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16 Integration: from single-chart
to many-chart

16a Curvilinear iterated integral . . . . ... ... .. 249
16b Many-chart integration . . . ... ... ...... 252]

Single-chart pieces of a manifold are combined via partitions of unity.
Curvilinear iterated integrals, Stokes’ and divergence theorems take their
global geometric form.

16a Curvilinear iterated integral

Recall several facts.

* The iterated integral approach (Sect. 7) decomposes an integral over the
plane into integrals over parallel lines. It also decomposes an integral
over 3-dimensional space into integrals over parallel planes.®

x A 3-dimensional integral decomposes into integrals over spheres, see
14b12 and 15d12.

x However, a naive attempt to decompose an integral over the plane into
integrals over curves y = f(x)+a fails (see 15d9); a new factor appears,
like Jacobian.

Thus, we want to understand, whether or not a 2-dimensional integral
decomposes into integrals over curves ¢(-) = const, and what about a new
factor; and what happens in dimension 3 (and more).

First we try dimension 0 + 1. Let ¢ € CYR), Vo ¢'(z) # 0. A set
M. = {x : p(x) = c}, being a singleton {¢~'(c)}, may be treated as a
O-dimensional manifold in R; naturally, [,, f = f(¢~'(c)). Thus, generally
Jde [y, £ # Jg £5rather, [de [, f= [ f(e(¢))de = [ f@)l¢'(x)]de =
| fl¢'|; the new factor |¢'| appears. Roughly, it shows how many 0-manifolds
M, appear within an infinitesimal neighborhood of x.

We turn to dimension 1+ 1. Let ¢ : R? — R be of class C'*! near 0, ¢(0) =
0, (Dy)o # 0. Then ¢ is a co-chart of the set My = {(x,y) : p(z,y) = 0}
around (0, 0), and (-)—cis a co-chart of M, = {(z,y) : p(z,y) = ¢} provided
that ¢ is small enough. We restrict ourselves to small ¢ and small (x,y), then
M, are l-manifolds. Assuming that a function f € C(R?) has a compact

LOr alternatively, parallel lines. In this course we restrict ourselves to dimension n + 1;
for dimension n 4+ m see the ‘Coarea formula’.


http://www.encyclopediaofmath.org/index.php/Coarea_formula
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support within the small neighborhood of (0,0), we consider [dec [, f. It
is easy to guess that

(16al) /dc/cfz R2f|V90|,

since |V(z, y)| shows roughly, how many curves M, intersect an infinitesimal
neighborhood of (x,y). Note that both sides of are invariant under
rotations of the plane (since the volume form is well-defined for an n-manifold
in an N-dimensional Euclidean space).

The case of a linear function ¢ is simple and instructive. When proving
for a linear ¢ we may assume (due to the rotation invariance) that

p(x,y) = ay. Then [, f= [ f(z,£)dz, [Ve| = |al,

/dc/Mszfdc/drcf(m,g):a/dy/dwf(:r,y%

which proves (16al)) for a linear . Taking p(z,y) = ax + by with b # 0 we
get

M—{( C““”) meR} V| = Va2 + 12,
/ / 1+<—%>2dzz;
/dc/mf—““TT//

[ 1 =¢m//f<x,y>dxdy;

(16al)) becomes

m // ‘m dxdc—//fxy dzdy

O@e) _ |10
Do) = ’ ob ’ of the map-

which follows also from the fact that the Jacobian
ping (z,y) — (z,ax + by) is equal to b.

The former argument (the rotation) fails for nonlinear ¢ (think, why),
but the latter argument (the change of variables) still works, and generalizes
to dimension n + 1, as we’ll see soon.

Recall the implicit function theorem 5cl (for ¢ = 1, and some notations
changed): if 7o € R", yo € R, ¢ : R*™! — R is continuously differentiable
near (g, %), ©(zo,y0) = 0, and (%)(zo,yo) # 0, then there exist open neigh-
borhoods U of zy and V of gy such that
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(a) for every x € U there exists one and only one y € V satisfying
pl,y) = 0;

(b) a function g : U — V defined by ¢(z,g(z)) = 0 is continuously
differentiable, and Vg(zo) = — (%) (zou0)-

9
(Tg)(zo,yo)

Recall also the idea of the proof: a mapping

1(0) = ()

is a diffeomorphism U x V' — h(U x V'), and

(0= i)

We need a bit more: there exists an open neighborhood W of
0 in R such that for every ¢ € W,

(a') for every x € U there exists one and only one y € V
satisfying o(z,y) = ¢;

(b') a function g. : U — V defined by ¢(z,g.(z)) = c is
continuously differentiable, and Vg.(z) = —

whenever x € U, y = g.(z). U
This is easy to prove; basically, h™* (i) = (g

in z the relation ¢(z, g.(z)) = c.
Thus, for every ¢ € W the set

Me={(z,y) €U xV :p(z,y) =c}

is an n-manifold in R"™!; the function ¢(-) — ¢ is a co-chart of M,; and the
mapping U > z +— ¢.(z) = (a:,gc(x)) is a chart of the whole M,; in other
words, M., is the graph of g.. The set

U Me=n"2(U x W)

ceW
is an open neighborhood of (zg, yo).

16a2 Proposition. For every continuous, compactly supported function f

on UCEWMC7
/dc/ fz/fIW\-
w ¢
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16a3 Exercise. Find J, given ¢(x) = (x,g9(x)) € R*™ for x € R™ and
g€ CYR™).!
Answer: /1 + |Vg|?.

Proof of Prop.[16a3 For every c € W,

/ /= / f(z,9:(2)) V14|Vl dz
¢ U ﬁ/—’

due to thus, the function ¢ — | A J 18 continuous, and

Joaef s=[] o) /ITVamP e

id| 0
On the other hand, Dh = ( 99 | 9 ), therefore det(Dh) = %‘5. Also,
9 | By

R s

whenever y = g.(z). Finally, we apply change of variables:

/wdc/ = //waf(%gc(fv)) | (ztfgjf;ii(im drde =
//wa | jetC)l)th)w(l(w’c)(f ) drde =

// (z, c))|V<,0( (:v,c))||det(Dh_1)(m7c)| dxdc =
UxW

= // f(z,y)|[Vo(z,y)|drdy.
h=1(UxW)
O

16b Many-chart integration

Recall that f(M o)w 1s defined by (15¢2) whenever (M, Q) is an oriented
n-manifold and w a single-chart n-form on M. The linearity,

(16b1) / (crwy + cows) = cl/ wy + cz/ Wa
(M,0) (M,0) (M,0)

'Hint: in order to avoid working hard on a determinant, use the rotation invariance.
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is ensured by (15¢2) provided that both forms w;,ws have compact supports
within the same chart.

The idea of a “partition of unity” was used in Sect. 8h (when proving
Th. 8a5) in a rudimentary form: partition into integrable functions. Now we
need a bit more: partition into continuous functions.!

16b2 Lemma. Let M C RY be an n-manifold and K C M a compact set.
Then there exist single-chart continuous functions fi,..., fr : M — [0,1]
such that fi +---+ fr =1 on K.

Proof. For every x € K a function g, : y (51, — |y — :1c|)+ is single-chart
if €, is small enough, continuous, and positive in the open e,-neighborhood
of . These neighborhoods are an open covering of K; we choose a finite
subcovering and get single-chart functions ¢,...,gx : M — [0,00) whose
sum g = g1 + -+ - + gx is (strictly) positive on K. We take € > 0 such that
g(-) > € on K and note that functions fi,..., fi : M — [0,00) defined by

() = i(2)
filx) max(g(z), )

have the required properties. O

It follows that every compactly supported n-form on M is the sum of
single-chart n-forms,

w=w+ - Fwp, w=fiw.

It is tempting to define (assuming that O is an orientation of M)

(16b3) / w_/ w1+...+/ oy
(M,0) (M,0) (M,0)

however, does this sum depend on the choice of wy, ..., wp? If w4+ +wp =
W=+ +w then wy +- - +wp + (—@01) + - - - + (—@3) = 0; the question
is, whether the corresponding sum of integrals must vanish, or not.

16b4 Lemma. Let wy,...,w, be single-chart n-forms on an n-manifold M,
and O an orientation of M;

if wi+--+w =0 then / w1+---+/ we=20.
(M,0) (M,0)

1Still more will be needed in the proof of Th. [16b15} partition into C' functions.
(Ultimately, partitions into C'*° functions exist, but we do not need them.)
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Proof. Lemma gives single-chart continuous functions fi,..., fx such
that fi +---+ fr = 1 on a compact set that supports wy,...,w,. By (16bl]),
on one hand,

S =Y w-o.
j:]_ (M7 ) (M,O) j:]_
——

k k
fz'wj = / fle :/ Wy ,
Zl/(M,O) (M, )iz1 (M,0)
~—

since w; is single-chart. Therefore

14

l k k Y/ k
Z/(M,O) b= /W) faos — ZZ/(M@ fos = Zo 0.

J=1 j=1 i=1 i=1 j=1
[

We see that (16b3)) is indeed a correct definition of f( M)W whenever w

is a compactly supported n-form on M.
Now we can define the n-dimensional volume of a compact oriented n-man-
ifold (M, O) by
V,(M,0) = / 1oy € (0, 00)
(M,0)
where fia,0) is the volume form on (M,O). However, the Mdébius strip

should have an area, too!
We want to define

(16b5) / f= fra.w)
M (G.)

for a single-chart f € C(M); here (G, ) is a chart such that f is compactly
supported within ¥(G), and ji(¢,y) is the volume form on the n-manifold ¥ (G)
(oriented, even if M is non-orientable). To this end we need a counterpart

of Lemma 15¢3:
/ frc ) = / F1(Ga0)
(G1,91) (G2,92)

whenever (G1,11), (Ge,1) are charts such that K C ¥1(G1) N a(Gy) for
some compact K that supports f. We do it similarly to the proof of 15¢3, but
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this time we split the relatively open set G = 1 (G1)Ny(Gy) in two relatlvely
open sets G_, G+ according to the sign of det Dy (having ;" = o wl
G). Tt remains to take into account that H(Grpy) = H(Gaabp) ON G, but

H(Grpn) = —I(Gaibn) ON G
We see that (16b5)) is indeed a correct definition of f 1 J for a single-chart

f € C(M). Now, similarly to (16b2), we define

(16b6) /MfI/Mmeer/Mfk

whenever f = f; + -+ + fi with single-chart f; € C(M).

16b7 Exercise. (a) Prove that (16b@]) is a correct definition of [, f for all
compactly supported f € C(M);!
(b) formulate and prove linearity and monotonicity of the integral.

Now it is easy to define lower and upper integrals for discontinuous com-
pactly supported functions M — R (recall 6i2), and then, Riemann inte-
grability and Jordan measure on an n-manifold in RY. For functions with
no compact support, improper integral may be used. In particular, for a
non-compact manifold M,

—sup/f—supV E)
r<1

where f runs over compactly supported continuous (or just integrable) func-
tions, and F runs over sets Jordan measurable in M. Monotone convergence
of volumes (similar to 9cl) holds.

16b8 Exercise. Find the area of the (non-compact) Mébius strip 15b7.
Here is a harder exercise: find the area of the compact non-orientable

2-manifold in R® introduced in 15b9.

CURVILINEAR ITERATED INTEGRAL REVISITED

16b9 Theorem. Let G C R™ be an open set, n > 1, ¢ € CYQ),
Ve € G Vy(r) #0, and f € C(G) compactly supported. Then for every
c € ¢(G) the set M. = {x € G : p(x) = ¢} is an (n — 1)-manifold in R", a
function ¢ +— f M, f on (@) is continuous and compactly supported, and

/ dc/c - [ vl

'Hint: use partitions of unity.
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16b10 Remark. A function ¢ — V,,_1(M,) need not be continuous on ¢(G).
For a counterexample try G = {(z,y) : y < g(z)} C R? and ¢(x,y) = v.

16b11 Exercise. Prove Theorem [16b9!
16b12 Exercise. For f € C(R™\ {0}) prove that

Joo™ o=
(0.00)  {aifal=r} R\ {0}

where f(o,oo) and fRn\ (0} Te improper; that is, each side of the equality may
be a number, —oo, +00 or co — 00.2

In particular,

[ stabar= [ visorear,
R\ {0} (0,00)

where S, = {x : |z| = r} is the sphere. It is easy to see that V,,_1(S,) =
" W,-1(S1); thus,

/Rn\{o}f(lxbdx = an(Sl)/ U (r) dr

(0,00)

2

Now we may take f(r) =e " and get

/n el dzy = (/Re—ﬁ dt)n — (J7)" = 7"/

(recall 9e); thus,
a2 = an(Sl)/ e dr
0

Taking into account that

/OO Pl dp = /OO tn=1/2e~t a 11“
0 0 o0/t 2

(recall 9j1), we get?

(2)

o/?

(16b13) Vat(81) = 7y

'Hint: use and a partition of unity.
2Hint: start with f > 0, approximate f from below, apply [L6b9
3See also Sjamaar, Exer. 9.6.
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Alternatively we may use the volume of the ball By = {x : |z] < 1},

o/2

Vi(By) = WT(n)2)’

calculated in Sect. 9j.

DIVERGENCE THEOREM REVISITED

An open set G C R” is called regular, if (G)° = G that is, the interior of
the closure of G is equal to G. (Generally it cannot be less than G, but can
be more than G; a simple example: G =R\ {0}.) Equivalently, G is regular
if (and only if) G = A(R™\ G); that is, the boundary of the exterior of G is
equal to the boundary of G.

Let G C R"™ be a bounded regular open set, M C R" a (necessarily
compact) (n — 1)-manifold, and G = M (the topological boundary, nothing
“singular”...). We want to prove that the flux of a vector field through
M is equal to the integral of its divergence over G. In the language of
differential forms (recall 14¢8, 14¢9) it means a “nonsingular” Stokes’ theorem
for k =n—1: [,dw= [,,w for every (n — 1)-form w on R™. However, this
makes no sense without orienting G and M.

Recall 14c: the hyperface {1} x [—1,1]""! is a part of the boundary of
the cube (—1,1)"; the tangent space to the hyperface is spanned by vectors
€s, ..., en; and its orientation conforms to the basis (es, . . ., ;) (in this order),
while the orientation of the cube conforms to (ey,...,e,), of course. And the
vector e; is the outward unit normal to the hyperface, according to the sign
of the inequality z; < 1 on (—1,1)".

16b14 Definition. (a) A non-tangent vector h € R™ \ T, M is directed out-
wards, if © — eh belongs to G and x + ch does not belong to G for all € small
enough;

(b) an orientation @ of M conforms at © € M to an orientation O
of G if (hg,..., h,) conforms to O, whenever hy is directed outwards and

(hi, ha, ..., hy,) conforms to O,. (Here hy,... h, € T,M, hy ¢ T,M.)

For a non-regular G it may happen that x — ch and x + €h both belong
to G (for all € small enough); but for a regular G either h or (—h) must be
directed outwards (and then the other is said to be directed inwards).

16b15 Theorem. Let G C R" be a bounded regular open set, M C R" an
(n — 1)-manifold, 0G = M, and orientations O of G and O of M conform
(at every point of M). Then

/ dw = / w
(G,0) (M,0)
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for every (n — 1)-form w of class C!' on R™.
The divergence theorem follows.

16b16 Theorem. Let G C R™ be a bounded regular open set, M C R" an
(n — 1)-manifold, 0G = M. Then

KﬁWH:%}Hﬁ)

for every vector field H of class C' on R”; here 71 : M — R™, 7i(z) is the
outward unit normal vector at x € M.

It remains to prove Sometimes it is easy to construct an n-chain C
such that C' ~ (G,0) and 9C ~ (M, O) in the sense that [, dw = Jicoydw
and [, oW = f( M) Wi but in general this is problematic. Instead, one turns
to a single-chart w via a partition of unity; and locally M is just the graph
of a function.

We restrict ourselves to n = 2; the general case is quite similar.

We define a good box (for given G' and M) as an open box B C R?
such that M N B is either the empty set or the graph of a function, either
y = f(x) or x = g(y). More exactly, “y = f(x)” means here the following:
B = U x V for some open intervals U,V C R; f € CY(U), f(U) C V; and
MNB={(x, f(x)): 2 € U}. (The case “x = g(y)” is interpreted similarly.)

The closure G U M of G is compact, and all good boxes are its open
covering. We choose a finite covering: GUM C By U---U By, and construct
a corresponding partition of unity of class C':

fi,--, fr : R" —[0,1] are continuously differentiable,
fi(-) =0 outside B;,
i+t +fr=1 onGUM.

To this end, similarly to the proof of [16b2] we let ¢ = g1 + - - - + g, take €
such that g(-) > ¢ on K, and put

() — 9i(x) .
RPERH )

but this time we need g; € C'. We obtain g; by a linear transformation (of
arguments) from (say)

9(@,y) = h(z)h(y)
{u—ﬁy for —1<t<1,

0 otherwise;

h(t) =
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then fi,..., fr have the required properties.
Given an (n — 1)-form w of class C' on R™, we have

w=wi+--+w, on GUM,

where each w; = fiw is an (n — 1)-form of class C', and w; = 0 outside B;.
In order to prove the equality f(G,(’)) dw = f( M)W it is sufficient (due to
linearity) to prove the same equality for each w;.

The case M N B; = () is simple: f(M,@) w; = 0 (since w; = 0 on M), and
f(q@) dw = =% [ dw == [, w =0 (since w; = 0 on 0B;).

It remains to consider the case “x = g(y)” (since the case “y = f(z)” is
similar).! That is, B; = V x U, g : U — V is continuously differentiable,
and M N B; = {(9(y),y) : y € U}. We do not know which orientation of B
conforms to the given orientation O of G, but it does not matter, since the
other orientation changes the signs of both sides of the equality.

The set (V xU)\ M has exactly two connected components (think, why),
one of them being GN (V x U) (think, why). We may assume that G N (V x
U)=A{(z,y) € VxU:xz<g(y)}; in the other case, “z > g(y)”, we flip the

sign of x.

a vV b

Consider a mapping ¢ : U = R?, ¥ (y) = (9(y),y); (U,v1) is a chart of the
1-manifold M N (V x U).

The set G N (V x U) may be treated as a 2-manifold (in R?); a mapping
Py V x U — R2,

T —a

balay) = (a+ 37— (9(y) —a).y).

where (a,b) =V, is a diffecomorphism V x U — GN(V x U); and (V x U, 1)9)
is a chart of G N (V x U).

These charts, (U, ;) and (V' x U, 1), lead to orientations, @7 on M N
(V xU) and Oy on GN (V x U), and these two orientations conform (ac-
cording to [L6b14{(b)) at every (g(y),y) € M N (V x U); here is why. The
vector (¢'(y),1) € Tig) M conforms to Oy; the vector (1,0) is directed

"Why prefer “z = g(y)” to “y = f(x)”? Since our preferred hyperface {1} x [—1,1]"~}
of [-1,1]" forn =21is “z =17, not “y=...".
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outwards; and the basis ((1,0), (¢'(y),1)) conforms to O,, since g/%y) 9 | >0,
and det Dy > 0 as well. o
We apply Stokes’ theorem to the singular box I : V x U — R?, I'(z,y) =

(a+2=2(g(y) —a),y), getting [, dw = [, w. It remains to note that

/dw:/ dw, / w:/ w.
r (GN(VXU),02) or (MA(V xU),01)

Index
conforms, volume,
outwards, [257]
BT 06,251

partition of unity, 253 Jas 1

253
regular, 257] f(M,O) “ -

Vi.(M), B55

sphere, Vo (M, 0),
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