function

x 7→
∫
[0,1]

fx is 1-Lipschitz.

1Following Terence Tao.

http://terrytao.wordpress.com/books/an-introduction-to-measure-theory/
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(c) Lemma 7b3 applied to f (and n = 2) gives for arbitrary M = 1, 2, . . .∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
−
∫
B

f

∣∣∣∣ ≤ √2

2M
.

The same lemma applied to fx (and n = 1) gives for every x∣∣∣∣ 1

M

M∑
l=1

fx
(
l−0.5
M

)
−
∫
[0,1]

fx

∣∣∣∣ ≤ 1

2M
.

The same lemma (again!) applied to the function x 7→
∫
[0,1]

fx (and n = 1)
gives ∣∣∣∣ 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M
−
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤ 1

2M
.

Thus,∣∣∣∣ ∫
B

f −
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤
≤
∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
− 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M

∣∣∣∣+

√
2

2M
+

1

2M

and∣∣∣∣ 1

M2

M∑
k,l=1

f
(
k−0.5
M

, l−0.5
M

)
− 1

M

M∑
k=1

∫
[0,1]

f k−0.5
M

∣∣∣∣ =

=

∣∣∣∣ 1

M

M∑
k=1

(
1

M

M∑
l=1

f
(
k−0.5
M

, l−0.5
M

)
−
∫
[0,1]

f k−0.5
M

∣∣∣∣ ≤
≤ 1

M

M∑
k=1

1

2M
=

1

2M
.

Finally, ∣∣∣∣ ∫
B

f −
∫
[0,1]

(
x 7→

∫
[0,1]

fx

)∣∣∣∣ ≤ √2 + 2

2M

for all M .

Here is a straightforward generalization of Prop. 7b2.
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7b4 Proposition. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and a
Lipschitz function f on a box B = B1 ×B2 ⊂ Rm+n. Then
(a) for every x ∈ B1 the function fx is Lipschitz continuous on B2;
(b) the function x 7→

∫
B2
fx is Lipschitz continuous on B1;

(c)

∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
.

7b5 Exercise. Prove Prop. 7b4.

Similarly, for a Lipschitz function f : B1 ×B2 → R,∫
B

f =

∫
B2

(
y 7→

∫
B1

f y
)

where f y(x) = f(x, y). This claim reduces to Prop. 7b4 taking f̃(y, x) =
f(x, y). Ultimately,∫

dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y) .

That is, the two iterated integrals are equal to the “non-iterated” (“double”?
“single”?) integral (and therefore equal to each other).

7b6 Exercise. Prove that∫
B1×B2

f(x1, . . . , xm)g(y1, . . . , yn) dx1 . . . dxm dy1 . . . dyn =

=

(∫
B1

f(x1, . . . , xm) dx1 . . . dxm

)(∫
B2

g(y1, . . . , yn) dy1 . . . dyn

)
for Lipschitz functions f : B1 → R, g : B2 → R.

7b7 Exercise. Calculate each integral in two ways:
(a)
∫ 1

0
dx
∫ 1

0
dy ex+y;

(b)
∫ 1

0
dy
∫ π/2
0

dx xy cos(x+ y).

7b8 Exercise. Calculate integrals
(a)
∫
[0,1]n

(x21 + · · ·+ x2n) dx1 . . . dxn;

(b)
∫
[0,1]n

(x1 + · · ·+ xn)2 dx1 . . . dxn.
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7b9 Exercise. For every Lipschitz function f : R2 → R with bounded
support, ∫∫

R2

f(x, y + sinx) dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.

≈

7b10 Exercise. For every Lipschitz function f : R2 → R with bounded
support, ∫∫

R2

f
(
x3 + x,

y

3x2 + 1

)
dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.

≈

7c Some counterexamples

7c1 Example. Integrability of f does not imply integrability of fx for every
x.

Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
1 if x = 1/2 and y is rational,

0 otherwise.

Then f(·, ·) = 0 outside a set {1/2}× [0, 1] of area 0, therefore f is integrable
(recall 6g). However, f1/2 is not integrable (recall 6b29).

7c2 Example. Existence of the iterated integral1 does not imply bound-
edness (the more so, integrability) of f , even if f is positive and symmet-
ric in the sense that f(x, y) = f(y, x) (and therefore the iterated integrals∫

dx
∫

dy f(x, y),
∫

dy
∫

dx f(x, y) are both well-defined, and equal).
Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
1√
x+y

if x/2 < y < 2x,

0 otherwise

1That is, integrability of fx for all x and integrability of the function x 7→
∫
fx.
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and observe that∫
[0,1]

fx =

∫ 2x

x/2

dy√
x+ y

= 2
√
x+ y

∣∣y=2x

y=x/2
= 2
√

3x− 2
√

3x/2 = const · √x

for x ≤ 1/2, and
∫ 1

x/2
dy√
x+y

= 2
√
x+ 1− 2

√
3x/2 for x ≥ 1/2.

7c3 Example. Existence of both iterated integrals does not imply their
equality, even if f is antisymmetric in the sense that f(x, y) = −f(y, x).

Define f : [0, 1]× [0, 1]→ R by

f(x, y) =

{
x−y

(x+y)3
if x > 0 and y > 0,

0 otherwise;

observe that each fx is continuously differentiable (therefore Lipschitz), and∫
[0,1]

fx =

∫ 1

0

x− y
(x+ y)3

dy =

∫ 1

0

2x− (x+ y)

(x+ y)3
dy =

= 2x

∫ 1

0

dy

(x+ y)3
−
∫ 1

0

dy

(x+ y)2
= 2x·

(
−1

2

) 1

(x+ y)2

∣∣∣∣y=1

y=0

−(−1)· 1

x+ y

∣∣∣∣y=1

y=0

=

= −x
( 1

(x+ 1)2
− 1

x2

)
+
( 1

x+ 1
− 1

x

)
=
−x+ (x+ 1)

(x+ 1)2
=

1

(x+ 1)2
,

a positive, continuously differentiable function on [0, 1]. Its integral is positive
(in fact, 1/2). By the antisymmetry, the other iterated integral is negative
(in fact, −1/2).

7c4 Example. Existence of the iterated integral does not imply integrability
of f even if f is bounded and symmetric.

Define f : [0, 1]× [0, 1]→ R by1

f(x, y) =

{
1 if x

√
2 + y and x+ y

√
2 are (both) rational,

0 otherwise.

If f(x, y1) = f(x, y2) = 1 then y1 − y2 = (x
√

2 + y1)− (x
√

2 + y2) is rational
and (y1 − y2)

√
2 = (x + y1

√
2) − (x + y2

√
2) is rational, therefore y1 = y2.

It means that each fx(·) = 0 outside at most one point. Similarly, each f y

vanishes outside at most one point. Thus,
∫
fx = 0 for all x, and

∫
f y = 0 for

all y. Nevertheless f is not integrable, since it equals 1 on a dense countable
set of points of the form (q

√
2− r, r

√
2− q) with rational q, r; and f vanishes

on the (dense) complement of this countable set.

1Alternatively, f(x, y) = 1 whenever (x, y) =
(
(2k − 1)/2n, (2l − 1)/2n

)
.
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Existence of an iterated integral does not ensure existence of the
two-dimensional integral.

7c5 Remark. One may wonder, does existence of both iterated integrals
imply their equality if f is just bounded (but not Lipschitz, nor integrable)?
The answer is affirmative.1 Try to prove it yourself if you are ambitious
enough, but be warned that you’ll probably need something not learned yet
in this course.

7d Integrable functions

7d1 Theorem. Let two boxes B1 ⊂ Rm, B2 ⊂ Rn be given, and an in-
tegrable function f on a box B = B1 × B2 ⊂ Rm+n. Then the iterated
integrals ∫

B1

dx
∗

∫
B2

dy f(x, y) ,

∫
B1

dx
∗∫
B2

dy f(x, y) ,∫
B2

dy
∗

∫
B1

dx f(x, y) ,

∫
B2

dy
∗∫
B1

dx f(x, y)

are well-defined and equal to∫∫
B

f(x, y) dxdy .

Clarification. The claim that
∫

dx ∗
∫

dy f(x, y) is well-defined means that
the function x 7→ ∗

∫
dy f(x, y) is integrable.

The equality ∫ (
x 7→

∗

∫
fx

)
=

∫ (
x 7→

∗∫
fx

)
implies integrability (with the same integral) of every function sandwiched
between the lower and upper integrals. It is convenient to interpret x 7→

∫
fx

as any such function and write, as before,∫
B

f =

∫
B1

(
x 7→

∫
B2

fx

)
and ∫

dx

∫
dy f(x, y) =

∫∫
f(x, y) dxdy =

∫
dy

∫
dx f(x, y)

1In Riemann integration, of course. In Lebesgue integration the corresponding problem
is much harder.
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even though fx may be non-integrable for some x.
Theorem 7d1 is proved via sandwiching (recall Sect. 6f), — either by step

functions or by Lipschitz functions. Let us use the latter.

Proof. As was noted (before 7b2),
∗∫
B
f = infg≥f

∫
B
g where g runs over all

Lipschitz functions. For every such g,
∫
B
g =

∫
B1

(x 7→
∫
B2
gx) by Prop. 7b2.

We have
∫
B2
gx =

∗∫
B2
gx ≥ ∗∫

B2
fx (since gx ≥ fx), thus,

∫
B
g ≥ ∗∫

B1
(x 7→

∗∫
B2
fx) for all these g. Therefore

∗∫
B

f ≥
∗∫
B1

(
x 7→

∗∫
B2

fx

)
.

Similarly (or via (−f)),

∗

∫
B

f ≤
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
.

Using integrability of f ,∫
B

f ≤
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
≤

∗∫
B1

(
x 7→

∗∫
B2

fx

)
≤
∫
B

f ,

therefore ∫
B

f =
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
=

∗∫
B1

(
x 7→

∗∫
B2

fx

)
.

Integrability of the function x 7→ ∗

∫
B2
fx follows, since∫

B

f =
∗

∫
B1

(
x 7→

∗

∫
B2

fx

)
≤
∗∫
B1

(
x 7→

∗

∫
B2

fx

)
≤
∗∫
B1

(
x 7→

∗∫
B2

fx

)
=

∫
B

f.

Similarly, the function x 7→ ∗∫
B2
fx is also integrable. Thus,∫

B

f =

∫
B1

(
x 7→

∗

∫
B2

fx

)
=

∫
B1

(
x 7→

∗∫
B2

fx

)
.

The other two iterated integrals are treated similarly (or via f̃(y, x) =
f(x, y)).

7d2 Exercise. Give another proof of 7d1, via sandwiching by step func-
tions.1

1Hint: first, consider f = 1lC for a box C ⊂ B.
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7d3 Exercise. Generalize 7b6 to integrable functions
(a) assuming integrability of the function (x, y) 7→ f(x)g(y),
(b) deducing integrability of the function (x, y) 7→ f(x)g(y) from integra-

bility of f and g (via sandwich).

7d4 Exercise. For every integrable function f : R2 → R the function x, y 7→
f(x, y + sinx) is also integrable, and∫∫

R2

f(x, y + sinx) dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.1

7d5 Exercise. For every integrable function f : R2 → R the function x, y 7→
f
(
x3 + x, y

3x2+1

)
is also integrable, and∫∫

R2

f
(
x3 + x,

y

3x2 + 1

)
dxdy =

∫∫
R2

f(x, y) dxdy .

Prove it.2

7d6 Exercise. If E1 ⊂ Rm and E2 ⊂ Rn are Jordan measurable sets then
the set E = E1 × E2 ⊂ Rm+n is Jordan measurable.

Prove it.

Clearly, the boxes B1, B2 in Th. 7d1 may be replaced with Jordan sets
E1, E2.

7d7 Exercise. If E1 ⊂ Rm and E2 ⊂ Rm+n are Jordan measurable sets then
the set E = {(x, y) ∈ E2 : x ∈ E1} = (E1 × Rn) ∩ E2 ⊂ Rm+n is Jordan
measurable.

Prove it.

Applying Theorem 7d1 to a function f1lE and taking 6g16 into account
we get the following.

7d8 Corollary. Let f : Rm+n → R be integrable on every box, and E ⊂
Rm+n a Jordan measurable set; then∫

E

f =

∫
Rm

(
x 7→

∫
Ex

fx

)
where Ex = {y : (x, y) ∈ E} ⊂ Rn for x ∈ Rm.

1Hint: use 7b9.
2Hint: use 7b10.
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Clarification. First, note that {x : Ex 6= ∅} is bounded, and
∫
∅ fx =

0. Second: it may happen that
∫
Ex
fx is ill-defined for some x; then it is

interpreted as anything between ∗

∫
fx1lEx and

∗∫
fx1lEx .

In particular, taking f(·) = 1 we get

(7d9) vm+n(E) =

∫
Rm

vn(Ex) dx

where vk is the Jordan measure in Rk. For instance, the volume of a 3-di-
mensional geometric body is the 1-dimensional integral of the area of the
2-dimensional section of the body.

7d10 Corollary. If Jordan measurable sets E,F ⊂ R3 satisfy v2(Ex) =
v2(Fx) for all x then v3(E) = v3(F ).1

This is a modern formulation of Cavalieri’s principle:2,3

Suppose two regions in three-space (solids) are
included between two parallel planes. If ev-
ery plane parallel to these two planes intersects
both regions in cross-sections of equal area, then
the two regions have equal volumes.

Before emergence of the integral calculus, Cavalieri was able to calculate
some volumes by ingenious use of this principle. Here are two examples.
First, the volume of the upper half of a sphere is equal to the volume of a
cylinder minus volume of a cone:

Second, when a hole of length h is drilled straight through the center of a
sphere, the volume of the remaining material surprisingly does not depend

1It is sufficient to check the equality for all x of a dense subset of R (since two Riemann
integrable functions equal on a dense set must have equal integrals).

2Bonaventura Francesco Cavalieri (in Latin, Cavalerius) (1598–1647), Italian mathe-
matician.

3Images (and some text) from Wikipedia, “Cavalieri’s principle”.

http://en.wikipedia.org/wiki/Cavalieri's_principle
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on the size of the sphere:

7d11 Exercise. Check the two results of Cavalieri noted above.

7d12 Exercise. Check a famous result of Archimedes:1,2 a sphere inscribed
within a cylinder has two thirds of the volume of the cylinder.

Moreover, show that the volumes of a cone, sphere and cylinder of the same
radius and height are in the ratio 1 : 2 : 3.

Another important special case of 7d8:

E = {(x, t) : x ∈ B, g(x) ≤ t ≤ h(x)} ⊂ Rn+1

where B ⊂ Rn is a box and g.h : B → R integrable functions satisfying g ≤ h
(recall Sect. 6h). In this case Ex = [g(x), h(x)], and we get∫

E

f =

∫
B

(
x 7→

∫
[g(x),h(x)]

fx

)
=

∫
B

dx

∫ h(x)

g(x)

dt f(x, t) .

1Archimedes (≈ 287–212 BC), a Greek mathematician, generally considered to be the
greatest mathematician of antiquity and one of the greatest of all time.
Cicero describes visiting the tomb of Archimedes, which was surmounted by a sphere in-
scribed within a cylinder. Archimedes . . . regarded this as the greatest of his mathematical
achievements.

2Images (and some text) from Wikipedia, “Volume” (section “Volume ratios for a
cone, sphere and cylinder of the same radius and height”).

http://en.wikipedia.org/wiki/Volume
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Applying this to f1lF (in place of f) for a Jordan measurable set F ⊂ Rn

such that g ≤ h on F we get∫
E

f =

∫
F

dx

∫ h(x)

g(x)

dt f(x, t)

where E = {(x, t) : x ∈ F, g(x) ≤ t ≤ h(x)}.

7d13 Remark. Cavalieri’s principle is about parallel planes. What about
parallel surfaces or curves? Applying 7d4 to f = 1lE we get the following:
if Jordan measurable sets E,F ⊂ R2 satisfy v1(Ey) = v1(Fy) for all y then
v2(E) = v2(F ); here Ey = {x : (x, y + sinx) ∈ E} (and the same for Fy).
But do not think that v1(Ey) is the length of the sinusoid inside E; it is not.

Here is another case: Er = {θ ∈ [0, 2π) : (r cos θ, r sin θ) ∈ E}; now v1(Er)
is the length of the circle inside E, multiplied by r; and in fact, the equality
v1(Er) = v1(Fr) for all r implies v2(E) = v2(F ), as we’ll see in Sect. 9.

Note that the parallel circles are equidistant; the parallel sinusoids are not.

We’ll return to this matter in Analysis 4.

7d14 Exercise. Given α ∈ [0, 2π), consider the rotation T : R2 → R2,
T (x, y) = (x cosα − y sinα, x sinα + y cosα). For an arbitrary box B ⊂ R2

prove that the rotated box T (B) is Jordan measurable and v(T (B)) = v(B).
(You know, we did not prove rotation invariance yet. . . )
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7d15 Exercise. 1 Consider the set E = {(x, y, z) : 0 ≤ z ≤ 1−x2−y2} ⊂ R3.
(a) Find the volume of E via

∫
v2(E

z) dz.
(b) Using (a) and the equality

∫
v2(E

z) dz =
∫
v1(Ex,y) dxdy, find the

mean2 of the function (x, y) 7→ 1 − x2 − y2 on the disk {(x, y) : x2 + y2 ≤
1} ⊂ R2.

(c) Similarly to (a), (b), find the mean of the function x 7→ |x|p on the
ball {x : |x| ≤ 1} ⊂ Rn for p ∈ (0,∞).3

7d16 Exercise. Calculate the integral∫∫∫
E

(x21 + x22 + x23) dx1dx2dx3 ,

where E = {(x1, x2, x3) ∈ [0,∞)3 : x1 + x2 + x3 ≤ a} ⊂ R3.
Answer: a5/20.

7d17 Exercise. Find the volume of the intersection of two solid cylinders
in R3: {x21 + x22 ≤ 1} and {x21 + x23 ≤ 1}.

Answer: 16/3.

7d18 Exercise. Find the volume of the solid in R3 under the paraboloid
{x21 + x22 = x3} and above the square [0, 1]2 × {0}.

Answer: 2/3.

7d19 Exercise. Let f : R→ R be a continuous function. Prove that∫ x

0

dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn f(xn) =

∫ x

0

f(t)
(x− t)n−1
(n− 1)!

dt .

7d20 Example. Let us calculate the integral∫
[0,1]n

max(x1, . . . , xn) dx1 . . . dxn .

First of all, by symmetry, we assume that 1 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0, and
multiply the answer by n!. Then max(x1, ..., xn) = x1, and we get

n!

∫ 1

0

x1 dx1

∫ x1

0

dx2 ...

∫ xn−1

0

dxn = n!

∫ 1

0

xn1 dx1
(n− 1)!

=
n

n+ 1
.

1Exam of 26.01.14, Question 4.
2Recall (6g18).
3Hint: you do not need the volume of the ball (nor the area of the disk)! And of

course, |x|p stands for (x2
1 + · · ·+ x2

n)p/2.
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7d21 Exercise. Compute the integral
∫
[0,1]n

min(x1, . . . , xn) dx1 . . . dxn.

Answer: 1
n+1

.

7d22 Exercise. Find the volume of the n-dimensional simplex

{x : x1, ..., xn ≥ 0, x1 + ...+ xn ≤ 1} .

Answer: 1
n!

.

7d23 Exercise. Suppose the function f depends only on the first coordinate.
Then ∫

B
f(x1) dx = vn−1

∫ 1

−1
f(x1)(1− x21)(n−1)/2 dx1 ,

where B is the unit ball in Rn, and vn−1 is the volume of the unit ball in
Rn−1.

The next exercises examine further a very interesting phenomenon of
“concentration of high-dimensional volume” touched before, in 6h4(b); it
was seen there that in high dimension the volume of a ball concentrates near
the sphere,1 and now we’ll see that it also concentrates near a hyperplane!2

7d24 Exercise. Let B be the unit ball in Rn, and P = {x ∈ B : |x1| < 0.01}.
What is larger, vn(P ) or vn(B \ P ), if n is sufficiently large?

7d25 Exercise. Given ε > 0, show that the quotient

vn({x ∈ B : |x1| > ε})
vn(B)

tends to zero as n→∞.3

Could you find the asymptotic behavior of the quotient above as n→∞?

Given an integrable f : Rn → R and a box B ⊂ Rn, we introduce
fB : Rn → R by

fB(x) =
1

v(B)

∫
B+x

f ;

that is, fB(x) is the mean value of f on the shifted box B+x = {b+x : b ∈ B}.
Clearly, the mapping f 7→ fB is linear, and

sup
Rn

|fB| ≤
1

v(B)

∫
B

|f | .

1See also 7d15(c).
2Do you see a contradiction in these claims?
3Hint: the quotient equals

∫ 1
ε
(1−t2)(n−1)/2 dt∫ 1

0
(1−t2)(n−1)/2 dt

.
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7d26 Exercise. Prove that fB is a continuous function.1

7d27 Exercise. (a) Let n = 2 and B = [s1, t1] × [s2, t2]. For arbitrary
f ∈ C0(Rn) with bounded support, prove that fB ∈ C1(Rn) and

∂

∂x1
fB(x1, x2) =

1

t2 − s2

∫
[s2,t2]

1

t1 − s1
(
fx1+t1 − fx1+s1

)
;

(b) generalize (a) to arbitrary n.

7d28 Exercise. Prove that every f ∈ C0(Rn) with bounded support is the
limit of some uniformly convergent sequence of functions of C1(Rn).2

7e Differentiation under the integral sign

Integration of the function x 7→
∫
f(x, ·) is useful, but differentiation of this

function is also widely used. Imagine for instance that a function depends
on time: f(x, t). Then its integral depends on time, too: t 7→

∫
f(x, t) dx.

According to the so-called Leibniz integral rule,

d

dt

∫
f(x, t) dx =

∫ (
∂

∂t
f(x, t)

)
dx

under appropriate conditions.
Instead of differentiating

∫
f(x, t) dx we’ll integrate

∫ (
∂
∂t
f(x, t)

)
dx; this

little trick shifts the work onto the iterated integral theorem!

7e1 Theorem. Let B ⊂ Rn be a box, and f, g : B × [0, 1] → R Lipschitz
functions such that f ′x(t) = gx(t) for all x ∈ B, t ∈ (0, 1). Then F ′(t) = G(t)
for all t ∈ (0, 1), where F (t) =

∫
B
f(x, t) dx and G(t) =

∫
B
g(x, t) dx.

Clarification. By “F ′(t) = G(t)” we mean that the derivative exists and
equals G(t); and “f ′x(t) = gx(t)” is interpreted similarly.

Proof. We know (recall Sect. 7b) that F and G are Lipschitz continuous.
It is sufficient to prove that

∫ t
0
G(s) ds = F (t) − F (0) for all t ∈ (0, 1). We

have fx(t)− fx(0) =
∫ t
0
gx(s) ds, therefore

F (t)− F (0) =

∫
B

(
f(x, t)− f(x, 0)

)
dx =

∫
B

dx

∫ t

0

ds g(x, s) =

=

∫ t

0

ds

∫
B

dx g(x, s) =

∫ t

0

dsG(s) .

1Hint: All [f ] such that fB is continuous are a closed set in the normed space of
equivalence classes.

2Hint: consider fB for a small B close to 0.
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7e2 Exercise. 1 Consider the function

F (t) =

∫ π/2

0

ln
(
t2 − sin2 x

)
dx for t > 1 .

(a) Write F ′(t) as an integral in x; substituting tanx = u prove that

F ′(t) =
π√
t2 − 1

= π
d

dt
ln
(
t+
√
t2 − 1

)
;

(b) for t → +∞ prove that F (t) = π ln t + o(1) and π ln
(
t +
√
t2 − 1

)
=

π ln(2t) + o(1);
(c) prove that

F (t) = π ln
t+
√
t2 − 1

2
.

The conditions of Th. 7e1 can be relaxed in several aspects. First, it is
easy to replace “Lipschitz” with “uniformly continuous” (since a uniformly
continuous function is the uniform limit of Lipschitz functions).

7e3 Exercise. (a) If f ∈ C1(Rn) has a bounded support, then fB ∈ C2(Rn)
and

DifB = (Dif)B for i = 1, . . . , n ;

(b) every f ∈ C0(Rn) with bounded support is the limit of some uniformly
convergent sequence of functions of C2(Rn);

(c) the same as (b), but replace C2(Rn) with Ck(Rn), k = 1, 2, 3, . . .
Prove it.2

By more effort it is possible (but not easy) to substantially relax the
conditions of Th. 7e1, as sketched below.

7e4 Remark. Let E ⊂ Rn be a Jordan set; f, g : E × (0, 1)→ R integrable
functions; and ∂

∂t
f(x, t) = g(x, t) for all (x, t) ∈ E × (0, 1).3 Then

(a) the function f(·, t) is integrable on E for all t ∈ (0, 1);
(b) the function F : t 7→

∫
E
f(·, t) is differentiable on (0, 1), and ∗

∫
E
g(·, t) ≤

F ′(t) ≤ ∗
∫
E
g(·, t) for all t ∈ (0, 1).

1Zorich, Sect. 17.1.3, Example 4.
2Hint: use 7d27(b) and 7e1.
3That is, f(x, ·) must be differentiable; but maybe not continuously differentiable.
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For now, we could prove (a) 1 and the equality F (s)− F (r) =
∫ s
r
G(t) dt

for 0 < r < s < 1, where ∗

∫
E
g(·, t) ≤ G(t) ≤ ∗

∫
E
g(·, t), but not (b).2

Higher generality, achieved within Lebesgue’s integration theory, is be-
yond our course even in formulation.3

Still more can be said using the so-called gauge integral.4,5

1By 6b28(a) and the mean value theorem, ∗
∫ s

r
g(x, t) dt ≤ f(x, s) − f(x, r) ≤

∗∫ s

r
g(x, t) dt for x ∈ E and 0 < r < s < 1. By Th. 7d1 the functions x 7→ ∗

∫ s

r
g(x, t) dt

and x 7→ ∗∫ s

r
g(x, t) dt are equivalent integrable functions. Thus we get integrability of

f(·, s) − f(·, r) whenever 0 < r < s < 1. In order to prove integrability of f(·, t) for all
t it remains to prove it for a single t. This is easy: by Th. 7d1 (again), the functions
t 7→ ∗

∫
E
f(·, t) and t 7→ ∗∫

E
f(·, t) are equivalent integrable functions; they must be equal

at some t (at least one).
2The proof of (b) uses the following fact. Let a sequence of integrable functions

fi : E → [0, 1] converge pointwise to a function f : E → [0, 1]. Then the sequence of
numbers

∫
E
fi converges to a number that belongs to [ ∗

∫
E
f,

∗∫
E
f ].

3Let E ⊂ Rn be a measurable set; f : E× (0, 1)→ R a integrable function; ∂
∂tf(x, t) =

g(x, t) exists for all (x, t) ∈ E× (0, 1); and
∫
E

supt |g(·, t)| <∞. Then (a) f(·, t) and g(·, t)
are measurable for all t ∈ (0, 1), and (b) d

dt

∫
E
f(·, t) =

∫
E
g(·, t) for all t ∈ (0, 1). (All

integrals are Lebesgue integrals; also measurability and integrability are Lebesgue’s.)
4“Necessary and sufficient conditions for differentiating under the integral sign” by

Erik Talvila. Amer. Math. Monthly, June/July 2001, 108, 432–436.
5“[. . . ] analysis is full of statements that are easy theorems under restrictive hy-

potheses, and harder theorems under more general hypotheses [. . . ] Statements about
interchanging limiting operations (e.g. differentiation under the integral) are classic ex-
amples; the truth boundary is so often unknown — or it is so difficult or unrewarding
to formulate useful ”if and only if” conditions under which the statement is a theorem,
that nobody bothers to do it.” MathStackExchange:Why are gauge integrals not more
popular?.

http://arxiv.org/abs/math/0101012
http://math.stackexchange.com/questions/28246/why-are-gauge-integrals-not-more-popular
http://math.stackexchange.com/questions/28246/why-are-gauge-integrals-not-more-popular
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